MATH 101: GRADUATE LINEAR ALGEBRA DAILY HOMEWORK \#19

Let R be a commutative ring.
Problem 19.1. Let $S \subseteq R$ be a multiplicatively closed subset. Consider the relation \sim on $R \times S$ by $(r, s) \sim\left(r^{\prime}, s^{\prime}\right)$ if there exists $x \in S$ such that $x\left(r s^{\prime}-r^{\prime} s\right)=0$. Show that \sim is transitive. (What happens if you remove the x ?)
Problem 19.2. Let $f \in R$ be not nilpotent. Let $S=\left\{f^{k}: k \geq 0\right\}$. Consider the ring $R[x] /(f x-1)$, the quotient of the univariate polynomial ring $R[x]$ by the ideal $(f x-1)$. Show that $R\left[S^{-1}\right] \simeq R[x] /(f x-1)$ as rings. (What happens if f is nilpotent?)

