MATH 101: GRADUATE LINEAR ALGEBRA DAILY HOMEWORK \#18

Problem 18.1. Let R be a (commutative integral) domain. An R-module A is divisible if $r A=A$ for every nonzero $r \in R$.

Let Q be a nonzero divisible \mathbb{Z}-module. Prove that Q is not a projective \mathbb{Z}-module. Deduce that \mathbb{Q} is not a projective \mathbb{Z}-module. [Hint: Show first that if F is a free module then $\bigcap_{n=1}^{\infty} n F=\{0\}$ using a basis. Suppose that Q is projective, and use one of the equivalent conditions on a projective module.]

Problem 18.2. Let R be a commutative ring. Let M, N be projective R-modules. Show that $M \otimes_{R} N$ is a projective R-module. [Hint: Use that the tensor product of two free R-modules is free, because tensor products commute with direct sums.]

