MATH 101: GRADUATE LINEAR ALGEBRA DAILY HOMEWORK #12

Problem 12.1. Let *M* be the \mathbb{Z} -module $\mathbb{Z}/24\mathbb{Z} \times \mathbb{Z}/15\mathbb{Z} \times \mathbb{Z}/50\mathbb{Z}$.

(a) Find $\operatorname{ann}(M)$, the annihilator of M in \mathbb{Z} .

(b) Let $I = 2\mathbb{Z}$. Compute the annihilator of I in M.

Let R be a ring (with 1). We say $x \in R$ is a *left zerodivisor* if $x \neq 0$ and there exists a nonzero $y \in R$ such that xy = 0. We similarly define *right zerodivisor*. If R is commutative, there is no difference between left and right, so we simply say *zerodivisor*.

We say R is a *domain* if R is commutative and has no zerodivisors.

Problem 12.2. Let R be a ring, and let M be left R-module. An element $m \in M$ is called a *torsion element* if rm = 0 for some nonzero $r \in R$. The set of torsion elements is denoted Tor(M).

- (a) Prove that if R is a domain, then Tor(M) is a submodule of M.
- (b) Give an example of a ring R and an R-module M such that Tor(M) is not a submodule.
- (c) Show that if R has a zerodivisor then every nonzero R-module M has $Tor(M) \neq \{0\}$.
- (d) M is called a *torsion module* if M = Tor(M). Prove that every finite abelian group is a torsion \mathbb{Z} -module. Give an example of an infinite abelian group that is a torsion \mathbb{Z} -module.

Date: Assigned Friday, 6 October 2017; due Monday, 9 October 2017.