MATH 101: GRADUATE LINEAR ALGEBRA DAILY HOMEWORK \#8

Problem 8.1. Let $F=\mathbb{R}$ or $F=\mathbb{C}$ and let V, W be finite-dimensional inner product spaces over F (i.e., vector spaces equipped with an inner product). Let $T: V \rightarrow W$ be an F-linear map, and let $T^{*}: W \rightarrow V$ be the adjoint with respect to the inner product, so that $\langle T(v), w\rangle_{W}=\left\langle v, T^{*}(w)\right\rangle_{V}$ for all $v \in V$ and $w \in W$.

Let $v \in V$. Show that $\left(T^{*} T\right)(v)=0$ if and only if $T(v)=0$.

