MATH 101: GRADUATE LINEAR ALGEBRA DAILY HOMEWORK #8

Problem 8.1. Let $F = \mathbb{R}$ or $F = \mathbb{C}$ and let V, W be finite-dimensional inner product spaces over F (i.e., vector spaces equipped with an inner product). Let $T: V \to W$ be an F-linear map, and let $T^*: W \to V$ be the adjoint with respect to the inner product, so that $\langle T(v), w \rangle_W = \langle v, T^*(w) \rangle_V$ for all $v \in V$ and $w \in W$.

Let $v \in V$. Show that $(T^*T)(v) = 0$ if and only if T(v) = 0.

Date: Assigned Friday, 29 September 2017; due Monday, 2 October 2017.