MATH 101: GRADUATE LINEAR ALGEBRA DAILY HOMEWORK #1

Problem 1.1. Let $f: X \to Y$ be a function. Given another function $g: Y \to Z$, we can compose to get $g \circ f: X \to Z$ defined by $(g \circ f)(x) = g(f(x))$. Sometimes we will have more elaborate diagrams:

We say a diagram like the above is **commutative** if we start from one set and travel to any other, we get the same answer regardless of the path chosen: in the above example, this reads h(x) = g(f(x)) for all $x \in X$.

We say that f factors through a map $g: X \to Z$ if there exists a map $h: Z \to Y$ such that f(x) = h(g(x)) for all $x \in X$, and we say f factors uniquely through g if the map h is unique. Define the relation \sim on X by $x \sim x'$ if f(x) = f(x').

- (a) Show that \sim is an equivalence relation.
- (b) Show that f factors uniquely through the projection $\pi: X \to X/\sim$. If f is surjective, show further that the map $(X/\sim) \to Y$ is bijective. Draw the corresponding commutative diagram.
- (c) Now let F be a field, let V, W be F-vector spaces, and let $\phi: V \to W$ be an F-linear map. Show that ϕ factors uniquely through the quotient $V \to V/\ker \phi$. If ϕ is surjective, what more can you say?

Date: Assigned Monday, 11 September 2017; due Wednesday, 13 September 2017.