MATH 101: GRADUATE LINEAR ALGEBRA DAILY HOMEWORK \#1

Problem 1.1. Let $f: X \rightarrow Y$ be a function. Given another function $g: Y \rightarrow Z$, we can compose to get $g \circ f: X \rightarrow Z$ defined by $(g \circ f)(x)=g(f(x))$. Sometimes we will have more elaborate diagrams:

We say a diagram like the above is commutative if we start from one set and travel to any other, we get the same answer regardless of the path chosen: in the above example, this reads $h(x)=g(f(x))$ for all $x \in X$.

We say that f factors through a map $g: X \rightarrow Z$ if there exists a map $h: Z \rightarrow Y$ such that $f(x)=h(g(x))$ for all $x \in X$, and we say f factors uniquely through g if the map h is unique.

Define the relation \sim on X by $x \sim x^{\prime}$ if $f(x)=f\left(x^{\prime}\right)$.
(a) Show that \sim is an equivalence relation.
(b) Show that f factors uniquely through the projection $\pi: X \rightarrow X / \sim$. If f is surjective, show further that the map $(X / \sim) \rightarrow Y$ is bijective. Draw the corresponding commutative diagram.
(c) Now let F be a field, let V, W be F-vector spaces, and let $\phi: V \rightarrow W$ be an F-linear map. Show that ϕ factors uniquely through the quotient $V \rightarrow V / \operatorname{ker} \phi$. If ϕ is surjective, what more can you say?

