Math 101. Topics in Algebra.

Homework 6. Due on Friday, 11/14/2008.

- 1. If R is a ring with identity, an element $e \in R$ is called an *idempotent* if $e^2 = e$. Notice that aside from e = 0, 1, all other idempotents are zero divisors. If $\varphi : R \to S$ is a homomorphism between rings with identity, $\varphi(1_R)$ is an idempotent, so to find homomorphisms in which $\varphi(1_R)$ is not the identity, one must look for idempotents in S. Find all ring homomorphisms $\varphi : \mathbb{Z}_{120} \to \mathbb{Z}_{42}$; verify they are ring homomorphisms.
- 2. Let R be a commutative ring with identity. An element $x \in R$ is called *nilpotent* if $x^n = 0$ for some positive integer n.
 - (a) Show that the set of nilpotent elements in R form an ideal, called the nilradical of R.
 - (b) Show that the sum of a unit and a nilpotent element is a unit in R. Hint: Show it first with the unit equal to the identity.
- 3. Let R be a commutative ring with identity. Let R[x] be the polynomial ring in one variable with coefficients in R. Let $p(x) = a_0 + a_1x + a_nx^n \in R[x]$.
 - (a) Show that p is nilpotent in R[x] if and only if a_i is nilpotent in R for all $i \geq 0$.
 - (b) Show that p is a unit in R[x] if and only if a_0 is a unit in R and a_i is nilpotent in R for all i > 1.
 - Hint: If $p = a_0 + a_n x^n$ and $q = b_0 + b_m x^m$ with pq = 1, show by induction on r that $a_n^{r+1}b_{m-r} = 0$ to conclude that a_n is nilpotent for $n \ge 1$.
- 4. Assume that R is a commutative ring with identity, and let f(x) be a monic polynomial in R[x] of degree $n \ge 1$. Let bar notation denote passage to the quotient ring R[x]/(f).
 - (a) Show that every element of R[x]/(f) has a unique representative of the form $a_0 + a_1x + \cdots + a_{n-1}x^{n-1}$ with $a_i \in R$.
 - (b) If $f(x) = x^n a$ for a some nilpotent element of R, show that \overline{x} is nilpotent in R[x]/(f).