Math 101. Topics in Algebra.

Homework 6. Due on Friday, 11/14/2008.

1. If R is a ring with identity, an element $e \in R$ is called an idempotent if $e^{2}=e$. Notice that aside from $e=0,1$, all other idempotents are zero divisors. If $\varphi: R \rightarrow S$ is a homomorphism between rings with identity, $\varphi\left(1_{R}\right)$ is an idempotent, so to find homomorphisms in which $\varphi\left(1_{R}\right)$ is not the identity, one must look for idempotents in S. Find all ring homomorphisms $\varphi: \mathbb{Z}_{120} \rightarrow \mathbb{Z}_{42}$; verify they are ring homomorphisms.
2. Let R be a commutative ring with identity. An element $x \in R$ is called nilpotent if $x^{n}=0$ for some positive integer n.
(a) Show that the set of nilpotent elements in R form an ideal, called the nilradical of R.
(b) Show that the sum of a unit and a nilpotent element is a unit in R.

Hint: Show it first with the unit equal to the identity.
3. Let R be a commutative ring with identity. Let $R[x]$ be the polynomial ring in one variable with coefficients in R. Let $p(x)=a_{0}+a_{1} x++a_{n} x^{n} \in R[x]$.
(a) Show that p is nilpotent in $R[x]$ if and only if a_{i} is nilpotent in R for all $i \geq 0$.
(b) Show that p is a unit in $R[x]$ if and only if a_{0} is a unit in R and a_{i} is nilpotent in R for all $i \geq 1$.
Hint: If $p=a_{0}++a_{n} x^{n}$ and $q=b_{0}++b_{m} x^{m}$ with $p q=1$, show by induction on r that $a_{n}^{r+1} b_{m-r}=0$ to conclude that a_{n} is nilpotent for $n \geq 1$.
4. Assume that R is a commutative ring with identity, and let $f(x)$ be a monic polynomial in $R[x]$ of degree $n \geq 1$. Let bar notation denote passage to the quotient ring $R[x] /(f)$.
(a) Show that every element of $R[x] /(f)$ has a unique representative of the form $a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1}$ with $a_{i} \in R$.
(b) If $f(x)=x^{n}-a$ for a some nilpotent element of R, show that \bar{x} is nilpotent in $R[x] /(f)$.

