Math 101. Topics in Algebra.

Homework 5. Due on Friday, 10/31/2008.

- 1. Let G be a group of order 99. Show that either $G \cong \mathbb{Z}_{99}$ or $G \cong \mathbb{Z}_3 \times \mathbb{Z}_{33}$.
- 2. Denote by $Aut(\mathbb{Z}_n)$ the group of automorphisms of \mathbb{Z}_n (viewing \mathbb{Z}_n as an additive group). Show that $Aut(\mathbb{Z}_n) \cong \mathbb{Z}_n^{\times}$, where \mathbb{Z}_n^{\times} denotes the multiplicative group of the ring \mathbb{Z}_n .
- 3. (a) Suppose that H_1 , H_2 and K are groups, $\sigma : H_1 \to H_2$ is an isomorphism, and $\psi : H_2 \to Aut(K)$ a homomorphism, so that $\varphi = \phi \circ \sigma : H_1 \to Aut(K)$ is also a homomorphism. Show that $K \rtimes_{\varphi} H_1 \cong K \rtimes_{\varphi} H_2$.
 - (b) Suppose that H and K are groups and $\varphi, \psi: H \to Aut(K)$ are monomorphisms with the same image in Aut(K). Show that there exists a $\sigma \in Aut(H)$ such that $\psi = \varphi \circ \sigma$.
 - (c) Suppose that H and K are groups, $\varphi, \psi : H \to Aut(K)$ are monomorphisms, and Aut(K) is finite and cyclic. Show that φ and ψ have the same image in Aut(K).
 - (d) Let p < q be primes with p|(q-1). Let H and K be cyclic groups of order p and q respectively. Let $\varphi, \psi : H \to Aut(K)$ be nontrivial homomorphisms. Show that $K \rtimes_{\varphi} H \cong K \rtimes_{\psi} H$.
- 4. Let p < q be primes, and let G be a group of order pq. We know from class that $G \cong \mathbb{Z}_q \rtimes_{\varphi} \mathbb{Z}_p$ for some $\varphi : \mathbb{Z}_p \to Aut(\mathbb{Z}_q)$. By analyzing all possible φ , find (up to isomorphism) all groups of order pq. If p = 2, describe them without using semidirect products.