Math 101. Topics in Algebra.

Homework 1 (warm-up). Due on Wednesday, 10/1/2008.

1. Without quoting a formula from the book, show that if F is a finite field with q elements, then the group $G L_{n}(F)$ (assume $\left.n \geq 1\right)$ has cardinality $\left(q^{n}-1\right)\left(q^{n}-q\right) \ldots\left(q^{n}-q^{n-1}\right)$. Hint: You may use without proof that an $n \times n$ matrix is invertible if and only if its rows (or columns) are linearly independent.
2. (Proof or counterexample.) Let G be a finite group of order n. Then G has at most finitely many isomorphism types, that is there is a finite set of groups, so that G is necessarily isomorphic to one in the finite set. If you decide the number is finite, can you give an upper bound in terms of n ?
3. (Proof or counterexample.) Consider the validity of a cancelation law for direct products: Let G, H, K be groups and suppose that $G \times H \cong G \times K$. Then $H \cong K$.
4. Let $G=\left\{\zeta \in \mathbb{C} \mid \zeta^{n}=1\right.$ for some $\left.n \geq 1\right\}$, that is, the set of roots of unity in \mathbb{C}. Verify that G is a group. Let $k>1$ be a fixed integer and consider the map $\zeta \mapsto \zeta^{k}$. Show that this map is a surjective homomorphism from G to G, but not necessarily an isomorphism.
5. Show that if $n \geq m$ then the number of m-cycles in S_{n} is given by

$$
\frac{n(n-1)(n-2) \ldots(n-m+1)}{m}
$$

6. What is the order of the element of S_{9} with cycle decomposition $(1634)(287)(59) ?$
