Hint for Problem 52-e

Using d for down and u for up, we could have uudduuddudud as our Catalan path. Suppose that $i=5$. The fifth upstep is the u in position 9 . Thus $F=u u d d u u d d, U=u$, and $B=d u d$. Now $B U F$ is duduuudduudd. This is a Dyck path that begins by going below the x-axis. The $d^{\prime} s$ in positions 1 and 3 take the path to the y-coordinate -1 . Then the y coordinate climbs to 2 , goes back to 0 , up to 2 again, and finally down to 0 . So the absolute minimum is -1 , and it occurs in the first and third position. There are five u 's after the third positon. So this Dyck path is in the block B_{5} of our partition. Now comes the crucial question. Why were there five u 's after that last absolute minimum in position 3? Try with the same path and $i=3$. Figure out why there are three u 's after the last absolute minimum in the resulting path. All this discussion should explain why when $i=5$, the set of all Catalan paths is mapped into the set B_{5}. Keeping $i=5$ for a while, try to see why this correspondence between Catalan paths and B_{5} is a bijection. Then, if you need to, do the same thing with $i=3$. This should give you enough insight to do the general case.

