Hint for Problem 176

For any partition of k into parts λ_{1}, λ_{2}, etc. we can get a partition of k into odd parts by factoring the highest power of two that we can from each λ_{i}, writing $\lambda_{i}=\gamma_{i} \cdot 2_{i}^{k}$. Why is γ_{i} odd? Now partition k into $2^{k_{1}}$ parts of size $\gamma_{1}, 2^{k_{2}}$ parts of size γ_{2}, etc. and you have a partition of k into odd parts.

