Principles of Calculus Modeling: An Interactive Approach by Donald Kreider, Dwight Lahr, and Susan Diesel Exercises for Section 4.8

Homework problems copyright ©2000–2005 by Donald L. Kreider, C. Dwight Lahr, Susan J. Diesel.

1. (1 pt)

Let R be the region bounded by $y = x^2 + 2x + 4$ and y = 0 between x = 1 and x = 2.

What is the volume of the solid of revolution obtained by rotating R about the x-axis?

Volume of solid = _ _ cubic units

2. (1 pt)

Let R be the finite region bounded by $y = \frac{3}{x}$ and x + 2y = 5. What is the volume of the solid of revolution obtained by rotating R about the x-axis?

cubic units Volume of solid = _

3. (1 pt)

What percentage of the volume of a ball of radius 3 is removed if a hole of radius 2 is drilled through the center of the ball?

- A. about 9 percent
- B. about 25 percent
- C. about 67 percent
- D. about 41 percent
- E. about 59 percent

4. (1 pt)

Let R be the finite region bounded by $y = e^x$, x = -4, and x = 0. What is the volume of the solid of revolution obtained by rotating R about the x-axis?

Volume of solid = _ _ cubic units

5. (1 pt)

Let R be the finite region bounded by $y = -x^2 + 10$, y = 4x, and y = 0. What is the volume of the solid of revolution obtained by rotating R about the y-axis?

Volume of solid = ____ ____ cubic units

6. (1 pt)

Let R be the finite region bounded by $y = \sqrt{2x}$, x = 7, x = 12. What is the volume of the solid of revolution obtained by rotating R about the x-axis?

Volume of solid = _ _ cubic units

7. (1 pt)

Let R be the finite region bounded by $y = \sqrt{15x}$, x = 9, x = 14. What is the volume of the solid of revolution obtained by rotating R about the y-axis?

cubic units

Volume of solid = _

8. (1 pt)

Let R be the finite region bounded by $y = 3 \sec(x), x = -1$, x = 1, and the x axis. What is the volume of the solid of revolution obtained by rotating R about the x-axis?

Volume of solid = _____ cubic units

9. (1 pt)

Let R be the finite region bounded by a circle $(x-9)^2 + y^2 = 4$. What is the volume of the solid of revolution obtained by rotating R about the y axis? _____ cubic units

Volume of solid = _

10. (1 pt)

Let R be the finite region bounded by $y = -10x^2 + 3$, x = 0, y = -3. What is the volume of the solid of revolution obtained by rotating R about the y-axis?

Volume of solid = ____ cubic units

11. (1 pt)

What is the volume of the solid generated by revolving the region bounded by the curve $y = x^{17}$, the line x = 16, and the x-axis around the x-axis?

12. (1 pt)

Volume = ____

Find the volume of the solid generated by rotating the region bounded by the y-axis, the line y = 16, and the curve $y = x^4$ around the x-axis.

13. (1 pt)

Find the volume of the solid generated by rotating the region bounded by the y-axis, the line y = 15, the line y = -25 and the curve $y = \ln(x)$ around the y-axis.

14. (1 pt)

Find the volume of the solid generated by rotating the re-gion bounded by the x-axis, the line $x = \frac{\pi}{6}$, and the curve $y = \sqrt{\tan(x)}$ around the x-axis.

15. (1 pt)

Find the volume of the solid generated by rotating the circle $(x-12)^2 + y^2 = 16$ around the y-axis.

16. (1 pt)

Find the volume of the solid generated by rotating the ellipse $\frac{x^2}{10^2} + \frac{(y-10)^2}{9^2} = 1$ around the x-axis.

17. (1 pt)

Find the volume of the solid generated by rotating the region bounded by y = x, y = 5 - x, and x = 7 around the line x = 7.

18. (1 pt)

Find the volume of the solid generated by rotating the region bounded by $x = \frac{-\pi}{5}$, $x = \frac{\pi}{5}$, and $y = \sec(x)$ around the x axis.

19. (1 pt)

What is the volume of the solid generated by rotating the region bounded by curve $y = \frac{1}{\sqrt{64x^2 + 1}}$, the line x = 84, and the x axis around the x axis?

Generated by the WeBWorK system ©WeBWorK Team, Department of Mathematics, University of Rochester

20. (1 pt)

Find the volume of the solid generated by rotating the region bounded by $y = \sqrt{9 - x^2} + 6$ and the line y = 6 around the x axis.