Principles of Calculus Modeling: An Interactive Approach by Donald Kreider, Dwight Lahr, and Susan Diesel Exercises for Section 4.8

Homework problems copyright (c)2000-2005 by Donald L. Kreider, C. Dwight Lahr, Susan J. Diesel.

1. (1 pt)

Let R be the region bounded by $y=x^{2}+2 x+4$ and $y=0$ between $x=1$ and $x=2$.

What is the volume of the solid of revolution obtained by rotating R about the x -axis?

Volume of solid $=$ \qquad cubic units
2. (1 pt)

Let R be the finite region bounded by $y=\frac{3}{x}$ and $x+2 y=5$. What is the volume of the solid of revolution obtained by rotating R about the x -axis?

Volume of solid $=$ \qquad cubic units

3. (1 pt)

What percentage of the volume of a ball of radius 3 is removed if a hole of radius 2 is drilled through the center of the ball?
A. about 9 percent
B. about 25 percent
C. about 67 percent
D. about 41 percent
E. about 59 percent
4. (1 pt)

Let R be the finite region bounded by $y=e^{x}, x=-4$, and $x=0$. What is the volume of the solid of revolution obtained by rotating R about the x -axis?

Volume of solid = \qquad cubic units

5. (1 pt)

Let R be the finite region bounded by $y=-x^{2}+10, y=4 x$, and $y=0$. What is the volume of the solid of revolution obtained by rotating R about the y -axis?

Volume of solid $=$ \qquad cubic units
6. (1 pt)

Let R be the finite region bounded by $y=\sqrt{2 x}, x=7, x=12$. What is the volume of the solid of revolution obtained by rotating R about the x -axis?

Volume of solid = \qquad cubic units
7. (1 pt)

Let R be the finite region bounded by $y=\sqrt{15 x}, x=9, x=14$. What is the volume of the solid of revolution obtained by rotating R about the y-axis?

Volume of solid = \qquad cubic units

8. (1 pt)

Let R be the finite region bounded by $y=3 \sec (x), x=-1$, $x=1$, and the x axis. What is the volume of the solid of revolution obtained by rotating R about the x -axis?

Volume of solid = \qquad cubic units
9. (1 pt)

Let R be the finite region bounded by a circle $(x-9)^{2}+y^{2}=4$. What is the volume of the solid of revolution obtained by rotating R about the y axis?

Volume of solid $=$ \qquad cubic units
10. (1 pt)

Let R be the finite region bounded by $y=-10 x^{2}+3, x=0$, $y=-3$. What is the volume of the solid of revolution obtained by rotating R about the y -axis?

Volume of solid $=$ \qquad cubic units
11. (1 pt)

What is the volume of the solid generated by revolving the region bounded by the curve $y=x^{17}$, the line $x=16$, and the x -axis around the x -axis?

Volume $=$
12. (1 pt)

Find the volume of the solid generated by rotating the region bounded by the y-axis, the line $y=16$, and the curve $y=x^{4}$ around the x -axis.

13. (1 pt)

Find the volume of the solid generated by rotating the region bounded by the y-axis, the line $y=15$, the line $y=-25$ and the curve $y=\ln (x)$ around the y-axis.
14. (1 pt)

Find the volume of the solid generated by rotating the region bounded by the x -axis, the line $x=\frac{\pi}{6}$, and the curve $y=\sqrt{\tan (x)}$ around the x -axis.

15. (1 pt)

Find the volume of the solid generated by rotating the circle $(x-12)^{2}+y^{2}=16$ around the y-axis.
16. (1 pt)

Find the volume of the solid generated by rotating the ellipse $\frac{x^{2}}{10^{2}}+\frac{(y-10)^{2}}{9^{2}}=1$ around the x -axis.

17. (1 pt)

Find the volume of the solid generated by rotating the region bounded by $y=x, y=5-x$, and $x=7$ around the line $x=7$.

18. (1 pt)

Find the volume of the solid generated by rotating the region bounded by $x=\frac{-\pi}{5}, x=\frac{\pi}{5}$, and $y=\sec (x)$ around the x axis.
19. $(1 \mathrm{pt})$

What is the volume of the solid generated by rotating the region bounded by curve $y=\frac{1}{\sqrt{64 x^{2}+1}}$, the line $\mathrm{x}=84$, and the x axis around the x axis?
20. (1 pt)

Find the volume of the solid generated by rotating the region bounded by $y=\sqrt{9-x^{2}}+6$ and the line $y=6$ around the x axis.

