Principles of Calculus Modeling: An Interactive Approach by Donald Kreider, Dwight Lahr, and Susan Diesel Exercises for Section 1.6

Homework problems copyright (c)2000-2005 by Donald L. Kreider, C. Dwight Lahr, Susan J. Diesel.

1. (1 pt)

Simplify the following expression:
$\ln \left(e^{1 / 5} e^{8 / 7}\right)=$ $\qquad$
Your answer must be a number in decimal or scientific notation, or a fraction.
2. (1 pt)

Simplify the following expression:
$e^{2 \ln \cos (5 x)}+\left(\ln e^{\sin (5 x)}\right)^{2}=$ $\qquad$
Your answer must be a number in decimal or scientific notation, or a fraction.

## 3. (1 pt)

Simplify the following expression:
$30 \ln \sqrt{e}+16 \ln e^{1 / 8}=$ $\qquad$
Your answer must be a number in decimal or scientific notation, or a fraction.
4. ( 1 pt )

Solve the following equation for x :

$$
3^{x+7}=8^{x}
$$

$x=$

## 5. $(1 \mathrm{pt})$

Solve the following equation for x :

$$
\ln (\ln (5 x))=0
$$

$$
x=
$$

6. (1 pt)

Solve the following equation for x :

$$
\begin{aligned}
& \ln \left(x^{1 / 4}\right)+\ln \left(x^{7 / 4}\right)=1 \\
& x=
\end{aligned}
$$

7. (1 pt)

Solve the following equation for x :
$\ln (x+16)=\ln (x)+\ln (16)$
$x=$

## 8. (1 pt)

Simplify the following expression:
$e^{x-\ln x}+\ln \left(x e^{x}\right)=$
9. (1 pt)

Where does the graph of $e^{-9 x}-10=y$ cross the x -axis?

$$
x=
$$

10. (1 pt)

Where does the graph of $\ln (x)-\ln (7-x)+2=y$ cross the x axis?
$x=$ $\qquad$
11. (1 pt)

Find all solutions to the equation $2 \ln (x)=\ln (75-10 x)$. Enter the solutions below in increasing order; leave any unused answer boxes blank.
12. ( 1 pt )

Find all solutions to the equation $\ln (x)+\ln (x+6)=$ 4.71849887129509. Enter the solutions below in increasing order; leave any unused answer boxes blank.
13. (1 pt)

Consider the function $f(x)=e^{x+6}+6$. Determine the inverse function and its domain.
$f^{-1}(x)=$ $\qquad$
Domain of $f^{-1}$ : all values of $x$ such that $x>$
14. (1 pt)

Consider the function $f(x)=7\left(5^{x+4}\right)+2$. Determine the inverse function and its domain.
$f^{-1}(x)=$ $\qquad$
Domain of $f^{-1}$ : all values of $x$ such that $x>$

## 15. (1 pt)

The growth of a sample of bacteria over time is modeled by the equation $y(t)=2^{0.05 t+2}$, with t measured in hours. At what time does the bacteria population reach 124 ?
$t=$ $\qquad$
16. (1 pt)

The noise of a rocket engine (as measured in decibels from sea level) is modeled by the equation $y(t)=16^{1 /(3 t+0.03)}$, with t measured in minutes. At what time does the noise level drop below 2 decibels?
$t=$ $\qquad$ minutes

