Principles of Calculus Modeling: An Interactive Approach by Donald Kreider, Dwight Lahr, and Susan Diesel Exercises for Section 1.1

Homework problems copyright ©2000–2005 by Donald L. Kreider, C. Dwight Lahr, Susan J. Diesel.

# **1.** (1 pt)

Calculate a few values to determine which image shows the graph of the function 4x - 3.



#### 2. (1 pt)

Calculate a few values to determine which image shows the graph of the function -x+4.



## **3.** (1 pt)

Consider the following table of times and distances for a dropped object.

| time (x) | distance (y) |
|----------|--------------|
| 0        | 0            |
| 0.2      | 0.08         |
| 0.4      | 0.32         |
| 0.6      | ???          |
| 0.8      | 1.28         |
| 1        | 2            |

If you assume the data points are modeled by a function of the form  $y = ax^2 + c$ , which of the following values is most likely as the missing value in the table?

| А. | 0.08  |
|----|-------|
| В. | 0.72  |
| C. | 7.2   |
| D. | 0     |
| E. | -0.72 |
|    |       |

### **4.** (1 pt)

Consider the following table of times and distances for a dropped object.

| time (x) | distance (y) |
|----------|--------------|
| 0        | 1            |
| 3        | -53          |
| 6        | -431         |
| 9        | ???          |
| 12       | -3455        |
| 15       | -6749        |

If you assume the data points are modeled by a function of the form  $y = ax^3 + c$ , which of the following values is most likely as the missing value in the table?

| А. | -6749 |
|----|-------|
| B. | -53   |
| C. | 1457  |
| D. | 0     |
| E. | -1457 |

# **5.** (1 pt)

Consider a table of data.

| X | у     |
|---|-------|
| 0 | 1.1   |
| 1 | -5.2  |
| 2 | -5.0  |
| 3 | -7.9  |
| 4 | -11.2 |
| 5 | -10.8 |

The data points in the table, and a line L(x) passing among them, are shown below.



Assume the line passes through points (0, 1.1) and (5, -10.8). Compute the sum of squared errors  $\sum_{i=0}^{5} (y_i - L(x_i))^2$ .

**6.** (1 pt) Consider a table of data.

| x | У    |
|---|------|
| 0 | 0.2  |
| 1 | -0.2 |
| 2 | -0.1 |
| 3 | 1.9  |
| 4 | 4.2  |
| 5 | 6.0  |
|   |      |

The data points in the table, and a line L(x) passing among them, are shown below.



**7.** (1 pt) Consider a table of data.

| X | У    |
|---|------|
| 0 | 0.1  |
| 1 | 0.3  |
| 2 | -0.3 |
| 3 | 0.7  |
| 4 | 1.5  |
| 5 | 5.1  |
|   |      |





Assume the line passes through points (0, 0.1) and (5, 5.1). Compute the sum of squared errors  $\sum_{i=0}^{5} (y_i - L(x_i))^2$ .

8. (1 pt)

Let  $f(x) = -3\sin(8x) - 1$ . Compute f(x) for the following values. If f(x) cannot be evaluated, enter **no answer**, without quotes.



9. (1 pt) Let  $f(x) = -7 \frac{\sqrt{10-x}}{x^2}$ . Compute f(x) for the following values. If f(x) cannot be evaluated, enter **no answer**, without quotes.



**10.** (1 pt)

Let  $f(x) = 8x^2 + 4x + 2$ . Compute f(x) for the following values. If f(x) cannot be evaluated, enter **no answer**, without quotes.

| f(0) =            |  |
|-------------------|--|
| f(-1) = .         |  |
| $f(9) = \_$       |  |
| $f(\sqrt{2}) = .$ |  |
| $f(e) = \_$       |  |
|                   |  |

**11.** (1 pt) Consider the following table of data values.

| X  | У   |
|----|-----|
| 3  | 18  |
| 6  | 43  |
| 9  | 90  |
| 12 | 154 |
| 15 | 233 |
| 18 | 333 |

Which of the following functions best fits the data given in the table?

A. 
$$y = 3x^2 + 3$$
  
B.  $y = 2x^2 + 7$   
C.  $y = 1x^2 + 9$   
D.  $y = 11$ 

**12.** (1 pt)

Consider the following table of points.

| X | У    |
|---|------|
| 0 | 7.5  |
| 1 | 14   |
| 2 | 33.5 |
| 3 | 66   |

If the points in the table are on a curve of the form  $y = ax^2 + c$ , then what are the values of *a* and *c*?

*a* = \_\_\_\_\_

 $\frac{c = \_}{13. (1 \text{ pt})}$ 

Consider the following table of data values.

| X | У  |
|---|----|
| 0 | 10 |
| 2 | 16 |
| 4 | 22 |
| 6 | 18 |

For each of the following lines y = mx + b, calculate the sum

of squared errors  $\sum_{i=0}^{5} (y_i - (mx_i + b))^2$ .

y = 3x + 10Sum of squared errors: \_\_\_\_\_

y = 3x + 6Sum of squared errors: \_\_\_\_\_

y = 1x + 8

Sum of squared errors: \_\_\_\_\_

Generated by the WeBWorK system ©WeBWorK Team, Department of Mathematics, University of Rochester

According to the values you just computed, which of the following lines best fits the data?

A. y = 3x + 10B. y = 3x + 6C. y = 1x + 8

Consider the following table of points.

| X   | У        |
|-----|----------|
| 0   | 17.00    |
| 1.5 | -3.92    |
| 3   | -150.40  |
| 4.5 | -547.98  |
| 6   | -1322.20 |
| 7.5 | -2598.62 |
|     |          |

If the points in the table are on a curve of the form  $y = ax^3 + c$ , then what are the values of *a* and *c*?

 $\frac{c = \_\_\_}{15. (1 \text{ pt})}$ 

*a* = \_\_\_\_\_

Consider the following table of data values.

| X    | У      |
|------|--------|
| 0    | 19     |
| 4.2  | 76.74  |
| 8.4  | 267.96 |
| 12.6 | 580.66 |

For each of the following functions  $y = ax^2 + c$ , calculate the

sum of squared errors  $\sum_{i=0}^{3} (y_i - (ax_i^2 + c))^2$ .

$$y = 4.5x^2 + 19$$
  
Sum of squared errors: \_\_\_\_

 $y = 3.5x^2 + 15$ 

Sum of squared errors: \_\_\_\_\_

 $y = 2.5x^2 + 17$ 

Sum of squared errors: \_\_\_\_\_

According to the values you just computed, which of the following functions best fits the data?

| A. | $y = 4.5x^2 + 19$ |
|----|-------------------|
| В. | $y = 3.5x^2 + 15$ |
| C. | $y = 2.5x^2 + 17$ |