Principles of Calculus Modeling: An Interactive Approach by Donald Kreider, Dwight Lahr, and Susan Diesel Exercises for Section 1.1

Homework problems copyright ©2000-2005 by Donald L. Kreider, C. Dwight Lahr, Susan J. Diesel.

1. (1 pt)

Calculate a few values to determine which image shows the graph of the function $4 x-3$.

2. $(1 \mathrm{pt})$

Calculate a few values to determine which image shows the graph of the function $-x+4$.

3. $(1 \mathrm{pt})$

Consider the following table of times and distances for a dropped object.

time (x)	distance (\mathbf{y})
0	0
0.2	0.08
0.4	0.32
0.6	$? ? ?$
0.8	1.28
1	2

If you assume the data points are modeled by a function of the form $y=a x^{2}+c$, which of the following values is most likely as the missing value in the table?
A. 0.08
B. 0.72
C. 7.2
D. 0
E. -0.72

4. (1 pt)

Consider the following table of times and distances for a dropped object.

time (x)	distance (\mathbf{y})
0	1
3	-53
6	-431
9	$? ? ?$
12	-3455
15	-6749

If you assume the data points are modeled by a function of the form $y=a x^{3}+c$, which of the following values is most likely as the missing value in the table?
A. -6749
B. -53
C. 1457
D. 0
E. -1457

5. (1 pt)

Consider a table of data.

\mathbf{x}	\mathbf{y}
0	1.1
1	-5.2
2	-5.0
3	-7.9
4	-11.2
5	-10.8

The data points in the table, and a line $L(x)$ passing among them, are shown below.

Assume the line passes through points $(0,1.1)$ and $(5,-10.8)$. Compute the sum of squared errors $\sum_{i=0}^{5}\left(y_{i}-L\left(x_{i}\right)\right)^{2}$.
6. $(1 \mathrm{pt})$

Consider a table of data.

\mathbf{x}	\mathbf{y}
0	0.2
1	-0.2
2	-0.1
3	1.9
4	4.2
5	6.0

The data points in the table, and a line $L(x)$ passing among them, are shown below.

Assume the line passes through points $(0,0.2)$ and $(5,6.0)$. Compute the sum of squared errors $\sum_{i=0}^{5}\left(y_{i}-L\left(x_{i}\right)\right)^{2}$.
7. $(1 \mathrm{pt})$

Consider a table of data.

\mathbf{x}	\mathbf{y}
0	0.1
1	0.3
2	-0.3
3	0.7
4	1.5
5	5.1

The data points in the table, and a line $L(x)$ passing among them, are shown below.

Assume the line passes through points $(0,0.1)$ and $(5,5.1)$.
Compute the sum of squared errors $\sum_{i=0}^{5}\left(y_{i}-L\left(x_{i}\right)\right)^{2}$.
8. $(1 \mathrm{pt})$

Let $f(x)=-3 \sin (8 x)-1$. Compute $f(x)$ for the following values. If $f(x)$ cannot be evaluated, enter no answer, without quotes.

$$
f(0)=
$$

\qquad
$f(-1)=$ \qquad
$f(1)=$
$f(\sqrt{2})=$ \qquad
$f(e)=$ \qquad
9. $(1 \mathrm{pt})$

Let $f(x)=-7 \frac{\sqrt{10-x}}{x^{2}}$. Compute $f(x)$ for the following values. If $f(x)$ cannot be evaluated, enter no answer, without quotes.

$$
\begin{aligned}
& \quad f(0)= \\
& f(-1)= \\
& f(13)= \\
& f(\sqrt{2})= \\
& f(e)= \\
& \hline
\end{aligned}
$$

10. (1 pt)

Let $f(x)=8 x^{2}+4 x+2$. Compute $f(x)$ for the following values. If $f(x)$ cannot be evaluated, enter no answer, without quotes.
$f(0)=$ \qquad
$f(-1)=$ \qquad
$f(9)=$
$f(\sqrt{2})=$ \qquad
$f(e)=$ \qquad
11. (1 pt)

Consider the following table of data values.

\mathbf{x}	\mathbf{y}
3	18
6	43
9	90
12	154
15	233
18	333

Which of the following functions best fits the data given in the table?
A. $y=3 x^{2}+3$
B. $y=2 x^{2}+7$
C. $y=1 x^{2}+9$
D. $y=11$

12. (1 pt)

Consider the following table of points.

\mathbf{x}	\mathbf{y}
0	7.5
1	14
2	33.5
3	66

If the points in the table are on a curve of the form $y=a x^{2}+c$, then what are the values of a and c ?
$a=$ \qquad
$c=$
13. $(1 \mathrm{pt})$

Consider the following table of data values.

\mathbf{x}	\mathbf{y}
0	10
2	16
4	22
6	18

For each of the following lines $y=m x+b$, calculate the sum of squared errors $\sum_{i=0}^{3}\left(y_{i}-\left(m x_{i}+b\right)\right)^{2}$.

$$
y=3 x+10
$$

Sum of squared errors: \qquad

$$
y=3 x+6
$$

Sum of squared errors: \qquad

$$
y=1 x+8
$$

Sum of squared errors: \qquad

According to the values you just computed, which of the following lines best fits the data?
A. $y=3 x+10$
B. $y=3 x+6$
C. $y=1 x+8$
14. (1 pt)

Consider the following table of points.

\mathbf{x}	\mathbf{y}
0	17.00
1.5	-3.92
3	-150.40
4.5	-547.98
6	-1322.20
7.5	-2598.62

If the points in the table are on a curve of the form $y=a x^{3}+c$, then what are the values of a and c ?
$a=$ \qquad
$c=$
15. $(1 \mathrm{pt})$

Consider the following table of data values.

\mathbf{x}	\mathbf{y}
0	19
4.2	76.74
8.4	267.96
12.6	580.66

For each of the following functions $y=a x^{2}+c$, calculate the sum of squared errors $\sum_{i=0}^{3}\left(y_{i}-\left(a x_{i}^{2}+c\right)\right)^{2}$.

$$
y=4.5 x^{2}+19
$$

Sum of squared errors: \qquad
$y=3.5 x^{2}+15$
Sum of squared errors: \qquad

$$
y=2.5 x^{2}+17
$$

Sum of squared errors: \qquad
According to the values you just computed, which of the following functions best fits the data?
A. $y=4.5 x^{2}+19$
B. $y=3.5 x^{2}+15$
C. $y=2.5 x^{2}+17$

