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1

COLUMN AND ROW VECTORS

A column vector is an ordered collection of numbers written in a column.
Examples of such vectors are

1

1 6 0 3 1
_2 s 4)’ O s —4 5 2
‘ 0 0

4

The individual numbers in these vectors are called components, and the
number of components a vector has is one of its distinguishing charac-
teristics. Thus the first two vectors above have two components; the next
two have three components; and the last has four components. When talking
more generally about n-component column vectors we shall write

Uy
u.
u=\_72
un

Analogously, a row vector is an ordered collection of numbers written in
a row. Examples of row vectors are

(1’0)’ (_2’ 1)7 (29 _3,4, 0), (_1,29 _3a4, _5)

Each number appearing in the vector is again called a component of the
vector, and the number of components a row vector has is again one of
itsimportant characteristics. Thus the first two examples are two-component,
the third a four-component, and the fourth a five-component vector. The
vector v = (Uy, Uy, . . . , U,) iS an n-component row vector.

153
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Two row vectors, or two column vectors, are said to be equal if and only
if corresponding components of the vector are equal. Thus for the vectors

u=(1,2), U:(;), w = (1,2), x=(,1)

we see that u = w but u # v, and u # x.
If u and v are three-component column vectors, we shall define their sum
u + v by componentwise addition as follows:

Uy v, U, + vy
ut+v=|u|+{v,| =1, +v,}.
Uy Ug Us + vy

Similarly, if ¥ and v are three-component row vectors, their sum is defined
to be

Uu+v= (up Uy, u3) + (Ula Uy, U3)
= (U + Uy, Uy + Uy, U3 + U3).

Note that the sum of two three-component vectors yields another three-
component vector. For example,

1 2 3
=1+ 31=1(2
2 —1 1

and
4, -7,12) + 3,14, = 14) = (7,7, =2).

The sum of two n-component vectors (either row or column) is defined
by componentwise addition in an analogous manner, and yields another
n-component vector. Observe that we do not define the addition of vectors
unless they are both row or both column vectors having the same number
of components.

Because the order in which two numbers are added does not affect the
answer, it is also true that the order in which vectors are added does not
matter; that is,

Uu+v=uv+u,

where v and v are both row or both column vectors. This is the so-called
commutative law of addition. A numerical example is

1 2 3 2 1
—1]+ =12|=1 3|+ |-1
2 —1 1 —1 2

Once we have the definition of the addition of two vectors, we can easily
see how to add three or more vectors by grouping them in pairs as in the
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addition of numbers. For example,

1 0 0 1 0 1 1 0 |
Ol+12)+101=10]+12]={2]=12]+10}= 2
0 0 3 0 3 3 0 3 3

and

(1,0,0) + (0,2,0) + (0,0,3) = (1,2,0) + (0,0, 3) = (1,2, 3)
= (1,0,0) + (0,2,3) = (1,2, 3).

In general, the sum of any number of vectors (row or column), each having
the same number of components, is the vector whose first component is the
sum of the first components of the vectors, whose second component is the
sum of the second components, and so on.

The multiplication of a number a times a vector v is defined by com-
ponentwise multiplication of a times the components of v. For the three-
component case we have

u, au,
Uy aus,

for column vectors and
av = a(vy, Uy, Ug) = (avy, av,, avy)

for row vectors. If u is an n-component vector (row or column), then au
is defined similarly by componentwise multiplication. This operation is
sometimes called scalar multiplication of a vector, where scalar is another
name for a number.

If u is any vector, we define its negative —u to be the vector —u = (—Du.
Thus in the three-component case for row vectors we have

—u = (—D)(uy, g, ug) = (—uy, —uy, —Uz).

Once we have the negative of a vector it is easy to see how to subtract
vectors: we simply add “algebraically.” For the three-component column-
vector case we have

Specific examples of subtraction of vectors occur in the exercises at the end
of this section.

An important vector is the zero vector, all of whose components are zero.
For example, three-component zero vectors are

0
0={0] and 0=(0,0,0).
0
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When there is no danger of confusion we shall use the symbol 0, as above,
to denote the zero (row or column) vector. The meaning will be clear from
the context. The zero vector has the important property that, if u is any
vector, then u 4+ 0 = u. A proof for the three-component column-vector
case is as follows:

u 0 u, + 0 U,
u+ 0= u2+0=u2+0:u2 = u.
u 0 us + 0 Uy

—_

w

One of the chief advantages of the vector notation is that we can denote
a whole collection of numbers by a single letter such as u, v, . . . , and treat
such a collection as if it were a single quantity. By using the vector notation
we can state very complicated relationships in a simple manner. The student
will see many examples of this in the remainder of the present chapter and
in the three succeeding chapters.

EXERCISES
1. Compute the quantities below for the vectors
2 3 6
g1 _ -5 | 6
“lsp T2 WEls
6 0 —6
8
_ 7
@ u+ w. [Ans. ) ]
0
(b) Sw.
© v-—u
15
(d) 3u + Tv — 2w. [Ans. _gg ]
30

(e) iw + 3u.
) u—-—w-—vo.
(8) —2u + 3v — 100w.
2. Compute (a) through (g) of Exercise 1 if the vectors u, v, and w are

u= (7,0, =3), v=(2,1,-5), w= (1, —1,0).
3. (a) Show that the zero vector is not changed when multiplied by any
number.
(b) If u is any vector, show that 0 + u = u.
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If 2u — v = 0, what is the relationship between the components of u
and those of v? [Ans. v; =2u;.]
When possible, compute the following sums; when not possible, give
reasons.

@ @.3)+ 2(;) —9

(b) 0G5, 1,7) + 3(6,2,6) =?

3 6
@ [1}+5+2)|=2? [Ans. Not possible.]
2 6
21 1 53
22 2 86
=9
(d) 2]t 32 ol=" [Ans. 23 ]
24 1 56
6 iy 5
If|6 )+ |uy,]= {—5], find u;, u,, and u,. [Ans. —1, —11,5.]
0 Uy 5
vy 7
If 8] v,| = [ —16}, find the components of v.
Us 0

Find three vectors u, v, and w such that w =3y, v =2u, and

20
20 4+ 3v + 4w = 10].
—25
0 u, 0
If{O|+|u,|={0], whatcan be said concerning the components u;,
0 U 0
Uy, Us?

u, 0
IfOfu,|= (O , what can be said concerning the components u;,
U, 0

Uy Uy?
U, 1
Uy 3 du?
If (uy + uy + ug + uy) w1=1s ] what are uy, u,, u, and u,’
3
u, 7

(a) Show that the vector equation

G) )= (739)

represents two simultaneous linear equations for the two varia-
bles x and y.
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13.

14.

15.

16.

17.

18.

19.

(b) Solve the equations for x and y from (a) and substitute into the
vector equation above to check your work.
Write the following simultaneous linear equations in vector form:

ax + by =e
cx +dy =f.

[Hint: Follow the form given in Exercise 12.]

Suppose that we associate with each person a three-component row
vector having the following entries: age, height, and weight. Would
it make sense to add together the vectors associated with two different
persons? Would it make sense to multiply one of these vectors by
a constant?

Suppose that we associate with each person leaving a supermarket
a row vector whose components give the quantities of each available
item that he has purchased. Answer the same questions as those in
Exercise 14.

Let us associate with each supermarket a column vector whose entries
give the prices of each item in the store. Would it make sense to add
together the vectors associated with two different supermarkets?
Would it make sense to multiply one of these vectors by a constant?
Discuss the differences in the situations given in Exercises 14, 15, and
16.

Consider the vectors

Show that the vector
3x + )

has components that are the averages of the components of x and

». Generalize this result to the case of n vectors.

Would the concept of averages, as discussed in Exercise 17, be applica-

ble to the vectors mentioned in Exercises 14, 15, and 167 How would

the averages be interpreted?

In a certain school students take four courses each semester. At the

end of the semester the registrar records the grades of each student

as a row vector. He then gives the student 4 points for each A, 3

points for each B, 2 points for each C, 1 point for each D, and 0

for each F. The sum of these numbers, divided by 4, is the student’s

grade point average.

(@) If a student has a 4.0 average, what are the logical possibilities
for his grade vector? [Hint: Each grade vector will have five
components.]

(b) What are the possibilities if he has a 3.0 average?

(c) What are the possibilities if he has a 2.0 average?
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20. Letx = (x1>. Define x > 0 to be the conjunction of the statements
X2

x, >0 and x, > 0. Define x < 0 analogously. If (x; + x3)x >0,
what must be true of x?

21. Using the definition in Exercise 20, define x > y to mean x — y > 0,
where x and y are vectors of the same shape. Consider the following
four vectors:

3 6 0 4
X = 5 ’ _y: 5 5 u = 0 y V= 2
-1 6 -2 0

(a) Show that x > u.

(b) Show that v > u.

(¢) Is there any relationship between x and v?

(d) Show thaty > x, y > u, and y > v.

22. (a) If xP, x@ . . x" is a set of n vectors, show how to find a

vector u such that u > x® for all i. Also show how to find a
vector v such that v < X' for all i.

(b) Apply the results of part (a) to the vectors in Exercise 21.

630 960 600 —4
(¢) Letu=1{520|,v=1{200}, and w=|[750]. If x =| -5, find
310 400 490 -2
the largest number n such that nx > u, nx > v, and nx > w.
[Ans. —235.]

2 THE PRODUCT OF VECTORS; EXAMPLES

EXAMPLE 1

The reader may wonder why it is necessary to introduce both column and
row vectors when their properties are so similar. This question can be
answered in several different ways. First, in many applications two kinds
of quantities are studied simultaneously, and it is convenient to represent
one of them as a row vector and the other as a column vector. Second,
there is a way of combining row and column vectors that is very useful
for certain types of calculations. To bring out these points let us look at
the following simple economic example.

Suppose a man named Smith goes into a grocery store to buy a dozen
each of peaches and oranges, a half-dozen each of apples and pears, and
three lemons. Let us represent his purchases by means of the following
row Vector:

x = [6 (apples), 12 (peaches), 3 (lemons), 12 (oranges), 6 (pears)]
= (6, 12,3, 12, 6).

Suppose that apples are 4 cents each, peaches 6 cents, lemons 9 cents,
oranges 5 cents, and pears 7 cents. We can then represent the prices of
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these items as a column vector:

cents per apple
cents per peach
cents per lemon
cents per orange
cents per pear.

<
Il
RV N-T- N

The obvious question is: What is the total amount that Smith must pay
for his purchases? We would like to multiply the quantity vector x by the
price vector y, and we would like the result to be Smith’s bill. We see that
our multiplication should have the following form:

4

x+y=(6,12,3,12,6)

wn O N

7

=6-4+1264+3-9+12:-54+6-7
= 24 +72 +27 + 60 + 42
= 225 cents or $2.25.

This is, of course, the computation that the cashier performs in figuring
Smith’s bill.

We shall adopt in general the above definition of multiplication of row
times column vectors.

Definition Let u be a row vector and v a column vector each having the
same number n of components; then we shall define the produce u - v to
be

UtV = U0y + Ugly + . .. + u,,.

EXAMPLE 2

Notice that we always write the row vector first and the column vector
second, and this is the only kind of vector multiplication that we consider.
Some examples of vector multiplication are

3
2, L, =D [=1]=23 4 1(=)+(=1)-4 =1,
4

(1,0)-(?): 1-040-1=0+0=0.
Note that the result of vector multiplication is always a number.
Consider an oversimplified economy that has three industries, which we call

coal, electricity, and steel, and three consumers 1, 2, and 3. Suppose that
each consumer uses some of the output of each industry and also that each
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industry uses some of the output of each other industry. We assume that
the amounts used are positive or zero, since using a negative quantity has
no immediate interpretation. We can represent the needs of each consumer
and industry by a three-component demand (row) vector, the first component
measuring the amount of coal needed by the consumer or industry; the
second component the amount of electricity needed; and the third compo-
nent the amount of steel needed, in some convenient units. For example,
the demand vectors of the three consumers might be

d, =(3,2,%5, d,=(0,17,1), d;=(4,6,12)
and the demand vectors of each of the industries might be
do;=(0,1,4), dgy=(20,0,3), dy = (30,5, 0),

where the subscript C stands for coal, the subscript E for electricity, and
the subscript S for steel. Then the total demand for these goods by the
consumers is given by the sum

dy+dy +d;=(3,2,5 + (0,17,1) + (4,6,12) = (7,25, 18).
Also, the total industrial demand for these goods is given by the sum
d, + dp + dg = (0, 1,4) + (20,0, 8) + (30,5,0) = (50,6, 12).
Therefore the total overall demand is given by the sum
(7,25, 18) + (50,6, 12) = (57, 31, 30).

Suppose now that the price of coal is $1 per unit, the price of electricity
is $2 per unit, and the price of steel is $4 per unit. Then these prices can
be represented by the column vector

1
p =|2}
4

Consider the steel industry: it sells a total of 30 units of steel at $4 per unit,
so that its total income is $120. Its bill for the various goods is given by
the vector product

1
dy+p = (30,5,0)+ (2] =30 + 10 + 0 = $40.
4

Hence the profit of the steel industry is $120 — $40 = $80. (In the exercises
the profits of the other industries will be found.)

This model of an economy is unrealistic in two senses. First, we have
not chosen realistic numbers for the various quantities involved. Second,
and more important, we have neglected the fact that the more an industry
produces the more inputs it requires.

Consider the rectangular coordinate system in the plane shown in Figure
1. A two-component row vector x = (a, b) can be regarded as a point in



162 Vectors and Matrices

Chapter 4

X2
x=(a,b) T\
I
I
Ly
1l
I
l
|/
0] — ~ - X
a
Figure 1
the plane located by means of the coordinate axes as shown. The point
x can be found by starting at the origin of coordinates O and moving a
distance @ along the x, axis; then moving a distance  along a line parallel
to the x, axis. If we have two such points, say x = (a4, b) and y = (¢, d),
then the points x + y, —x, =3, X — y, » — x, —x —y have the geometric
significance shown in Figure 2.
X3 x+y=(@+c,b+d)
-
s /
yox=@=ad=p) __ " ¥i=ca |
/ /
/ / /
/ / __#x=(a,b)
/ of _ ——— /
/ ——,/’ /;r Il Xy
= can f /
/ / /
// / P
/ ——
/ ~y=(—c,—'d\)“_’_/’ X—y=(@—c,b—d)
/ — -
[ e
—x—y=(—a—c¢,~b—d)
Figure 2

The idea of multiplying a row vector by a number can also be given a
geometric meaning. In Figure 3 we have plotted the point corresponding
to the vector x = (1, 2), and 2x, {x, —x, and —2x. Observe that all these
points lie on a line through the origin of coordinates. Another vector
quantity that has geometrical significance is the vector z = ax + (1 — a)y,
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2 02x=(2,4) X2
/
/
/
x=(1,2
/’ (1,2) y.\
I 1
$5x=(3, D \.:=ax+(]—a)y
\
0 \\
X1 1 1
P + El
// Midpoint‘\z)L R
/ AN
—y = (—1 —7 N\
x={(—1, ..)/, N\
/ \\.x
/
o
—2x = (—2,—4) 0 X1
Figure 3 Figure 4

where a is any number between 0 and 1. Observe in Figure 4 that the points
z all lie on the line segment between the points x and y. If a =}, the
corresponding point on the line segment is the midpoint of the segment.
Thus, if x = (a, b) and y = (¢, d), then the point

Ix + by = §(a, b) + e d)

_(a+c b+d)
- 2 72

is the midpoint of the line segment between x and y.

-7 0
1. Letu=@2,—-1,3),v=(,0,2),x=| 1]),and y =|8}.
2 3

Compute the following:
@ w+v):x+)y.
() (Bu-x)-v)-y.
() ux—4v-y.
d u-x+3u-y—v-y. [Ans. —12.]
(e) Q2 +u)-y) — Suy.
) 4u-x+6[v:-(Gx — )] [Ans. —630.]

2. If x =(5 —4,2) and y = (1,8, 1) are points in space, what is the
midpoint of the line segment joining x to y? [dns. (3,2,%).]

3. Letx = (—1,3)and y = (4, 1) be row vectors. Plot the points corre-
sponding to x and y, and compute and plot the following vectors:
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(@) ix + iy d 2x —y.
b) x + y. (e) y+ 4x.
(c) 3x+ %y ) x -y

4. Prove that vector multiplication satisfies the following two properties:

(i) u-(av) =a(u-v),
() u-W+w=u-v+u-w,

where u is a three-component row vector, v and w are three-component

column vectors, and a is a number.

5. If u is a three-component row vector, v is a three-component column
vector having the same number of components, and a is a number,
prove that a(u - v) = u - (av).

6. A certain football stadium has three gates. After one game, the
ticket-taker at gate 1 reported admitting 275 adults, 300 students, and
15 children; the ticket-taker at gate 2 admitted 200 adults, 107 students,
and 40 children; and 65 adults, 250 students, and 60 children were
admitted at gate 3.

(a) Write the numbers of people admitted through each gate as a
three-component row vector.

(b) Use vector addition to find how many people in each category
attended the game.

(¢) Suppose that adults pay $3.00 to attend the game, students pay
$2.00, and children pay 50¢. Assuming that each person buys his
ticket at the gate, calculate the value of the tickets sold at each
gate.

(d) Compute in two different ways the total value of tickets sold.

7. Perform the following calculations for Example 2.

(a) Compute the amount that each industry and each consumer has
to pay for the goods it receives.

(b) Compute the profit made by each of the industries.

(c) Find the total amount of money that is paid out by all the
industries and consumers.

(d) Find the proportion of the total amount of money found in (c)
paid out by the industries. Find the proportion of the total money
that is paid out by the consumers.

8. A farmer intends to plant 40 acres of corn, 25 acres of wheat, and 30
acres of rye. Write a three-component row vector whose components
give the number of acres of each grain he wants to plant. Suppose
an acre of corn requires an hour to plant, an acre of wheat 45 minutes,
and an acre of rye one-half hour. Write a column vector whose com-
ponents give the number of minutes needed to plant an acre of each
crop. Use vector multiplication to find the total time required for
planting.

9. In Exercise 8, suppose the seed for an acre of corn cost $40, for an
acre of wheat $15, and for an acre of rye $10. Find the total amount
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the farmer must spend on seed. If an acre of corn brings the farmer

a profit of $19, an acre of wheat $15, and an acre of rye $4, find the

total profit the farmer will make.

The production of a book involves several steps: first it must be set

into type, then it must be printed, and finally it must be supplied with

covers and bound. Suppose the typesetter charges $6 an hour, paper
costs 1 cent per sheet, the printer charges 11 cents for each minute that
his press runs, the cover costs 28 cents, and the binder charges 15 cents

to bind each book. Suppose now that a publisher wishes to print a

book that requires 300 hours of work by the typesetter, 220 sheets of

paper per book, and 5 minutes of press time per book.

(a) Write a five-component row vector that gives the requirements
for the first book. Write another row vector that gives the re-
quirements for the second, third, . . . copies of the book. Write
a five-component column vector whose components give the prices
of the various requirements for each book, in the same order as
they are listed in the requirement vectors above.

(b) Using vector multiplication, find the cost of publishing one copy

of a book. [Ans. $1801.53.]
(¢) Using vector addition and multiplication, find the cost of printing
a first-edition run of 5000 copies. [Ans. $9450.]

(d) Assuming that the printing plates from the first edition are used
again, find the cost of printing a second edition of 5000 copies.
[Ans. $7650.]

Let x = (il), and let @ and b be the vectors a = (—1,4), b =
2
(2,— 7). Ifax = 1 and bx = 2, find x; and x,.
[Ans. x; = 15,x, = 4.]

X1

Let x:( ), and let ¢ and b be the vectors a=(3,3),

Xo
b= (—1,4). If ax = x, and bx = x,, find x; and x,.
Consider the vectors

a = (ay, ay), b = (by, by), *= (XI)

X2
and two numbers ¢, and ¢,. Show that the equations
ax = ¢y, bx = ¢,

represent two simultaneous equations in two unknowns.

Show that every set of two simultaneous equations in two unknowns

can be written as in Exercise 13.

Consider an experiment in which there are two outcomes: we win $10

with probability 1 and lost $5 with probability §. Let a = (10, —3)
1

and p = (E) Show that the expected outcome of the experiment is ap.
5
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16. A gambling game works as follows. Two dice are rolled. If no sixes turn
up, we lose $1; if one six turns up, we win $1; if two sixes turn up we
win $10. Set up a row vector representing the various outcomes and a
column vector representing the probability of those outcomes. Use
vector multiplication to find the expected outcomes. Is the game fair?

17. If an experiment has outcomes a,, a,, . . . , a, occurring with proba-
bilities py, p,, . . . , p,, define the vectors
P1
a=(a...,a,) and p= '1;72
Pn

Show that the expected outcome is ap.
18. Consider the vectors x = (1,5), y = (3, 1), andf:(}).

(a) Computejxfand4yf, and show that these numbers are the averages
of the components of x and y, respectively. [Partial Ans. 3,2.]
(b) Compute i(x + y)f, and give an interpretation for this number.
[Partial Ans. 21
19. Let x and y be two n-component row vectors, and let f be an n-com-
ponent column vector all of whose entries are 1%s.
(a) Compute (1/n)xf and (1/n)yf and interpret the result.
(b) Compute (Jn)(x + y)fand interpret the result. [Hint: Exercise 18
is a special case.]
20. How would the results of Exercise 19 change if we used three vectors:
x, y, and z?

3 MATRICES AND THEIR COMBINATION
WITH VECTORS

A matrix is a rectangular array of numbers written in the form

dyy 4y ayy,
4 = gy lag sy
aml am? amn

Here the letters a;; stand for real numbers and m and n are integers. Observe
that m is the number of rows and # is the number of columns of the matrix.
For this reason we call it an m X n matrix. If m = n, the matrix is square.
The following are examples of matrices:

1
1,23, |2, (“1);

FOO0O0 1 7 g9 1o
01 0 0

3 1 14 2 —¢
00 T oFly 3 57
00 0 I
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The first example is a row vector which is a 1 X 3 matrix; the second is a
column vector which is a 3 X 1 matrix; the third example is a 2 X 2 square
matrix; the fourth is a 4 X 4 square matrix; and the last is a 3 %X 5 matrix.

Two matrices having the same shape (i.e., having the same number of rows
and columns) are said to be equal if and only if the corresponding entries are
equal. '

Recall that in Chapter 3, Section 12, we found that a matrix arose naturally
in the consideration of a Markov chain process. To give another example of
how matrices occur in practice and are used in connection with vectors, we
consider the following example.

Suppose that a building contractor has accepted orders for five ranch-style
houses, seven Cape Cod houses, and twelve colonial-style houses. We can
represent his orders by means of a row vector x = (5,7, 12). The contractor
is familiar, of course, with the kinds of “raw materials” that go into each type
of house. Let ussuppose that these raw materials are steel, wood, glass, paint,
and labor. The numbers in the matrix below give the amounts of each raw
material going into each type of house, expressed in convenient units. (The
numbers are put in arbitrarily, and are not meant to be realistic.)

Steel Wood Glass Paint Labor

Ranch: 5 20 16 7 17
Cape Cod: 7 18 12 9 21 | =R
Colonial: 6 25 8 5 13

Observe that each row of the matrix is a five-component row vector which
gives the amounts of each raw material needed for a given kind of house.
Similarly, each column of the matrix is a three-component column vector
which gives the amounts of a given raw material needed for each kind of
house. Clearly, a matrix is a very succinct way of summarizing this infor-
mation.

Suppose now that the contractor wishes to compute how much of each raw
material to obtain in order to fulfill his contracts. Let us denote the matrix
above by R; then he would like to obtain something like the product xR, and
he would like the product to tell him what orders to make out. The product
should have the following form:

5 20 16 7 17
xR=(5,7,12)(7 18 12 9 21
6 25 8 5 13

= (5-54+7-7T+12:6, 5-20 +7-18 4 12-25,
5.16 4712 412+8, 5:7+7-9+12+5,
5.17 +7-21 + 12-13)

— (146, 526,260, 158, 388).

Thus we see that the contractor should order 146 units of steel, 526 units of
wood, 260 units of glass, 158 units of paint, and 388 units of labor. Observe
that the answer we get is a five-component row vector and that each entry in
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this vector is obtained by taking the vector product of x times the corre-
sponding column of the matrix R.

The contractor is also interested in the prices that he will have to pay for
these materials. Suppose that steel costs $15 per unit, wood costs $8 per unit,
glass costs $5 per unit, paint costs $1 per unit, and labor costs $10 per unit.
Then we can write the cost as a column vector as follows:

Here the product Ry should give the costs of each type of house, so that the
multiplication should have the form

15

520 16 7 17\[ 8
Ry=[7 18 12 9 21| 5
6 25 8 5 13/\ 1

10

5154208 4+16:-54+7-14+17-10
. =715+ 1884+ 12:54+9-14+21-10
6:15+25-84+ 8+545-1+13-10
492

=[528}.
465

Thus the cost of materials for the ranch style house is $492, for the Cape Cod
house is $528, and for the Colonial house $465.

The final question which the contractor might ask is what is the total cost
of raw materials for all the houses he will build. It is easy to see that this is
given by the vector xRy. We can find it in two ways as shown below.

15
8
xRy = (xR)y = (146, 526,260, 158,388) -| 5| = 11,736
1
10
492
xRy = x(Ry) = (5,7,12)- |528 | = 11.736.
465

The total cost is then $11,736.

We shall adopt, in general, the above definitions for the multiplication of
a matrix times a row or a column vector.
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Definition Let A be an m X n matrix, let x be an m-component row vector,
and let u be an n-component column vector; then we define the products x4
and Au as follows:

ayp 4yo A1y
a a a
_ 21 o 2
XA = (Xq, X9, - -+, X,) z "
aml am2 amn
= (X1ay; + Xolgy + -0+ Xy, Xy@yp + Xolog + o0+ XG0,
ey X4y, + Xoloy + -+ xmamn);
ayy 4y A\ [t ayp Uy + Ay + - - -+ AUy,
Ay = | 921 G2z Aon | [ Uz | _[Goalhy F Gpaly + - - - + Gyly
A1 Qpa - A VU, Apally T Aoty + - =+ + Ayl

The reader will find these formulas easy to work with if he observes that
each entry in the products x4 or Au is obtained by vector multiplication
of x or u by a column or row of the matrix A. Notice that in order to multiply
a row vector times a matrix, the number of rows of the matrix must equal
the number of components of the vector, and the result is another row vector;
similarly, to multiply a matrix times a column vector, the number of columns
of the matrix must equal the number of components of the vector, and the
result of such a multiplication is another column vector.

Some numerical examples of the multiplication of vectors and matrices
are:

31
(150,_1)2 3=(l'3+0'2—1'2,1'1+0'3—1'8)
28
(3 I 2) i_(3—1+ 4)_(6)_
2 3 8)\7) [T \a-34+16) = 1s)
32 -1 5
1o 2y 1\ [-3
o 3 1| o)=[-2
s —4  7/\-2] |-9
3 2 1 -1

Observe that if x is an m-component row vector and A4 1s m X n, then x4
is an n-component row vector; similarly, if  is an n-component column
vector, then Au is an m-component column vector. These facts can be
observed in the examples above.
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EXAMPLE 2

EXAMPLE 3

Consider a Markov chain with transition matrix

X
P:(l 1).
2 2

Choose the initial state by a random device that selects states @, and a,
each with probability . Let us indicate the choice of initial state by the
vector p@ = (4, 3) where the first component gives the probability of choosing
state a, and the second the probability of choosing state a,. Let us compute
the product p{®P. We have

1 2
3 3
Por=a3( )=d+riith=@h

2 2
Using the methods of Chapter 3, one can show that after one step there
is probability % that the process will be in state a, and probability 7 that
it will be in state a,. Let p be the vector whose first component gives
the probability of the process being in state a, after one step and whose
second component gives the probability of it being in state a, after one step.
In our example we have p¥ = (&, &) = pOP.

In general, the formula p¥ = p@P holds for any Markov process with

transition matrix P and initial probability vector p‘©,

In Example 1 of Section 2 assume that Smith has two stores at which he
can make his purchases, and let us assume that the prices charged at these
two stores are slightly different. Let the price vector at the second store
be

5\ cents per apple
5 | cents per peach
cents per lemon
4 | cents per orange
6/ cents per pear.

It
o

Y

Smith now has the option of buying all his purchases at store 1, all at store
2, or buying just the lower-priced items at the store charging the lower price.
To help him decide, we form a price matrix as follows:

Prices, Prices, Minimum
Store 1 Store 2 Price
4 5 4
6 5 5
P = 9 . 10 9
5 4 4
7 . 6 6

The first column lists the prices of store 1, the second column lists the price
of store 2, and the third column lists the lower of these two prices. To
compute Smith’s bill under the three possible ways he can make his pur-
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chases, we compute the produce xP, as follows:

4 5 4
6 5 5
xP=(6,12,3,12,6)| 9 10 9 | = (225,204, 195).
5 4 4
7 6 6

We thus see that if Smith buys only in store 1, his bill will be $2.25; if he
buys only in store 2, his bill will be $2.04; but if he buys each item in the
cheaper of the two stores (apples and lemons in store 1, and the rest in
store 2), his bill will be $1.95.

Exactly what Smith will, or should, do depends upon circumstances. If
both stores are equally close to him, he will probably split his purchases
and obtain the smallest bill. If store 1 is close and store 2 is very far away,
he may buy everything at store 1. If store 2 is closer and store 1 is far enough
away so that the 9 cents he would save by splitting his purchases is not
worth the travel effort, he may buy everything at store 2.

The problem just cited is an example of a decision problem. In such
problems it is necessary to choose one of several courses of action, or
strategies. For each such course of action or strategy, it is possible to
compute the cost or worth of such a strategy. The decision maker will choose
a strategy with maximum worth.

Sometimes the worth of an outcome must be measured in psychological
units and we then say that we measure the urility of an outcome. For the
purposes of this book we shall always assume that the utility of an outcome
is measured in monetary units, so that we can compare the worths of two
different outcomes to the decision maker.

As a second example of a decision problem, consider the following. An
urn contains five red, three green, and one white ball. One ball will be drawn
at random, and then payments will be made to holders of three kinds of
lottery tickets, A, B, and C, according to the following schedule:

Ticket A Ticket B Ticket C

Red 1 3 0
M = Green 4 1 0
White 0 0 16

Thus, if a red ball is selected, holders of ticket A will get $1, holders of
ticket B will get $3, and holders of ticket C will get nothing. If green is
chosen, the payments are 4, 1, and 0, respectively. If white is chosen, holders
of ticket C get $16, and the others nothing. Which ticket would we prefer
to have?

Our decision will depend upon the concept of expected value discussed
in the preceding chapter. The statements “draw a red ball,” “draw a green
ball,” and “draw a white ball” have probabilities 2, 3, and §, respectively.
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From these probabilities we can calculate the expected value of holding each
of the lottery tickets as described in the last chapter. However, a compact
way of performing all these calculations is to compute the product pM, where
p is the probability vector

P =333

From this we have

1 3 0
pPM=@E3hl4 1 0
0 0 16
=(1-3+4-34+0-3 3-3+1-3+0-} 0:34+0-3+16-3)
:(1§Z9_L98’1§G)'

It is easy to see that the three components of pM give the expected values
of holding lottery tickets A, B, and C, respectively. From these numbers
we can see that ticket B is the best, A is the next best, and C is third best.

If we have to pay for the tickets, then the cost of the tickets will determine
which is the best buy. If each ticket costs $3 we would be better off by
not buying any ticket, since we would then expect to lose money. If each
ticket costs $1 then we should buy ticket B, since it would give us a net
expected gain of $2 — §1 = $1. If the first two tickets cost $2.10, and the
third cost $1.50, we should buy ticket C since it is the only one for which
we would have a positive net expectation.

EXERCISES
1. Perform the following multiplications:

w (79 )= s (<11)

~3 2\ _
6 @-(7 2)=:
0 3 1
3 -1 7\ 6
© |-5 14 - 1] =2
7 2 9f\-1
0 —6 10
M)GJK_}_”z? [4ns. (0,0).]
Io—1\(12) _
(@<—1 J“»—?
30120 —8
® ©01,-5{6 82 1 14]|=2
215 2 0 =5
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? [Ans. ax; + cx,, bxy + dx,.]

[}
v

(8 (x,x 2)(0

%
w )’“)=
Y P2
1 0 0 0 /ul
. 01 0 O0})lu,
(i) = 1=
0 0 1 0] uy
0 0 0 1/ \uy
/ [ 000
. 01 00
(.]) (Xp x27 X3’ x4) O 0 1 O = ?
0 0 0 1
What number does the matrix in parts (i) and (j) of Exercise 1 resem-

ble?

Notice that in Exercise 1(d), above, the product of a row vector none
of whose components is zero and a matrix none of whose components
is zero is the zero row vector. Find a second example, this time using
a 3 X 3 matrix, which is similar to this one. Answer the analogous
question for Exercise 1(e).

Consider the matrices

4 = (au a12)’ x = (x1)’ b= (b1).
Ayy Ay X2 b,

(a) Show that the equation Ax = b represents two simultaneous
equations in two unknowns.

(b) Show that every set of two simultaneous equations in two un-
knowns can be written in this form for the proper choice of 4
and b.

When possible, solve for the indicated quantities.

@ o 58

a b
d

In this case can you find more than one solution?

— 7
(c) (_2 2)(:) = (0) Find the vector u.

—_ —1 .
(d) (_1; 2;)(”1) =( 4). Find u. How many solutions can

you find?

) = (—45,72). Find the vector x.

®) (6, 9)( ):(12,_15). Find the matrix(‘cz 2).

k

[Ans. Infinitely many solutions, all of the form v = {3k + 1
7
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6. Solve for the indicated quantities below and give an interpretation for
each.

(a (1, —1)(_ i) =a(l, —1); find a. [Ans. a = 2.]

0
2
1 2\ [fu, Uy
(b) ( ) =5 ; find u. How many answers can you find?
2 4/ \u, u,

[Ans. u = ( k

2k) for any number k.]

3 3
(©) ( )(ul) = (ul); find u. How many answers are there?
6 10/ \u, u,

7. In Example 1 of this section, assume that the contractor is to build

eight ranch-style, four Cape Cod, and four colonial-type houses.

Recompute, using matrix multiplication, the total cost of raw materials,

in two different ways, as in the example.

In Example 2 use tree measures to show that p@ = pWp,

9. In Example 2 of this section, assume that the initial probability vector
is p@ = (4, 8. Find the vector p®. [Ans. 3L, 19).]

10. Consider the Markov chain with two states whose transition matrix is

1l —a
P = a )
(1 -b b /)
where a and b are nonnegative numbers less than 1. Suppose the initial
probability vector for the process is p'@ = (p{?, p{), where p® is the
initial probability of choosing state 1 and p§” is the initial probability
of choosing state 2. Derive the formulas for the components of the

*°

vector pv, [Ans. p® = ap® + (1 — b)p, (1 — a)p® + bp]
a b ¢
11. Suppose that|d e f]is the transition matrix of a three-state
g h i
a b c\ [l
Markov chain. Find (x,y,z) |d e J111}. [Ans. x + y + z.]
g h i\l

12.  The following matrix gives the vitamin contents of three food items,
in conveniently chosen units:

Vitamin: A B C D
Food I: S 5 0 0
Food II: |3 0 2 .1).
Food III: \.1 1 2 5

If we eat 11 units of food I, 6 units of food II, and 4 units of food
HI, how much of each type of vitamin have we consumed? If we pay
only for the vitamin content of each food, paying 10 cents, 20 cents,
25 cents, and 50 cents, respectively, for units of the four vitamins, how
much does a unit of each type of food cost? Compute in two ways
the total cost of the food we ate. [Partial Ans. $3.75.]
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13.

14.

15.

16.

17.

18.

19.
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In Example 3, by how much would store 1 have to reduce the price
of apples to make Smith’s total purchases less expensive there than
at store 2?
In Example 3, find the store at which the total cost to Smith is the
least when he wishes to purchase
(@ x=@4,1,2,0,1). [Ans. Store 1; cost 47 cents.]
b) x=(1,3,2,4,0).
©) x=12,2,2,0,2).
In Example 4, let us assume that an individual chooses ticket 1
with probability r,, ticket 2 with probability r,, and ticket 3 with
bt
probability r;. Let r = r,|. Give an interpretation for pMr. Com-
T3

pute this forr, =4, r, =1 and r; = 4.

[Ans. pMr = §%, which is the expected return.]
A game room contains three pinball machines. Either a game on one
of these machines terminates normally, or else the machine refunds
enough money for one or two games. A game also ends if the machine
is tilted. The probability of each of these events is given by the
following matrix:

Normal Refunds | Game Refunds 2  Tilt

Machine 1 8 .09 01 B!
M = Machine 2 75 045 .005 2
Machine 3 9 04 01 .05

Assume that n = (25, 20, 30) represents the number of games played
on machines 1, 2, and 3, respectively. Compute and interpret nM.
In Exercise 16, Suppose it costs 10¢ to play one game.

(a) Construct a column vector with entries being the profit per game
made by the owner of the machines for each of the different
outcomes.

(b) Whatis the expected profit made by the owner if 100 people play
machine 1, 80 play machine 2, and 120 play machine 3.

(c) Due to space limitations the owner must sell one of the machines.
Which one should he sell?

(a) Consider the matrices

e 9) s =)

-\ i S\
Show that Pf = f. The vector f is called a fixed vector on the
right of P.

(b) Letw = (,&) and let P be the matrix in part (a). Show that
wP = w. For this reason w is called a fixed vector on the left of
P.

Let P be the matrix of transition probabilities for a Markov chain
having n states, and let f be a column matrix all of whose entries
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are I’s. Show that Pf = f. [Hint: Exercise 18 provides a special case.]
20. Let A4, B, and C be matrices of the same shape, and let 4 and k be
numbers. Use the ordinary rules for numbers plus the definitions of
this section to show that the following laws hold:
(al) 4+ B = B + A (commutative law of addition).
(@2) A+ (B + C)=(4+ B) + C (associative law of addition).
(a3) If O is the zero matrix of the same shape, then 4 + 0 = 4
(additive identity law).
(ad) Define —A4 = (—1)4; then4 + (—A) = 0 (additive inverse law).
(s1) h(kA) = (hk)A (mixed associative law).
(s2) 14 = A for all A (unity law).
(s3) h(A + B) = hA + hB (first distributive law).
(s4) (h + k)4 = hA + kA (second distributive law).
21. A company is considering which of three methods of production it
should use in producing three goods, A, B, and C. The amount of
each good produced by each method is shown in the matrix:

A B C

2 3 1\ Method 1
R=[|1 2 3|Method 2

2 4 1/ Method 3.

Let p be a vector whose components represent the profit per unit for
each of the goods. What does the vector Rp represent? Find three dif-
ferent vectors p such that under each of these profit vectors a dif-
ferent method would be most profitable.
10
[Partial Ans. For p =| 8 | method 3 is most profitable.]
7

4 THE ADDITION AND MULTIPLICATION OF MATRICES

Two matrices of the same shape—that is, having the same number of rows
and columns—can be added together by adding corresponding components.
For example, if 4 and B are two 2 X 3 matrices, we have

A+ B= (‘111 a9 a13)+ (bu by b13)
dyy Gy Qgg by by by,

_ (‘111 + by a4+ by ags + b13)
Ayy + byy  Gge + byy  any + by

Observe that the addition of vectors (row or column) is simply a special
case of the addition of matrices. Numerical examples of the addition of
matrices are

(1,0, —2) + (OaS’O) = (ls 5’ '—2),

G D+ (% 0= o)
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7 0 0 —8 0 1 —1 0 1
-3 1 -6 4 5 —1 1 6 -7
4 0 T+ 0 3 0|= 4 3 7
0 -2 =2 —1 1 -1 -1 -1 =3
1 1 1 0 -4 2 1 -3 3

Other examples occur in the exercises. The reader should observe that we
do not add matrices of different shapes.
If 4 is a matrix and k is any number, we define the matrix kA4 as

i1 Gy 0 Ay Kay, kayy - kay,
KA = k| @2t 9oz oo Ao | _ [ Kay  kay, - ka,
A1 Apo Amn kaml kamZ e kamn

Observe that this is merely entrywise multiplication, as was the analogous
concept for vectors. Examples of multiplication of matrices by constants

l 0 6 0
6(0 I|=1 0 6|
3 -4 18 —24

The multiplication of a vector by a number is a special case of the multi-
plication of a matrix by a number.
Under certain conditions two matrices can be multiplied together to give
a new matrix. As an example, let 4 be a 2 X 3 matrix and B be a 3 X 2
matrix. Then the product AB is found to be
by by

a a a

AB :< 11 12 13) b21 b22
Qyp Ay Qyy

31 U39

_ (anbn + ayobyy + ay3by  agiby, + ayobyy + a13b32)
dg1byy + agobyy + Ayzbsy  anibiy + agobyy + Ay3b3,

Observe that the product is a 2 X 2 matrix. Also notice that each entry
in the new matrix is the product of one of the rows of A times one of the
columns of B; for example, the entry in the second row and first column
is found as the product

by,
(ay; Ggp ay3) | byy|= ayibyy + Agobosy + ag3bs,.
b3,

The following definition holds for the general case of matrix multiplication:

Definition Let 4 be an m X k matrix and B be a k X »n matrix; then the
product matrix C = 4B is an m X n matrix whose components are
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by;

J
b..
— 2j

G = (@ ay - ay)|

= Qy1by; + aipby; + - + ayby;

The important things to remember about this definition are: first, in order
to be able to multiply matrix A4 times matrix B, the number of columns
of 4 must be equal to the number of rows of B; second, the product matrix
C = AB has the same number of rows as 4 and the same number of columns
as B; finally, to get the entry in the ith row and jth column of 4B we multiply
the ith row of 4 times the jth column of B. Notice that the product of a
vector times a matrix is a special case of matrix multiplication.

Below are several examples of matrix multiplication:

G )G 9)=(% 2)

30 1\f1 00 4 11
-1 2 0ffo -1 o|={-1 -2 0o};
00 2/\1 1 1 2 2 2
(314)1?88_(41044)
20 Mg o1 1) 2 655

We next ask how we multiply more than two matrices together. Let 4
be an m X h matrix, let B be an & X k matrix, and let C be a k X »n.matrix.
Then we can certainly define the products (4B)C and A(BC). It turns out
that these two products are equal, and we define the product ABC to be
their common value; that is,

ABC = A(BC) = (4B)C.

The rule expressed in the above equation is called the associative law for
multiplication. We shall not prove the associative law here, although the
student will be asked to check an example of it in Exercise 5.

If 4 and B are square matrices of the same size, then they can be multi-
plied in either order. It is not true, however, that the product AB is neces-
sarily equal to the product B4. For example, if

(11 ({10
A‘(o 0) and B_<l 0)’

5=(5 o) 5)=( o)

then we have
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whereas
1 0\(1 1
BA“(l 0)(0 o)

and it is clear that AB # BA.

1
o
P
Pk ek
~—"

1. Perform the following matrix operations:

3 2 0 7
(@ {1 4] —-1-3 -3|="7?
5 3 8 1

=

-

w
I .

N W —

—
—
e’

O (192 Y-

o (09 )=
8 —6

o (17 2=

o (6 956 9=

w (0 2)6)-
7 9 2\(3 3 5 56 112 85

(h) (4 9 6)(3 9 4)=2 [Ans.(63 123 98).]
5 6 0/\4 5 7 33 69 49
|

N
—
— N

o (L )

—19 2 7 2 19
2. Consider the matrices A4 = 14 —-10), B=|4 26 -2},
5 0 13 0 7

4 1 -1 10 -7 :
= = : 3x23
C (6 3 _5), and D ( 4 15) Their shapes are 3 X X

3,2 X 3, and 2 X 2, respectively. What is the shape of:
(a) AC?



180 Vectors and Matrices Chapter 4

b)) CB?

(c) DC? [Ans. 2 X 3]
d) ACB?

(e) BAC?

) DCB?

(g) DCBA?

(h) ADCB? [Ans. 3 X 3]

3. In Exercise 2, find the component:
(@) In the second row and second column of AC. [Ans. —16.]

(b) In the first row and the third column of CB.
(¢) In the last row and last column of AC.
(d) In the last row and last column of CA. [Ans. —18.]
(e) In the second row and first column of DC.
4. Let 4 be any 3 X 3 matrix and let / be the matrix

1 0 0
I={0 1 0}.
0 0 1

Show that A] = I4 = A. The matrix / acts for the products of matrices
in the same way that the number 1 acts for products of numbers. For
this reason it is called the identity matrix.

5. Verify the associative law for the special case when

|3 3 4 _3 3 9 4
A=<_6 s 1),B:8 0 S5|l,andC={7 —-4}.
5 —4 3 0 |

6. The commutative law for addition is
A+ B=B+ A4

for any two matrices 4 and B of the same shape. Prove that the com-
mutative law for addition is true from the definition of matrix addition
and from the fact that it is true for ordinary numbers.

7. Show that there is not a commutative law for matrix multiplication by
finding two 2 X 2 matrices 4 and B different than the ones in the text
such that 4- B # B- A.

8. The distributive law for numbers and matrices is

k(A + B) = kA + kB -

for any number £ and any two matrices 4 and B of the same shape.
Prove that this law holds from the definitions of numerical multi-
plication of matrices, addition of matrices, and the ordinary rules for
numbers.

9. The distributive laws for matrices are

(A + B)C = AC + BC,
C(A + B) = CA + CB,
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where A, B, and C are matrices of suitable shapes. Show that these
laws hold from the definitions of matrix multiplication and addition,
and the ordinary rules for numbers.

10. Let A be any 3 X 3 matrix and let O be the matrix

0=

o O O
o O O
o OO

Show that 40 = 04 = Oforany A. Alsoshowthat4 +0 =04+ 4 =4
for any 4. The matrix O acts for matrices in the same way that the
number 0 acts for numbers. For this reason it is called the zero matrix.
11. Show that for any square matrix 4 there is a matrix B of the same
shape as A4 such that 4 + B = 0. (B is called the additive inverse of
A)
12. Find the additive inverse of each of the following matrices:

@ ()

-3 2
b )
) ( 6 1)
-3 2 4
(©) 0 8 3
5 4 -7
0 0 1 0 0 0
13. If 4= (0 1) and B = (0 0), show that AB = (O 0). Thus the

product of two matrices can be the zero matrix even though neither
of the matrices is itself zero. Find another example that illustrates
this point.

14. If 4 is a square matrix, it can be multiplied by itself; hence we can
define (using the associative law)

A2 =A4-A4
A3 =A% A =A-A-A4
AV = A1 4 =AA---- <A (n factors).

These are naturally called “powers” of the matrix 4, A% being called
the square of A4, A3 the cube of 4, etc.

(a) Compute 42, 43, and A4* for A = (‘;‘ (1))

(b) IfIand O are the matrices defined in Exercises 4 and 10, find 72,
I3, 1™ 02, 03, and O™

© IfAz(i i) find A,

LY
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15.

16.

17.

18.

19.

20.

0 1 2
d If4={0 0 -1}, find 42, 43, and 4™
0 0 0

Find the matrices P? and P® for the Markov chain whose tran-

1 1
2 2
2 1

3

). Compute P2and P3and compare the results.
5

sitionmatrixis P = (

Cube the matrix

W O O
O o
ks ok O

Compare your answer with the matrix P®¥ in Example 1, Chapter 3,
Section 12, and comment on the result.
Consider a two-state Markov process whose transition matrix is

pP— (Pn Plz).
P21 Po2

(a) Assuming that the process starts in state 1, draw the tree and
set up tree measures for three stages of the process. Do the same,
assuming that the process starts in state 2.

(b) Using the trees drawn in (a), compute the quantities p(3), p$),
PS5, p$). Write the matrix P®,

(¢) Compute the cube P® of the matrix P.

(d) Compare the answers you found in parts (b) and (c) and show

that P® = P3.
1 O)
t A4 = R
Le (1 2

1

(a) Find a matrix B such that AB = (0

0 1 0
1). Show that BA = (0 1)

as well.

I 1
1 3

A diagonal matrix is square and its only nonzero entries are on the
main diagonal. For instance, the matrices

=la 2=G 9

are 2 X 2 diagonal matrices.

(a) Show that 4 and B commute, i.e., AB = BA.

(b) Show that any pair of diagonal matrices of the same size commute
when multiplied together.

A scalar martrix is a diagonal matrix in which all the entries on

(b) Find a matrix C such that AC = ( ) What is CA?
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30

0 3)and

the main diagonal are equal. Forinstance, the matrices4 = (

B = (—(7) 3) are 2 X 2 scalar matrices.

(a) Show that 4 commutes with any 2 X 2 matrix.

(b) Show that any scalar matrix 4 can be written as kI, where & is a
number and [ is the identity matrix of the appropriate size.

(c) Show that any scalar matrix commutes with any other matrix of the
same size.

In Example 1 of Section 3 assume that the contractor wishes to take into

account the cost of transporting raw materials to the building site as well

as the purchasing cost. Suppose the costs are as given in the matrix

below:

Purchase Transport
15 4.5 Steel
8 2 Wood
0= 5 3 Glass
1 0.5 Paint
10 0 Labor

Referring to the example:

(a) By computing the product RQ find a 3 X 2 matrix whose entries
give the purchase and transportation costs of the materials for each
kind of house.

(b) Findthe product xRQ, whichisa two-component row vector whose
first component gives the total purchase price and second compo-
nent gives the total transportation cost.

(© Letz= (i

the total cost of materials and transportation for all the houses

being built. [Ans. 14,304.]
A candy company packages four sizes of assorted chocolates: the
Sampler, Sweetheart, Matinee,and Jumbo boxes. The Sampler contains
3 almond creams, 4 chocolate nougats, 5 caramel creams, and 3 nut
clusters. The Sweetheart contains 6 almond creams, 4 chocolate nougats,
8 caramel creams, and 7 nut clusters. In the Matinee box are 10 almond
creams, 15 chocolate nougats, 5 caramel creams, and 5 nut clusters.
The Jumbo assortment has 10 almond creams, 15 chocolate nougats,
15 caramel creams, and 10 nut clusters. The company uses as ingredi-
ents in its manufacturing process chocolate, nuts, and cream filling.
An almond cream contains 1 unit of chocolate, 2" units of nuts, and
2 units of cream filling; a chocolate nougat, 2 units each of chocolate
and cream filling; a caramel cream, 4 units of cream filling; and a nut
cluster, 3 units of nuts and 2 units of chocolate. Suppose a unit of
chocolate costs 1¢, a unit of nuts 1.6¢, and a unit of cream filling 2¢.

) and then compute xRQz, which is a number giving
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If the company packages 50 Samplers, 75 Sweethearts, 40 Matinees,
and 100 Jumbos,
(a) What is the total number of each type of candy produced?
(b) Whatis the total number of units of each ingredient used to make
all the candy?
(c) What is the total cost of the candy in each box?
(d) What is the total cost of all the candy in all the boxes?
[Ans. $651.50.]

5 THE SOLUTION OF LINEAR EQUATIONS

EXAMPLE 1

There are many occasions when the simultaneous solutions of linear equations
isimportant. In this section we shall develop methods for finding out whether
a set of linear equations has solutions, and for finding all such solutions.

Consider the following example of three linear equations in three unknowns:

(D) Xy +4x, + 3x; =1
(2) 2x; 4+ S5x, + 4x; = 4
(3) Xy — 3x, —2x5 = 5.

Equations such as these, containing one or more variables, are called open
statements. Statement (1) is true for some values of the variables (for
instance, when x; = 1, x, = 0, and x; = 0), and false for other values of

the variables (for instance, when x; =0, x, = 1, and x; = 0). The truth
set of (1) is the set of all vectors fc; for which (1) is true. Similarly, the
X
truth set of the three simultaneous egquations (1), 2), and (3) is the set of
all vectors i\(: which make true their conjunction
Xq

(xg + 4x, + 3x3 = 1) A\ Qxy + 5x, + 4x3 = 4) /\ (x; — 3x, — 2x, = 5).

When we say that we solve a set of simultaneous equations, we mean that
we determine the truth set of their conjunction.

Before we discuss the solution of these equations we note that they can
be written as a single equation in matrix form as follows:

1 4 3\ [x, 1
2 5 4 xz = 4 .
I =3 =2/ \x; 5
One of the uses of vector and matrix notation is in writing a large number

of linear equations in a single simple matrix equation such as the one above.
It also leads to the detached coefficient form of solving simultaneous equa-
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tions that we shall discuss at the end of the present section and in the next
section.

The method of solving the linear equations above is the following. First
we use equation (1) to eliminate the variable x; from equations (2) and
(3); i.e., we subtract 2 times (1) from (2) and then subtract (1) from (3),
giving

(1) X, + 4x, + 3x5 =1
(2/) —3x2 — 2X3 =2
(3" —Txy — Sx5 = 4.

By pivoting we shall mean the operation of using an equation to eliminate
a variable from the other equations. The pivot is the coefficient of the
variable being eliminated. In this case the pivot is 1. Next we pivot on
—3 in (2): divide equation (2’) through by the coefficient of x,, namely,
—3, obtaining x, + x; = —% We use this equation to eliminate x, from
each of the other two equations. In order to do this we subtract 4 times
this equation from (1’) and add 7 times this equation to (3’), obtaining

(1) X1+ 0+ =4
2") Xy + 3xy = —§
3 b=

The last step is to pivot on —3 by dividing through (3”) by —3, which is
the coefficient of x;, obtaining the equation x; = 2; we use this equation
to eliminate x4 from the first two equations as follows:

1) x;+#0+0= 3
@) Xy + 0= —2
(3") Xy = 2.
The solution can now be read from these equations as x; = 3, x, = —2,

and x; = 2. The reader should substitute these values into the original
equations (1), (2), and (3) above to see that the solution has actually been
obtained.

In the example just discussed we saw that there was only one solution
to the set of three simultaneous equations in three variables. Example 2
will be one in which there is more than one solution, and Example 3 will
be one in which there are no solutions to a set of three simultaneous
equations in three variables.

Consider the following linear equations:

“4) Xy —2x, — 3x3= 2
) Xy —4x, — 13x; = 14
6) —3x; + 5x, + 4x3= 0.
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EXAMPLE 3

Let us proceed as before and use equation (4) to eliminate the variable x,
from the other two equations. Pivoting on the 1 coefficient of x, in (4),
we have

4" Xy —2x,— 3x5= 2
(5) —2x, — 10x; = 12
(6") —Xy — Sx3= 6.

Proceeding as before, we divide equation (5’) by —2, obtaining the equation
Xy + 5x3 = —6. We use this equation to eliminate the variable x, from
each of the other equations—namely, we add twice this equation to (4’)
and then add the equation to (6’):

4" X;+0+7x;=~10
(5") Xo+5x3=— 6
6”) 0= 0.

Observe that we have eliminated the last equation completely! We also see
that the variable x; can be chosen completely arbitrarily in these equations.
To emphasize this, we move the terms involving x; to the right-hand side,
giving

4" x; = —10 — Tx,

o) Xy, = — 6 — 5x,.

The reader should check, by substituting these values of x; and x, into
equations (4), (5), and (6), that they are solutions regardless of the value
of x;. Let us also substitute particular values for x; to obtain numerical
solutions. Thus, if we let x; =1, 0, —2, respectively, and compute the
resulting numbers, using (4”) and (5"”), we obtain the following numerical
solutions:

x1=—17, x2=——11, Xg =
x, = —10, X, = — 6, x;= 0
X, = 4, Xy = 4, Xy = —2.

The reader should also substitute these numbers into (4), (5), and (6) to
show that they are solutions. To summarize, our second example has an
infinite number of solutions, one for each numerical value of x, which is
substituted into equations (4”’) and (5").

Suppose that we modify equation (6) by changing the number on the
right-hand side to 2. Then we have

(7) Xy —2xy — 3x3= 2

(8) Xy, —4x, — 13x; = 14
%) —3x; 4+ 5x, + 4xy = 2.
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If we carry out the same procedure as before and use (7) to eliminate x,
from (8) and (9), we obtain

(7 Xy — 2xy — 3x3 = 2

) —2x, — 10x; = 12

9 —Xy — Sx5= 8.

We divide (8") by —2, the coefficient of x,, obtaining, as before,
Xy + 5x3 = —6. Using this equation to eliminate x, from the other two
equations, we have

(7) X, +0 4+ 7x;=—10

8") Xy 4 5%, = — 6

9") 0= 2

Observe that the last equation is logically false, that is, false for all values
of x,, xy, x3. Because our elimination procedure has led to a false result
we conclude that the equations (7), (8), and (9) have no solution. The student
should always keep in mind that this possibility exists when considering
simultaneous equations.

In the examples above the equations we considered had the same number
of variables as equations. The next example has more variables than
equations and the last has more equations than variables.

Consider the following two equations in three variables:
(10) —4x, + 3x, + 2x3 = =2
(11) 5xy —4x, + x3= 3.

Using the elimination method outlined above, we divide (10) by —4, and
then subtract 5 times the result from (11), obtaining

(107) Xy — X, — I3 =13

(11) —bep + fry =4

Multiplying (11’) by —4 and using it to eliminate x, from (10’), we have
(107) xX;4+0—1lx;=—1

(117) X, — l4x5 = -2,

We can now let x; take on any value whatsoever and solve these equations
for x; and x,. We emphasize this fact by rewriting them as in Example
2 as

(10 x; = 1xg —1
(11) x, = 14x, —2.

The reader should check that these are solutions and also, by choosing
specific values for x;, find numerical solutions to these equations.



188 Vectors and Matrices Chapter 4

EXAMPLE 5 Let us consider the other possibility suggested by Example 4, namely, the
case in which we have more equations than variables. Consider the following

equations:

(12) —4x; 4+ 3x, =2
(13) Sx; —4x, =0
(14) 2X1 — x2 = a,

where a is an arbitrary number. Using equation (12) to eliminate x, from
the other two we obtain

(12%) Xp = 3xy = -3
(13’) —3x, =3
(14") %x2 =a+ 1.

Next we use (13’) to eliminate x, from the other equations, obtaining

(127) X, +0= -8

(137) Xy = —10

(147) 0=a+6.

These equations remind us of the situation in Example 3, since we shall
be led to a false result unless @ = —6. We see that equations (12), (13),

and (14) have the solution x; = —8 and x, = —10 only if a = —6. If
a # —6, then there is no solution to these equations.

The examples above illustrate all the possibilities that can occur in the
general case. There may be no solutions, exactly one solution, or an infinite
number of solutions to a set of simultaneous equations.

The procedure that we have illustrated above is one that turns any set
of linear equations into an equivalent set of equations from which the
existence of solutions and the solutions can be easily read. A student who
learned other ways of solving linear equations may wonder why we use the
above procedure—one which is not always the quickest way of solving
equations. The answer is that we use it because it always works, that is,
itis a canonical procedure to apply to any set of linear equations. The faster
methods usually work only for equations that have solutions, and even then
may not find all solutions.

The computational process illustrated above is summarized in the flow
diagram of Figure 5. In that diagram the instructions encircled by dotted
lines are either beginning or ending instructions; those enclosed in solid
rectangles are intermediate computational steps; and those enclosed in ovals
ask questions, the answers to which determine which of two paths the
computational process will follow.

The direction of the process is always indicated by arrows. The flow
diagram of Figure 5 can easily be turned into a computer program for
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|
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ﬂ Leti=1

Does the ith equation have a
nonzero coefficient?

Yes

A

e Let x; be any variable in the

y

Is the right- ith equation with a nonzero

hand side of the coefficient. Divide through the @ Replace
ith equation ith equation by this coefficient. ibyi+1.
equal to 07

Remember that the pivot in row
i was the coefficient of x;.

No

A

Figure 5

y

Stop. Equations
do not have a

’ Pivot; that is, use the ith equation
solution.

to eliminate x; from all the

Yes other equations.

T — —
r_Stop. There are .1| | Stop. The |
| infinitely many | | solution is |

solutions. unique

_____ _ L S

Flow diagram for solving m equations in »n variables.

solving m linear equations in n variables. Students having access to a
computer will find it a useful exercise to write such a program.

Let us return again to the equations of Example 1. Note that the variables,
coefficients, and equals signs are in columns at the beginning of the solution
and are always kept in the same column. It is obvious that the location
of the coefficient is sufficient identification for it and that it is unnecessary
to keep writing the variables. We can start with the format or tableau

1 4 31
(15) 2 5 4 4
1 -3 -2 5
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EXAMPLE 6

EXAMPLE 7

Note that the coefficients of x, are found in the first column, the coefficients
of x, in the second column, of x5 in the third column, and the constants
on the right-hand side of the equation all occur in the fourth column. The
vertical line represents the equals signs in the equations.

The tableau of (15) will be called the detached coefficient tableau for
simultaneous linear equations. We now show how to solve simultaneous
equations using the detached coefficient tableau.

Starting with the tableau of (15) we carry out exactly the same calculations
as in Example 1, which lead to the following series of tableaus:

1 4 3 1
(16) 0 -3 =2 2
0 -7 -5 4
oo ]y
(17) 0 1 3] —3
00 =} | -3
1 0 0 3
(18) 0 1 0 =2
0 0 1 2
From the tableau of (18) we can easily read the answer Xy =3,x, = -2,

and x; = 2, which is the same as before.
The correspondence between the calculations of Example 1 and of the
present example is as follows:

(1), 2), and (3) correspond to  (15).
(1), (27), and (3") correspond to  (16).
(1), (2”), and (3””)  correspond to (17).
(1), (2”"), and (3"”) correspond to (18).

Note that in the tableau form we are always careful to keep zero coefficients
in each column when necessary.

Suppose that we have two sets of simultaneous equations to solve and that
they differ only in their right-hand sides. For instance, suppose we want
to solve

14 3\x\ /1 ~1
(19) 2 5 4{x,|={4| and = 0]
1 =3 =2/\x, 5 2

It is obvious that the calculations on the left-hand side will be the same
regardless of the numbers appearing on the right-hand side. Therefore it
is possible to solve both sets of simultaneous equations at once. We shall
illustrate this in the following series of tableaus:
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1 4 3 1 -1
(20) 2 5 414 O
1 -3 =2 5 2
1 4 3 1 —1
(21) 0 -3 -2 2 2
0 -7 =5 4 3
Lo gy g
(22) o 1 3] -3 -3
0 0 —3|-§ -3
1 0 O 3 0
(23) 0 1 0| -2 —4]|
0 O 1 2 5
We find the answers
x; =3, X, = —2, Xg =2
to the first set of equations and the answers
x; =0, X, = —4, X3=75

to the second set of equations. The reader should check these answers by
substituting into the original equations.

1. Find all solutions to the following simultaneous equations:
@ x;+2x,4+ 3x3= 4

4x, + Sxp + 6x53= -2 [Ans. x; = =7, x, =4, xg3 = 1]
Txy + 8xy, + 27x5 = 10.
(b) —x, + 3x;= 16

2xy 4+ Tx, + 3x3= —6 [Ans. No solution.]
—Xx; + Txy + 12x5 = 41.
() —x, + 3x4 8
2x; + Txy + 3xg3= -3
—xy + Tx, + 12x3 = 21.
[Ans. x; = 3x3 — 8, x, = (13 — 9x;), x5 = any real number.]
2. Find all solutions of the following simultaneous equations:
(a) Xy + 3%, + 3x3= 2
X, 4+ x4+ x53= -2
13x; + 4x, + Tx, 4.
(b) Sx; +3x, — x3= -2
2x; — 2x, +3x3= 3

3x, + x3= 0.
(© 2x;+3x,—x3=0
—4x, + x3=0

8x, — x5 =0.
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3. Rework Examples 2-4 using the detached coefficient tableau.

4. Find all solutions of the following equations using all the detached
coefficient tableau:

@ 2x; 4+ 2x, — x3=—4
—Xy + 2x53 = =2
% + X+ x3= L
(b) 5%y + 3%, + 3x3= 7
—2x; + 4x, + 8x3 = =3
—Xxy + 3x, + 4x3 = 2.
© 3x;,+6x, —x3=-7
Xy + 5x, = 0
2X2 + x; = 14.
5. Find all solutions of the following equations:
@ —x;+ x,— x34+ x,= 13
2x, —6x5+Tx, = 0
—2x; + X, + x3+5x,= —13
3x; —2x, + 2x3+ x, = 26.
(b) Xy + 2x, + 3x3 4+ 4x, =10
2% — x4+ x3— x,= 1
3x; + xo +4x;+ 3x, =11
—2x; + 6x, + 4x45 + 10x, = 18.

6. Solve the following four simultaneous sets whose right-hand sides are
listed under (a), (b), (c), and (d) below. Use the detached coefficient
tableau.

@@ (b) (¢ (d)

3x; +6x, +4x3= —4 2 1 ~1

4x, + 8x, + Sxg = 8§ 2 1 -1

4x, + 3xg = 0 2 1 1.
[Ans. (a) x; = 30, x, = 11, x3 = —40.]

7. Solve the following four sets of simultaneous equations, which differ
only in their right-hand sides:

(@ () (© @

— X, + 2x;= =2 =2 4 1

2xy + Tx, + 3x5 = 4 2 -1 12

—x; + Txy + 1lx53 = 0 4 1 17.
[Ans. (d) x; = x, = x3 = 1]

8. Solve the following four sets of simultaneous equations:

@ () © @
0

Xy + 6xy + x5 = 2 12 _9
—X; = 2x, — 93 = -9 0 12 0
3x, + 3x3 = 0 -9 -9 12

[Ans. (a) x; = 103, x, = 1 x, = —1]
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A man is ordered by his doctor to take 10 units of vitamin A, 9 units

of vitamin D, and 19 units of vitamin E each day. The man can choose

from three brands of vitamin pills. Brand X contains two units of

vitamin A, three units of vitamin D, and five units of vitamin E; brand

Y has 1, 3, and 4 units, respectively; and brand Z has 1 unit of vitamin

A, 1 of vitamin E, and none of vitamin D.

(a) Find all possible combinations of pills that will provide exactly
the required amounts of vitamins.

(b) If brand X costs I¢ a pill, brand Y 6¢, and brand Z 3¢, is there
a solution costing exactly 15¢ a day?

(¢) What is the least expensive solution? The most expensive?

Show that the equations

4x, —4x, + axz = ¢
3x; — 2xy + bxg =d

always have a solution for all values of @, b, ¢, and d.
Find conditions on a, b, and c in order that the equations

3x,+ 2x, = a
—4x, 4+ x,=0
2x,+ dx, =¢

have a solution.

For what value of the constant k does the following system have a
unique solution? Find the solution in this case. What is the case if
k does not take on this value?

2x +4:= 6
3x+ v+ z= -1
2y — z= -2

X — y+4+kz= =5
[Ans. k = —=2; x = —1, y = 0, z = 2; no solution.]

a
Let x = (x,, xy, X,), let A =| b |, and let d be any number. What can
¢
you say about the truth set of the statement x4 = d in the following
cases:
(@) A#0?
b) A=0,d=0?
(c) A=0,d#£0?
What can you conclude?

1 1

Let P be the matrix P = (i é) and let x = (xy, x,).
i 4

(a) Find all solutions of the equation xP = x.
(b) Choose the solution(s) for which x; + x, = L.
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15.

16.

17.

18.

19.

20.

Let P be the matrix P = , and let x = (xq, Xq, X3).

R e o T
DR Cop=t DOp=
W s O

(a) Find all solutions of the equation xP = x.

(b) Choose the solution(s) for which x; + x, + x; = I.
Xy

Let P be as in Exercise 15, and let x = [ x,|. Redo the exercise, using
X,

the equation Px = x.

Let x be as in Exercise 15, and let 4 be the matrix

2 0 3
01 5/
-3 0 1

(a) Find all solutions of the equation x4 = x.
(b) Choose the solution(s) for which x; + x, + x; = 1.

[Ans. x; =8, x, = —F, x; = &]
(a) Show that the simultaneous linear equations

3x; — 5%y + 3x3=9
4x, +4x, — Tx3; =0

can be interpreted as a single-matrix-times-column-vector equa-
tion of the form

3 -5 3\ (Y 9
(4 4 —7) 2 (0)
X3
(b) Show that any set of simultaneous linear equations may be inter-
preted as a matrix equation of the form Ax = b, where 4 is an
m X n matrix, x is an n-component column vector, and b is an
m-component column vector.
(a) Show that the equations of Exercise 18(a) can be interpreted as
a row-vector-times-matrix equation of the form

3 4
(xp Xo, Xg) -5 4 2(9, O)
3 -7

(b) Show that any set of simultaneous linear equations may be inter-
preted as a matrix equation of the form x4 = b, where A4 is an
m X n matrix, x is an m-component row vector, and b is an
n-component row vector.

(a) Show that the simultaneous linear equations of Exercise 18(a) can
be interpreted as asking for all possible ways of expressing the

column vector ((9)) in terms of the column vectors (i )J (“ Z ) and

()
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Show that any set of linear equations may be interpreted as asking
for all possible ways of expressing a column vector in terms of
given column vectors.

21. Redo Exercise 20, using Exercise 19(a) and row vectors.
22. Consider the following set of simultaneous equations:

(a)
(b)
(c)

X, —Xy=a
X3+ x,=0>
Xog—Xg=¢C
X, +x3=4d.

For what conditions on a, b, ¢, and d will these equations have
a solution?

Give a set of balues for a, b, ¢, and d for which the equations do
not have a solution.

Show that if there is one solution to these equations, then there
are infinitely many solutions.

23.  Which of the following statements are true and which false concerning
the solution of m simultaneous linear equations in » unknowns written
in the form Ax = b?

(a)
(b)
(©)
(d)
(e)
)
(2)

If there are infinitely many solutions, then n > m.

If the solution is unique, then n = m.

If m = n, then the solution is unique.

If n > m, then there cannot be a unique solution.

If b = 0, then there is always at least one solution.

If b = 0, then there are always infinitely many solutions.

If b =0, and x'* and x? are solutions, then x¥ + x'? is also a
solution. [Ans. (d), (e), and (g) are true.]

6 THE INVERSE OF A SQUARE MATRIX

If A is a square matrix and B is another square matrix of the same size
having the property that BA = I (where [ is the identity matrix), then we
say that B is the inverse of A. When it exists, we shall denote the inverse
of A by the symbol A~1. To give a numerical example, let 4 and A™! be
the following:

(D

2)

4.0 5
A=|0 1 -6

30 4

4 0 =5 -
Al=[-18 1 24].

-3 0 4

Then we have

4 0 -5

4 0 1 0 0
A4={-18 1 24|-(0 1 —-6|=|0 1 O|=1L
30 0 0 1

-3 0 4
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If we multiply these matrices in the other order, we also get the identity
matrix; thus

4 0 5 4 0 -5 1 0 0
AA 1 ={0 1 —-6]-1—-18 1 24|={0 1 0)=1
30 4 -3 0 4 0 0 1

In general it can be shown that if 4 is a square matrix with inverse 471,
then the inverse satisfies the equation

A4 =A4"1 = I
Next we show that a square matrix can have only one inverse. For
suppose that in addition to 47! we also have a B such that
BA = 1.
Then we see that

B = Bl = B(AA™1) = (BA)A™ = IA~! = 41,

Finding the inverse of a matrix is analogous to finding the reciprocal of
an ordinary number, but the analogy is not complete. Every nonzero
number has a reciprocal, but there are matrices, not the zero matrix, which
have no inverse. For example, if

= 7)o a=() )
=y T)G)=6 6)=e

From this we shall show that neither 4 nor B can have an inverse. To show

that 4 does not have an inverse, let us assume that 4 had an inverse A~1.
Then

then

B =(A"'4A)B = A Y(AB) = A710 = 0,

contradicting the fact that B # 0. The proof that B cannot have an inverse
1s similar.

Let us now try to calculate the inverse of the matrix 4 in (1). Specifically,
let’s try to calculate the first column of 471, Let

be the desired entries of the first column. Then from the equation 4471 = |
we see that we must solve
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Similarly, to find the second and third columns of A~! we want to solve
the additional sets of equations,

4 0 5\ [x, 0 0
0 1 —-6}{x,|=|1}| and =1{0
30 4/ \x, 0 1

k4

respectively. We thus have three sets of simultaneous equations that differ
only in their right-hand sides. This is exactly the situation described in
Example 7 of the previous section.

To solve them, we start with the tableau

40 5|1 00
3) 01 —610 10
30 4]0 0 1

and carry out the calculations as described in the last section. This gives
rise to the following series of tableaus. In (3) divide the first row by 4, copy
the second row, and subtract 3 times the new first row from the old third
row, which yields the tableau

10 2| 100
(4) 01 —6| 010
00 1]-3 01

Next we multiply the third row of (4) by 4, multiply the new third row by
6 and add to the old second row, and multiply the new third row by § and
subtract from the old first row. We have the final tableau:

1 0 0 4 0 -5
(5) 0O 1 0|—-18 1 24).
0 01| -320 4

We see that the inverse 4~! which is given in (2) appears to the right of
the vertical line in the tableau of (5).

The procedure just illustrated will find the inverse of any square matrix
A, providing A has an inverse. We summarize it as follows:

Rule for Inverting a Matrix Let 4 be a matrix that has an inverse. To
find the inverse of A start with the tableau

(411)

and change it by row transformations (as described in Section 5) into the
tableau

(I| B).

The resulting matrix B is the inverse A of 4.

Even if 4 has no inverse, the procedure just outlined can be started. At
some point in the procedure a tableau will be found that is not of the desired



198 Vectors and Matrices Chapter 4

EXAMPLE 1

final form and from which it is impossible to change by row transformations
of the kind described.

Show that the matrix

4 0 8

A={0 1 -6

2.0 4

has no inverse.
We set up the initial tableau as follows:

4 0 81 0 O
(6) 01 —-6]{0 1 0
2 0 410 0 1

Carrying out one set of row transformations, we obtain the second tableau
as follows:

(7)

SO -
O — O
I
O ON o
O b
O = O
—_0 O

Bt

It is clear that we cannot proceed further since there is a row of zeros to
the left of the equals sign on the third set of equations. Hence we conclude
that 4 has no inverse.

Because of the form of the final tableau in (7), we see that it is impossible
to solve the equations

4 0 8\ [x, 0
0 1 —6|lx,]=10],
2 0 4/ \x, |

since these equations are inconsistent as is shown by the tests developed
in Section 5. In other words, it is not possible to solve for the third column
of the inverse matrix.

Itis clear that an n X n matrix 4 has an inverse if and only if the following
sets of simultaneous equations—

1 0 0
Ax:o, Ax:¥ , Ax:o
0 0 1

—can all be uniquely solved. And these sets of simultaneous equations,
since they all share the same left-hand sides, can be solved uniquely if and
only if the transformation of the rule for inverting a matrix can be carried
out. Hence we have proved the following theorem.
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Theorem A square matrix A4 has an inverse if and only if the tableau
(A]7)
can be transformed by row transformations into the tableau

(I| A1),

EXAMPLE 2 Let us find the inverse of the matrix

14 3
A=12 5 4]
1 -3 -2
The 1initial tableau is
1 4 311 00
2 5 4]0 10
1 -3 -2/0 0 1
Transforming it by row transformations, we obtain the following series of
tableaus:
l 4 3 1 0 0
0 -3 -2 -2 1 0
0 -7 =5| -1 0 1
L0 4] -3 4 0
0 1 3| 3 -3 0
0 0 3| B -f
1 0 0 2 -1 1
0 1 0 8 -5 2.
0 O 1 {—11 7 =3

The inverse of A is then

2 —1 1
Al = 8 -5 2.
—11 7 -3
The reader should check that 4714 = A4~ ! = 1.

EXAMPLE 3 A cookie recipe requires 4 cups of sugar and 2 cups of flour while a cake
recipe needs 3 cups of sugar and 4 cups of flour. If we have 40 cups of
sugar and 30 cups of flour on hand, how many recipes of each can we
make? In order to answer this question let x be the number of cookie recipes
and y the number of cake recipes to be made. Then the sugar and flour
requirements give rise to the following two equations:

4x + 3y =40 (Sugar equation)
2x + 4y = 30 (Flour equation).
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Let us rewrite these equations in matrix form as
2 A0)-()
2 4/\y/ " \30/
If we can invert the matrix we can solve the problem as
G)=G 76
y 2 4 30/
The initial tableau of the matrix inversion problem is
(4 3|1 O)
2 410 1/
Pivoting on the 4 in the upper left-hand corner gives

1 3] 10
0 34 1)

Finally, pivoting on the 3 term we obtain

(10 —%)
0 1 z)’

and so the inverse of the original matrix appears on the right. The solution
to our problem is, then,

()= D)= ()

y -5 £/\30/ \4/

In other words, we can make 7 batches of cookies and 4 cakes from the
materials we have.

D= S

EXERCISES
1. Compute the inverse of each of the following matrices:
-5 1 10
A:(_‘;’ _;) B=| 9 -2 -17},
—~4 1 8
3010 o C1o
c=(222| p=|% -1 73
11 3 1 0 0 —1 2
0 0 0 1
4 9 1 2 3
[Partialans.A‘I:(' ' ), B1=[-4 0 5}]
2 6
1 1 1
X1
2. Let B and C be the matrices of Exercise 1: let x = X,| and
X3

¥y = (¥, Vo, V3); let a, b, ¢, d, and e be the following vectors:
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4
a= 0], b=1}|-1}, c=(1,5,3),
3

1
d=(1,1,1), and e=1{1}].
1

Uses the inverses computed in Exercise 1 to solve the following equa-
tions:

(a) Bx =a.
(b) yB=d.
(c) Cx=e
(d) Bx =b.
() yB=c.
) yC=c
Show that each of the following matrices fails to have an inverse.
310
4 2
A=t sofs o)
11 3 1
=3 -1 T
c=|\4 3 2], D= :
9 X . o 3 -4 2

2 0 1 -1

For each of the matrices in Exercise 3 find a nonzero vector whose
product with the given matrix is 0.

Solve the following four sets of simultaneous equations by first writing
them in the form Ax = B, where B is a 3 X 4 matrix, and finding the
inverse of A.

(a) (b) (9 (d)

4x, + S5x; = 1 1 0 8
Xy —6x;=2 0 0 1
3x, +4x;=3 O I O

[Ans. (a) x; = —11, x, = 56, x3 =9.]
Let A be a square matrix. Show that if A has no inverse, then neither
do any of its positive powers A¥. Show that if 4 has an inverse, then
the inverse of A2 is (4~1)2. What is the inverse of 43?7 Of A™?
The formula (471)"! = A states that if A has an inverse 471, then 471
itself has an inverse and this inverse is 4. Prove both parts of this
statement.
Expand the formula (4B)"! = B~'47!into a two-part statement anal-
ogous to the one in Exercise 7. Then prove both parts of your state-
ment.
Give a criterion for deciding whether the 2 X 2 matrix (‘; Z) has
an inverse. [Ans. ad # bc.)
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10.

11.

12.

13.

14.

15.

16.

a b

-1
Give a formula for ( d) , When it exists.
c

If (a 3) has an inverse and has integer components, what condition
c

a b

must it fulfill in order that (C J

-1
) have integer components?

Let A be the matrix (g 3)

(a) Use Exercise 10 to find AL

(b) Use the result of (a) to solve the equations Ax = b and A%x = c,

—1 1
wherex:(xl),bz( ), andc:( )
Xy 0 1

(a) Show that (4B)"! # A~1B~!for the matrices 4 = (

a=(75 1)

(b) Find (4B)~! in two ways. [Hint: Use Exercises 10 and 8.]
Solve the following problems by first inverting the matrix involved.
(a) An automobile factory produces two models. The first requires
1 man-hour to paint and § man-hour to polish; the second requires
I man-hour for each process. During each hour that the assembly
line is operating, there are 100 man-hours available for painting
and 80 man-hours for polishing. How many of each model can
be produced each hour if all the man-hours available are to be
utilized?
(b) Suppose each car of the first type requires 10 widgets and 14 shims,
and each car of the second type requires 7 widgets and 10 shims.
The factory can obtain 800 widgets and 1130 shims each hour.
How many cars of each model can it produce while utilizing all
the parts available? [Ans. 45, 50.]
Solve the following problem by first inverting the matrix. (Assume
ad # bc.) 1f a grinding machine is supplied x pounds of meat and
» pounds of scraps (meat scraps and fat) per day, then it will produce
ax + by pounds of ground meat and cx + dy pounds of hamburger
per day. In other words, its production vector is

(¢ 90)
c d/\y/)
What inputs are necessary in order to get 25 pounds of ground meat

and 70 pounds of hamburger? In order to get 20 pounds of ground
meat and 100 pounds of hamburger?

2 =5

] 3)and

A square matrix is lower-triangular if it has zeros on and above its
0 00

main diagonal. For instance, Q =|—1 0 0] is lower-triangular.
4 30
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(a) Compute Q2
() Compute Q3.
(¢) Show that Q¥ = 0 for k > 3.
17. Let Q be as in Exercise 16.
(@ Showthat { — Q)+ Q0+ Q) =1—-Q*=1
(b) Show that, because of (a), I + Q + Q? = — Q).
(¢) Use (b) to compute (I — Q).
(d) Letw = (wy, wy, ws),d = (—1,5,3). Use (c) to solve the equation
w=wQ + d.
18. (a) Show that the sum of any two lower-triangular matrices is lower-
triangular.
(b) Show that the product of any two lower-triangular matrices is
lower-triangular.
19. Let Q be an n X n lower-triangular matrix.
(a) Show that Q¥ =0 for & > n.
() Showthat  — Q) +Q+ --- + Q" H=1—-Q"=1
(¢c) Showthat(/ —Q)'=71+Q+ ---+ Q"L
(d) Show that all entries above the main diagonal of (/ — Q)™!
are 0.
(e) Show that if Q has nonnegative integer entries, then so does
-0y
20. Find (I — Q)7! for each of the following:

(a) (0 0)1

0 0
00 0
® (300
~12 0
0 00 0
S 000
©@ 1 a4 —1 0 o
2 130
0 00 00
3 00 00
@ [ o -1 0 o0 o0}
I 54 00
2 12 =30

7 APPLICATIONS OF MATRIX THEORY
TO MARKOV CHAINS

In this section we shall show applications of matrix theory to Markov chains.
For simplicity we shall confine our discussion to three-state Markov chains,
but a similar procedure will work for any other Markov chain.

In Section 12 of Chapter 3, we noted that to each Markov chain there
was a matrix of transition probabilities. For example, if there are three



204 Vectors and Matrices Chapter 4

states, a,, d,, and as, then

a, a, a,
ay P11 P12z Pis

P =ay{psy pao Pos
az\Pz1 Pz Pss

Is the transition matrix for the chain. Recall that the row sums of P are
all equal to 1. Such a matrix is called a transition matrix.

Definition A transition matrix is a square matrix with nonnegative entries
such that the sum of the entries in each row is 1.

In order to obtain a Markov chain we must specify how the process starts.
Suppose that the initial state is chosen by a chance device that selects state
a; with probability pi®. We can represent these initial probabilities by means
of the vector p@ = (p?, p¥, pi). As in Exercise 17 of Section 4, we can
construct a tree measure for as many steps of the process as we wish to
consider. Let p{ be the probability that the process will be in state g; after
n steps. Let the vector of these probabilities be p™ = (p\®, pi, pg‘))

Definition A row vector p is called a probability vector if it has nonnegative
components whose sum is 1.

Obviously the vectors p'© and p™ are probability vectors. Also each row
of a transition matrix is a probability vector.

By means of the tree measure it can be shown that these probabilities
satisfy the following equations:

PP = ppy, p‘" 1’p +p )Psp

P = pir oy, +p P2 + P§ Vpss,
P8 =Py P14 PE P2y + PYTVpas.

It is not hard to give intuitive meanings to these equations. The first one,
for example, expresses the fact that the probability of being in state a, after
n steps is the sum of the probabilities of being at each of the three possible
states after n — 1 steps and then moving to state a; on the nth step. The
interpretation of the other equations is similar.

If we recall the definition of the product of a vector times a matrix, we
can write the equations above as

p(n) — p(n—l)P_
If we substitute values of n, we get the equations: p'¥ = pOp; p@ = pWp =
pOPZ p® = p@p = plOP3; and so on. In general, it is evident that

p(n) — p(O)Pn.

Thus we see that, if we multiply the vector p'@ of initial probabilities by
the nth power of the transition matrix P, we obtain the vector p™, whose
components give the probabilities of being in each of the states after n steps.
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In particular, let us choose p'® = (1,0, 0), which is equivalent to letting
the process start in state a,. From the equation above we see that then p®™
is the first row of the matrix P*. Thus the elements of the first row of the
matrix P" give us the probabilities that after n steps the process will be in
a given one of the states, under the assumption that it started in state a,.
In the same way, if we choose p@ = (0, 1, 0), we see that the second row
of P" gives the probabilities that the process will be in one of the various
states after n steps, given that it started in state a,. Similarly the third row
gives these probabilities, assuming that the process started in state a,.

In Section 12 of Chapter 3, we considered special Markov chains that
started in given fixed states. There we arrived at a matrix P whose ith
row gave the probabilities of the process ending in the various states, given
that it started at state @;. By comparing the work that we did there with
what we have just done, we see that the matrix P is merely the nth power
of P, that is, P = P". (Compare Exercise 17 of Section 4.) Matrix multi-
plication thus gives a convenient way of computing the desired probabilities.

Definition The probability vector w is a fixed point of the matrix P, if
w = wpP.

EXAMPLE 1

EXAMPLE 1
(continued)

Consider the transition matrix
33

P = (1 1

2

If w = (.6, .4), then we see that

)_(.667 .333)
~\500 .500/

1

i) = (6,.4) = w,

2

wP = (6, .4)(

Bob—= ol

so that w is the fixed point of the matrix P.

If we had happened to choose the vector w as our initial probability vector
P, we would have had p™ = p@P" = wpPr = w = p® In this case the
probability of being at any particular state is the same at all steps of the
process. Such a process is in equilibrium.

As seen above, in the study of Markov chains we are interested in the
powers of the matrix P. To see what happens to these powers, let us further
consider the example.

Suppose that we compute powers of the matrix P in the example above.
We have

Pe( ) (0B oo

It looks as if the matrix P is approaching the matrix

6 4
w— (0 4).
(5 &)
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and, in fact, it can be shown that this is the case. (When we say that P"
approaches W we mean that each entry in the matrix P* gets close to the
corresponding entry in W.) Note that each row of W is the fixed point w
of the matrix P.

Definition A transition matrix is said to be regular if some power of the
matrix has only positive components.

Thus the matrix in the example is regular, since every entry in it is positive,
so that the first power of the matrix has all positive entries. Other examples
occur in the exercises.

Theorem If P is a regular transition matrix, then

1. the powers P" approach a matrix W;
ii. each row of W is the same probability vector w;
ui. the components of w are positive.

We omit the proof of this theorem;* however, we can prove the next
theorem.

Theorem If P is a regular transition matrix, and W and w are given by
the previous theorem, then

a. 1f p is any probability vector, pP" approaches w;
b. the vector w is the unique fixed-point probability vector of P.

Proof  First let us consider the vector pW. The first column of W has a
w, in each row. Hence in the first component of pW each component of
p is multiplied by w;, and therefore we have w, times the sum of the
components of p, which is w;. Doing the same for the other components,
we note that pW is simply w. But pP" approaches p I¥; hence it approaches
w. Thusif any probability vector is multiplied repeatedly by P, it approaches
the fixed point w. This proves part (a).

Since the powers of P approach W, P"*1 = P"P approaches W, but it also
approaches WP; hence WP = W. Any one row of this matrix equation states
that wP = w; hence w is a fixed point (and by the previous theorem a
probability vector). We must still show that it is unique. Let u be any
probability-vector fixed point of P. By part a of the theorem we know that
uP" approaches w. But since u is a fixed point, uP* = u. Hence u remains
fixed but “approaches” w. This is possible only if # = w. Hence w is the
only probability-vector fixed point. This completes the proof of part b.

*For an elementary proof see John G. Kemeny and J. Laurie Snell, Finite Markov Chains,
Princeton, N.J., Van Nostrand, 1960.
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The following is an important consequence of the above theorem. If we
take as p the vector p'© of initial probabilities, then the vector pP* = p™
gives the probabilities after n steps, and this vector approaches w. Therefore
no matter what the initial probabilities are, if P is regular, then after a large
number of steps the probability that the process is in state a; will be very
nearly w;.

We noted for an independent trials process that if p is the probability
of a given outcome a, then this may be given an alternate interpretation
by means of the law of large numbers: in a long series of experiments the
fraction of outcomes in which a occurs is approximately p, and the approxi-
mation gets better and better as the number of experiments increases. For
a regular Markov chain the components of the vector w play the analogous
role. That is, the fraction of times that the chain is in state a; approaches
w;, no matter how one starts.

Let us take p'® = (.1,.9) and see how p'” changes. Using P as in the example
above, we have that p'V = (5167, 4833), p® = (.5861, 4139), and p® =
(.5977, .4023). Recalling that w = (.6, 4), we see that these vectors do
approach w.

As an example let us derive the formulas for the fixed point of a 2 X 2
transition matrix with positive components. Such a matrix is of the form

Il —a a
P =
( b 11— b)’
where 0 < a <1 and 0 < b < 1. Since P is regular, it has a unique proba-

bility-vector fixed point w = (w,, w,). Its components must satisfy the
equations

wi(l —a) + wydb = wy,
wia + wo(l — b) = w,.

Each of these equations reduces to the single equation w,a = wyb. This
single equation has an infinite number of solutions. However, since w is
a probability vector, we must also have w; + w, = 1, and the new equation
gives the point [b/(a + b), a/(a + b)] as the unique fixed-point probability
vector of P.

Suppose that the President of the United States tells person A his intention
either to run or not to run in the next election. Then A relays the news
to B, who in turn relays the message to C, and so on, always to some new
person. Assume that there is a probability p > 0 that any one person, when
he gets the message, will reverse it before passing it on to the next person.
What is the probability that the nth man to hear the message will be told
that the President will run? We can consider this as a two-state Markov
chain, with states indicated by “yes” and “no.” The process is in state “yes”
at time n if the nth person to receive the message was told that the President
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EXAMPLE 4

would run. It is in state “no” if he was told that the President would not
run. The matrix P of transition probabilities is then

yes no
yes (1 -p P
no\ p 1 — p)'
Then the matrix P* gives the probabilities that the nth man is given a certain
answer, assuming that the President said “yes” (first row) or assuming that
the President said “no” (second row). We know that these rows approach
w. From the formulas of the last example, we find that w = (3,1). Hence
the probabilities for the nth man’s being told “yes” or “no” approach 3
independently of the initial decision of the President. For a large number
of people, we can expect that approximately one-half will be told that the
President will run and the other half that he will not, independently of the
actual decision of the President.

Suppose now that the probability a that a person will change the news
from “yes” to “no” when transmitting it to the next person is different from
the probability b that he will change it from “no” to “yes.” Then the matrix
of transition probabilities becomes

yes no
yes (1 —a a )
no b 1 -5/

In this case w = [b/(a + b), a/(a + b)]. Thus there is a probability of
approximately b/(a + b) that the nth person will be told that the President
will run. Assuming that 7 is large, this probability is independent of the
actual decision of the president. For n large we can expect, in this case,
that a proportion approximately equal to b/(a + b) will have been told that
the President will run, and a proportion a/(a + b) will have been told that
he will not run. The important thing to note is that, from the assumptions
we have made, it follows that it is not the President but the people themselves
who determine the probability that a person will be told “yes” or “no,” and

the proportion of people in the long run that are given one of these predic-
tions.

For this example, we continue the study of Example 2 in Chapter 3, Section
12. The first approximation treated in that example leads to a two-state
Markov chain, and the results are similar to those obtained in Example 1
above. The second approximation led to a four-state Markov chain with
transition probabilities given by the matrix

RR DR RD DD

RR /1 —a 0 a 0
DR b 0 1 -5

RD 0 I —¢ 0 ¢
DD 0 d 0 1 —-4d
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If a, b, c, and d are all different from O or 1, then the square of the matrix
has no zeros, and hence the matrix is regular. The fixed probability vector
is found in the usual way (see Exercise 18) and is

( bd ad ad ca )
bd + 2ad + ca’ bd + 2ad + ca’ bd + 2ad + ca’ bd + 2ad + cal’

Note that the probability of being in state RD after a large number of
steps is equal to the probability of being in state DR. This shows that in
equilibrium a change from R to D must have the same probability as a
change from D to R.

From the fixed vector we can find the probability of being in state R in
the far future. This is found by adding the probability of being in state
RR and DR, giving

bd + ad
bd + 2ad + ca’

Notice that, to find the probability of being in state R on the election
preceding some election far in the future, we should add the probabilities
of being in states RR and RD. That we get the same result corresponds
to the fact that predictions far in the future are essentially independent of
the particular period being predicted. In other words, the process is acting
as 1f it were in equilibrium.

1. Which of the following matrices are regular?

@ (¢ 2)

2 2

(b) (2 ;) [Ans. Regular.]
i 4

o ()
303
1 4

(d) (D 3)- [Ans. Regular.]
1 0
.

© (0 1)'
0 1

® (1 0). [Ans. Not regular.]
K

® [0 3 3
1011
303 3
Lo

) [0 1 O [4ns. Not regular.]
0 3 ¢
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2. Show that the 2 X 2 matrix

l —a a
P =
(5707
is the regular transition matrix if and only if either

. 0<a<l1l and 0<Hb<LI1; or
. 0<a<l and 0<H <1

3. Let P be a transition matrix in which all the entries that are not zero
have been replaced by x’s. Devise a method of raising such a matrix
to powers in order to check for regularity. Illustrate your method by
showing that

010
P=|0 0O 1
} 40

is regular.
4. Use the method developed in Exercise 3 to test the following matrix
for regularity:

~

‘,

—
-

~
il

OO O —O

ke O ok © O

O O O8

e Qo © ©

O -~ O O

5. (a) Give a probability theory interpretation to the condition of regu-
larity.

(b) Consider a Markov chain such that it is possible to go from any
state g; to any state a; and such that p, is not O for at least one
state a,. Prove that the chain is regular. [Hint: Consider the times
that it is possible to go from a; to g; via g;.]

6. Find the fixed point for the matrix in Exercise 2 for each of the cases
listed there. [Hint: Most of the cases were covered in the text above.]
7. Find the fixed point w for each of the following regular matrices:

1 2

@ |(: i). [Ans. 3, 4]
6 6
37 .63

®) 63 .37)'

ookt ool
~—

~_~
=8
~

[4ns. 3,4,3)]

~
()
e’
——— e — — —
O ok bop= 00k 00kw
W= LoD W
we O ks
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10.

11.

12,

13.

14.

Vectors and Matrices 211

o ()

Let p° = (,4) and compute p'?, p@, and p'? for the matrices in Exer-
cises 7(a), (b), and (c). Do they approach the fixed points of these
matrices?

Consider the two-state Markov chain with transition matrix

Oh—= =t

4 dq
_ a0 1 )
F= a2< 1 0/
What is the probability that after n steps the process is in state aj,
if it started in state a,? Does this probability become independent of
the initial position for large n? If not, the theorem of this section must
not apply. Why? Does the matrix have a unique fixed-point proba-

bility vector?
Compute the first five powers of the matrix
a3

F= (.3 vl )
From these, guess the fixed-point vector w. Check by computing what
W Is.
Prove that, if a regular 3 X 3 transition matrix has the property that
its column sums are 1, its fixed-point probability vector is (3, 3, 4). State
a similar result for n X n transition matrices having column sums equal
to 1.
The Land of Oz is blessed by many things, but not good weather.
They never have two nice days in a row. If they have a nice day they
are just as likely to have snow as rain the next day. If they have snow
(or rain), they have an even chance of having the same the next day.
If there is a change from snow or rain, only half of the time is this
a change to a nice day. Set up a three-state Markov chain to describe
this situation. Find the long-range probability for rain, for snow, and
for a nice day. What fraction of the days does it rain in the Land
of Oz? [Ans. The probabilities are: nice, &; rain, £; snow, £]
A professor tries not to be late for class too often. If he is late one
day, he 1s 95 percent sure to be on time next time. If he is on time,
then the next day there is a 25 percent chance of his being late. In

the long run, how often is he late for class?
Consider the three-state Markov chain with transition matrix

1 1 1
4 2 4
p=[z 2 0]
100

(a) Show that the matrix has a unique fixed probability vector.
[Ans. 3,4, 3).]
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15.

16.

17.

18.

19.

20.

(b) Approximately what is the entry in the third column of the first
row of P100?

() What is the interpretation of the entry estimated in (b)?
A carnival man moves a pea among three shells, A, B, and C. When-
ever the pea is under A, he moves it with equal probability to A or
B. When it is under B, he is sure to move it to C. When it is under
C, he is sure to put it next time under C or B, but is twice as likely
to put it under C as B.
Set up a Markov chain taking as states the letters of the shells under
which the pea appears after a move. Give the matrix of transition
probabilities. Assume that the pea is initially under shell A. Which
of the following statements are logically true?
(a) After the first move, the pea is under A or B.
(b) After the second move, the pea is under shell B or C.
(c) If the pea appears under B, it will eventually appear under A
again if the process goes on long enough.
(d) If the pea appears under C, it will not appear under A again.

[Ans. (a) and (d) are logically true.]
In Exercise 15, assume that when the pea is under C, the carnival man
is sure to put it next time under C or A, but twice as likely to put
it under C as A. If you arrive on the scene after he has been playing
for a long time, and bet even money that next time it will turn up
under a certain shell, which shell should you bet on,
(a) Given that you have not seen the previous play?
(b) Given that the last time the pea was under A?
Which of the above bets would be fair?
Let P be the matrix

1 0
P = (l 1)'
2 32

Compute the unique probability-vector fixed point of P, and use your
result to prove that P is not regular.

Show that the vector given in Example 4 is the fixed vector of the
transition matrix.

Show that the matrix

1 00
p={} 0 1
0 0 1

has more than one probability-vector fixed point. Find the matrix that
P" approaches, and show that it is not a matrix all of whose rows are
the same.

A businessman goes to a convention in Chicago once a year. While
there, he stays at one of four hotels. Two of them, hotels 1 and 2,
are expensive. The other two are very expensive. Assuming that he
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goes to a given hotel one year, the hotel he goes to the next year is
determined by the following matrix of probabilities:

1 2 3 4
1/ 0 3 0
202 0 2 0
3lo 1 0 3
4\0 1 0 %

(@) If he stays at hotel 1 one year, what is the probability that he
stays in very expensive hotels for at least two of the next three
conventions?

(b) Find the long-run probabilities for staying in each of the hotels.

For Exercise 20, compute the following:

(a) Given that in 1970 and 1973 he stayed in hotel 1, what is the
probability that he stayed in a very expensive hotel during either
1971 or 19727

(b) If in 1970 he stayed in hotel 1 and in 1972 he was in a very
expensive hotel, what is the probability that in 1973 he stayed
in an expensive hotel? [Ans. 15.]

A professor has three pet questions, one of which occurs on every test

he gives. The students know his habits well. He never uses the same

question twice in a row. If he used question 1 last time, he tosses a

coin, and uses question 2 if a head comes up. If he used question 2,

he tosses two coins and switches to question 3 if at least one comes

up heads. If he used question 3, he tosses three coins and switches
to question 1 if at least one comes up heads. In the long run, which
question does he use most often and how frequently is it used?

In some cases it makes sense to form a new Markov chain from an

old one by condensing two or more states into one.

(a) Show that this can be done for the Land of Oz example (Exercise
12), using as the two new states nice and bad (rain or snow). Set
up the matrix of transition probabilities and compute the fixed
vector. [Partial ans. (4, %).]

(b) Compare the fixed vector obtained in part (a) to that obtained
in Exercise 12.

(c) Would it make sense to condense states in the hotel example
(Exercise 20), using as new states expensive (1 or 2) and very
expensive (3 or 4)? Explain your answer. [Partial ans. No.]

A certain company decides each year to add a new workers to its

payroll, to remove b workers from its payroll, or to leave its workforce

unchanged. There is probability § that the action taken in the given
year will be the same as the action taken in the previous year. The
president of the company has ruled that they should never fire workers
the year after they added some, and that they should never hire workers
the year after they fired some. Moreover, if no workers were added
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or fired in the previous year, the company is twice as likely to add

workers as to fire them.

(a) Set up the problem as a Markov chain with three states.

(b) Show that it is regular.

(¢) Find the long-run probability of each type of action.

(d) For what values of a and b will the company tend to increase
in size? To decrease? To stay the same?

[Ans. (d)a > b/2; a < b/2; a=b/2.]

8 ABSORBING MARKOV CHAINS

In this section we shall consider a kind of Markov chain quite different from
regular chains.

Definition A state in a Markov chain is an absorbing state if it is impossible
to leave it. A Markov chain is absorbing if (1) it has at least one absorbing
state, and (2) from every state it is possible to go to an absorbing state (not
necessarily in one step).

EXAMPLE 1

A particle moves on a line; each time it moves one unit to the right with
probability 4, or one unit to the left. We introduce barriers so that if it ever
reaches one of these barriers it stays there. As a simple example, let the
states be 0,1,2,3,4. States 0 and 4 are absorbing states. The transition
matrix is then

01 23 4
0/l 0 0 0 0
I[ 0100

P=2/0 3 0 1 o}
310 0 4 0 1
4\0 0 0 0 1

The states 1,2, 3 are all nonabsorbing states, and from any of these it is
possible to reach the absorbing states 0 and 4. Hence the chain is an
absorbing chain. Such a process is usually called a random walk.

When a process reaches an absorbing state we shall say that it is absorbed.

Theorem In an absorbing Markov chain the probability that the process
will be absorbed is 1.

We shall indicate only the basic idea of the proof of the theorem. From
each nonabsorbing state g; it is possible to reach an absorbing state. Let
n; be the minimum number of steps required to reach an absorbing state,
starting from state a;. Let p; be the probability that, starting from state a;,
the process will not reach an absorbing state in n; steps. Then p; <'1. Let
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n be the largest of the ; and let p be the largest of the p;. The probability
of not being absorbed in n steps is less than p, in 2n steps is less than p?,
and so on. Since p < 1, these probabilities tend to zero.

For an absorbing Markov chain we consider three interesting questions:
(a) What is the probability that the process will end up in a given absorbing
state? (b) On the average, how long will it take for the process to be
absorbed? (c) On the average, how many times will the process be in each
nonabsorbing state? The answer to all these questions depends, in general,
on the state from which the process starts.

Consider then an arbitrary absorbing Markov chain. Let us renumber
the states so that the absorbing states come first. If there are r absorbing
states and s nonabsorbing states, the transition matrix will have the following
canonical (or standard) form.

r states § states

I PZr( I | o )
s R ‘ 0 '

Here [ is an r-by-r identity matrix, O is an r-by-s zero matrix, R is an s-by-r
matrix, and Q is an s-by-s matrix. The first r states are absorbing and the
last s states are nonabsorbing.

In Section 7 we saw that the entries of the matrix P" gave the probabilities
of being in the various states starting from the various states. It is easy
to show that P” is of the form

@) r=(!5)

where the asterisk stands for the s-by-r matrix in the lower left-hand corner
of P", which we do not compute here. The form of P shows that the entries
of Q" give the probabilities for being in each of the nonabsorbing states
after n steps for each possible nonabsorbing starting state. (After zero steps
the process must be in the same nonabsorbing state in which it started.
Hence Q° = I.) By our first theorem, the probability of being in the non-
absorbing states after n steps approaches zero. Thus every entry of Q" must
approach zero as n approaches infinity; that is, Q" — 0.
Consider then the infinite series

I+Q0+Q°+0Q3+....

Suppose that Q were a nonnegative number x instead of a nonnegative
matrix. To correspond to the fact that Q" — O we take x to be less than
1. Then

l+x4+x24+...=(1—-x)L

It can be proved that the matrix series behaves in exactly the same way.
That is,

I+0+0°+...=(I-0)L
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The matrix (I — Q)~! will be called the fundamental matrix for the given
absorbing chain. It has the following important interpretation:

Let n;; be the mean number of times that the chain is in state g if it
starts in state @;, for nonabsorbing states a; and a;. Let N be the matrix
whose components are n;;. We shall show that N = (I — O) 1. If we take
into account the contribution of the original state (which is 1 if i =
and 0 otherwise), we may write the equation

ij — Gij i,r+1"r41,5 i,r+2"r+2,j v t,r+8"'r+s,i/0
ny = dy; + (i r1? + Pi ot + + Pirrslris i)

where d;; is 1 if i = j and O otherwise. (Note that the sum in parentheses
is merely the sum of the products p;,n; for k running over the nonabsorbing
states.) This equation may be written in matrix form:

N =1+ QN

Then (/ — Q)N = I, and hence N = (/ — Q)7%, as was to be shown. Thus
we have found a probabilistic interpretation for our fundamental matrix;
its i, j entry is the mean number of times that the chain is in state g; if
it starts at a;. The fact that N =1 + Q + Q% + ... also has a probabilistic
interpretation. Since the i, j entry of Q" is the probability of being in g
on the nth step if we start at a;, we have shown that the mean of the number
of times in state a; may be written as the sum of the probabilities of being
there on particular steps. Thus we have answered question (c) as follows:

Theorem Let N = (I — Q)7 ! be the fundamental matrix for an absorbing
chain. Then the entries of N give the mean number of times in each
nonabsorbing state for each possible nonabsorbing starting state.

EXAMPLE 1
(continued)

In Example 1 the transition matrix in canonical form is

0 4]1 2 3
0o/1 0]0 0 O
440 110 0 O
111 0{0 } 0]
210 011 0 4
3\0 {10 1 O
From this we see that the matrix Q is
0 4 0
0=(1 0 }
0 3 0
and
1 -3 0
1-0=|-4 1 -
0 -1 1
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Computing (I — Q)71, we find

1 2 3
13 1 3
N=(-0yt=2|1 2 1}.
3\ 1 3

Thus, starting at state 2, the mean number of times in state 1 before
absorption is 1, in state 2 it is 2, and in state 3 it 1s 1.

We next answer question (b). If we add all the entries in a row, we shall
have the mean number of times in any of the nonabsorbing states for a
given starting state—that is, the mean time required before being absorbed.
This may be described as follows:

Theorem Consider an absorbing Markov chain with s nonabsorbing states.
Let ¢ be an s-component column vector with all entries 1. Then the vector
¢ = Nc has as components the mean number of steps before being absorbed
for each possible nonabsorbing starting state.

EXAMPLE 1
(continued)

For Example 1 we have

1 2 3
L3 1 )\
r=Ne=2[1 2 1|[1
3\ 1 g\
13
:24.
313

Thus the mean number of steps to absorption starting at state 1 is 3,
starting at state 2 it is 4, and starting at state 3 it is again 3. Since the process
necessarily moves to 1 or 3 from 2, it is clear that it requires one more step
starting from 2 than from 1 or 3.

We now consider question (a). That is, what is the probability that an
absorbing chain will end up in a particular absorbing state? It is clear that
this probability will depend upon the starting state and be interesting only
for the case of a nonabsorbing starting state. We write as usual our matrix

in the canonical form
I 0]
P =
R o /)

Theorem Let b;; be the probability that an absorbing chain will be absorbed

in state g; if it starts in the nonabsorbing state ;. Let B be the matrix with
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entries b;;. Then

B = NR,

where N is the fundamental matrix and R is as in the canonical form.

EXAMPLE 1
(continued)

Proof Let a; be a nonabsorbing state and a; be an absorbing state. If we
compute b;; in terms of the possibilities on the outcome of the first step,
we have the equation

bi; = pi; + Zpikbkj’
k

where the summation is carried out over all nonabsorbing states ;. Writing
this in matrix form gives

B=R+ OB
(I— Q)B=R
‘and hence B=({—- Q)R = NR.

In the random-walk example we found that

31 3
2 2
N=|1 1
11 4
2 2

From the canonical form we find that

10

R=|0 0}

0 3

Hence

313\ 0
B=NR=j}1 2 1}j0 O
3 1 3/\0 4

Vi

=2{% 3|

311 2

Thus, for instance, starting from a,, there is probability § of absorption
in a, and } for absorption in a,.

Let us summarize our results. We have shown that the answers to ques-
tions (a), (b), and (c) can all be given in terms of the fundamental matrix
N = (I — Q)L The matrix N itself gives us the mean number of times in
each state before absorption depending upon the starting state. The column
vector ¢ = Nc gives us the mean number of steps before absorption, de-
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pending upon the starting state. The matrix B = NR gives us the probability
of absorption in each of the absorbing states, depending upon the starting
state.

EXERCISES
1. Which of the following transition matrices are from absorbing chains?

1 2
{3 3
(a) P_<O 1).
50 )
) P=|0 1 0}
oy
1 0 0 0O
1 0 0 00O
¢ P=|0 0 & 3 0O} [Ans. Absorbing.]
0 0 0 0 1
0 2 0 4 0
1 0 0 O
o & 1 0
@ P=[;, 5 3 4]
10 10 10 10
0O 0 0 1
10 0 1%
01 0 0
© P=lg o0 1 0ol
104}
2. Consider the three-state transition matrix
1 0 O
P=\a JZ- b ).
c 0 d

For what choices of @, b, ¢, and d do we not obtain an absorbing chain?

3. In the random-walk example (Example 1) of the present section,
assume that the probability of a step to the right is § and a step to
the left is 3 Find N, ¢, and B. Compare these with the results for
probability 4 for a step to the right and 4 to the left.

4. In the hotel example of Exercise 20, Section 7, let us assume that the
man is so impressed with the service at hotel 2 that, once he goes there,
he refuses to go to any of the other hotels again. This gives

1 2 3 4
1 /1030
2 [0 100
3lo 104
4\0 1 0 2
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(a) Find the fundamental matrix N, and also 7 and B. What is the
interpretation of these quantities?
(b) Given that in 1970 and 1973 he stayed in hotel 1, what is the

probability that he stayed in a very expensive hotel during either
1971 or 19727

5. A rat is put into the maze of the figure below. Each time period, it

6.

chooses at random one of the doors in the compartment it is in and
moves into another compartment.

-t
—

A —
PN

| ~ 1

(a) Set up the process as a Markov chain (with states being the

compartments) and identify it. [4ns. Regular.]
() In the long run, what fraction of his time will the rat spend in
compartment 2? [Ans. 2]

(c) What is the relation between the number of entrances to a given
compartment and the fraction of the time the rat will spend in
that compartment?

(d) Make compartment 4 into an absorbing state by assuming the
rat will stay in it once it reaches it. Set up the new process, and
identify it as a kind of Markov chain. [Ans. Absorbing.]

(e) In part (d), if the rat starts in compartment 2, how many steps
will it take him, on the average, to reach compartment 4?

An analysis of a recent hockey game between Dartmouth and Princeton

showed the following facts: If the puck was in the center (C) the

probabilities that it next entered Princeton territory (£) or Dartmouth

territory (D) were .4 and .6, respectively. From D it went back to C

with probability .95 or into the Dartmouth goal (D) with probability

.05 (Princeton scores one point). From P it next went to C with

probability .9 and to Princeton’s goal (P) with probability .1 (Dart-

mouth scores one point). Assuming that the puck begins in C after
each point, find the transition matrix of this five-state Markov chain.

Calculate the probability that Dartmouth will score. [Ans. 4.]

The following is an alternative method of finding the probability of

absorption in a particular state, say a;. Find the column vector d such

that the jth component of d is 1, all other components corresponding
to absorbing states are 0, and Pd = d. There is only one such vector.

Component d; is the probability of absorption in g; if the process starts
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in a;. Use this method to find the probability of absorption in state
0 in the random-walk example given in this section.

The following is an alternative method for finding the mean number
of steps to absorption. Let ¢; be the mean number of steps to absorption
starting at state g;. This must be the same as taking one more step
and then adding p;;t; for every nonabsorbing state a;.

(a) Give reasons for the claim above that

n=1+ 2 pity,
i

where the summation is over the nonabsorbing states.
(b) Solve for ¢ for the random-walk example.
(c) Verify that the solution agrees with that found in the text.
A man is in jail and needs $400 for bail. Once he is out, he can recover
his million-dollar loot. In jail he can make a sequence of bets in which,
if he bets X dollars, he wins X dollars with probability  and loses X
dollars with probability 4. He can bet any amount he wishes as long
as he can pay if he loses. He has $100. He decides to try the bold
strategy of betting as much as he has each time or at least enough
to get his $400—that is, to bet $100 if he has $100, $200 if he has $200,
and $100 if he has $300. To assess his chances of getting out now,
he sets up the transition matrix:

0 400 100 200 300
0 I 0 0 0 0
p_d00 [0 1 0 0 0 _( 1 0)
00| 2 0 0 1 o |V rRIQ)
200 \ ¢ 4 0 0 0
300 \0 3 0 2 0

(a) Find the matrix N = (I — Q)L
(b) Find the expected number of bets that he will make under this

bold strategy. [4ns. 4]
(c) Find the probability that he will get his bail money under this
strategy.

(d) Repeat parts (a), (b), and (c) assuming that he uses a more timid
strategy of betting $100 each time. Which strategy provides a
longer expected game? Which strategy gives him the better chance
of recovering his loot?

A number is chosen at random from the integers 1,2,3,4,5. If x is

chosen, then another number is chosen from the set of integers less

than or equal to x. This process is continued until the number 1 is
chosen. Form a Markov chain by taking as states the largest number
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11.

12.

13.

14.

15.

that can be chosen. Show that

23 45
2{1 0 0 0
N=3[1 3 0 0\+1,
4lt 1 1 0
S\ % %

where I is the 4 X 4 identity matrix. What is the mean number of
draws? [Ans. 31
Using the result of Exercise 10, make a conjecture for the form of the
fundamental matrix if we start with integers from 1 to n. What would
the mean number of draws be if we started with numbers from 1 to
10?
Peter and Paul are matching pennies, and each player flips his (fair)
coin before revealing it. They initially have four pennies between them
and the game ends whenever one of them has all the pennies. Let
the states be labeled with the number of pennies that Peter has.
(a) Write the transition matrix.
(b) What kind of a Markov chain is it?
(c¢) If Peter initially has two pennies, what is the probability that he
will win the game?
A certain college which is trying to pass several liberal measures is
plagued by the problem of conservative alumni. It is determined that
if an alumnus votes for a liberal pol'\cy, he will with probability 2 vote
in favor of the next policy and will with probability § turn conservative.
Once he turns conservative he will continue to vote against all liberal
policies. Assume there are 20,000 alumni, 4000 of whom voted con-
servatively before the college starts trying to pass these measures. If
all the alumni vote and if 12,000 opposing votes are needed to defeat
a policy which the college 1s trying to pass, how many of its new liberal
policies can the college expect to pass?
Three tanks fight a three-way duel. Tank A has probability § of
destroying the tank it fires at. Tank B has probability 4 of destroying
its target tank, and tank C has probability } of destroying its target
tank. The tanks fire together and each tank fires at the strongest
opponent not yet destroyed. Form a Markov chain by taking as state
the tanks which survive any one round. Find N, ¢, B, and interpret
your results.
Consider the following model. A man buys a store. The profits of the
store vary from month to month. For simplicity we assume that he
earns either $5000 or $2000 a month (“high” or “low”). The man may
sell his store at any time; there is a 10 percent chance of his selling
during a high-profit month and a 40 percent chance during a low-profit
month. If he does not sell, with probability % the profits will be the
same the next month, and with probability 4 they will change.
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(a) Set up the transition matrix.

Sell {1 0 O
[Ans. High (& 2 &1
Low \3 1 3

(b) Compute N, Nc, and NR and interpret each.
(c) Letf= (;888) and compute the vector g = Nf.

[A _ (20,000) ]
-8 =\10,000/
(d) Show that the components of g have the following interpretation:

g is the expected amount that he will gain before selling, given
that he started in state i.
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