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INTRODUCTION

We often hear statements of the following kind: “It is likely to rain today,”
“I have a fair chance of passing this course,” “There is an even chance that
a coin will come up heads,” etc. In each case our statement refers to a
situation in which we are not certain of the outcome, but we express some
degree of confidence that our prediction will be verified. The theory of
probability provides a mathematical framework for such assertions.

Consider an experiment whose outcome is not known. Suppose that
someone makes an assertion p about the outcome of the experiment, and
we want to assign a probability to p. When statement p is considered in
isolation, we usually find no natural assignment of probabilities. Rather,
we look for a method of assigning probabilities to all conceivable statements
concerning the outcome of the experiment. At first this might seem to be
a hopeless task, since there is no end to the statements we can make about
the experiment. However, we are aided by a basic principle:

Fundamental Assumption Any two equivalent statements will be assigned
the same probability.

As long as there are a finite number of logical possibilities, there are only
a finite number of truth sets, and hence the process of assigning probabilities
is a finite one. We proceed in three steps: (1) we first determine U, the
possibility set, that is, the set of all logical possibilities; (2) to each subset
X of U we assign a number called the measure m(X); (3) to each statement
p we assign m(P), the measure of its truth set, as a probability. The proba-
bility of statement p is denoted by Pr [p].

The first step, that of determining the set of logical possibilities, is one
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EXAMPLE 1

EXAMPLE 1
(continued)

EXAMPLE 2

that we considered in the previous chapters. It is important to recall that
there is no unique method for analyzing logical possibilities. In a given
problem we may arrive at a very fine or a very rough analysis of possibilities,
causing ‘U to have many or few elements.

Having chosen ‘U, the next step is to assign a number to each subset X
of U, which will in turn be taken to be the probability of any statement
having truth set X. We do this in the following way.

Assignment of a Measure Assign a positive number (weight) to each element
of U, so that the sum of the weights assigned is 1. Then the measure of
a set is the sum of the weights of its elements. The measure of the set &
1s 0. -

An ordinary die is thrown. What is the probability that the number which
turns up is less than four? Here the possibility set is U = {1,2, 3, 4, 5, 6}.
The symmetry of the die suggests that each face should have the same
probability of turning up. To make this so, we assign weight ¢ to each of
the outcomes.

In applications of probability to scientific problems, the analysis of the
logical possibilities and the assignment of measures may depend upon
factual information and hence can best be done by the scientist making the
application.

Once the weights are assigned, to find the probability of a particular
statement we must find its truth set and find the sum of the weights assigned
to elements of the truth set. This problem, which might seem easy, can often
involve considerable mathematical difficulty. The development of tech-
niques to solve this kind of problem is the main task of probability theory.

For the case of throwing an ordinary die we have already assigned equal
weights to each outcome. Let us consider statements relative to
U ={1,2,3,4,5,6). The truth set of the statement “The number that turns
up is less than four” is {1,2,3}. Hence the probability of this statement
is § = 4, the sum of the weights of the elements in its truth set. Similarly,
the truth set of the statement “The number that turns up is odd or is less
than four” is {1,2, 3,5}. Hence the probability of this statement is §=12
which again is the sum of the weights assigned to elements in its truth set.

A man attends a race involving three horses A, B, and C. He feels that
A and B have the same chance of winning but that A (and hence also B)
is twice as likely to win as C is. What is the probability that A or C wins?
We take as U the set {A, B, C}. If we were to assign weight a to the outcome
C, then we would assign weight 24 to each of the outcomes A and B. Since
the sum of the weights must be 1, we have 24 +2a+a=1,ora= L
Hence we assign weights £ 2 1 to the outcomes A, B, and C, respectively.
The truth set of the statement “Horse A or C wins” is {A, C}. The sum
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of the weights of the elements of this set is 2 + 2 = 2. Hence the probability
that A or C wins is 2.

EXERCISES

b AN1Y

1. Briefly explain the difference between the terms “weight,” “measure,”
and “probability”.

2. LetU = {a, b,c}. Assign weights to the three elements so that no two
have the same weight, and find the measures of the eight subsets
of U.

3. Give the possibility set U for each of the following experiments:

(a) A number from 1 to 7 is chosen at random.

(b) A and B play a game of chess.

(¢) A student is asked for the month in which his birthday falls.
(d) A die with all faces having the number six is thrown.

4. For which of the cases in Exercise 3 might it be appropriate to assign
the same weight to each outcome?

5. Inanelection Jones has probability £ of winning, Smith has probability
4, and Black has probability 3.

(a) Construct U.

(b) Assign weights.

(¢) Find the measures of the eight subsets.

(d) Give a pair of nonequivalent predictions which have the same
probability.

6. A die is loaded in such a way that the probability of each face is
proportional to the number of dots on that face. (For instance, a six
is 3 times as probable as a two.) What is the probability of getting
an even number in one throw? [Ans. 4]

7. The owner of a certain hardware store places a sign stating “Back in
15 minutes” on his door at noon when he goes to lunch. Customers
find that when this sign is posted the probabilities are .4 that he is
back within 10 minutes, .45 that he returns in more than 10 but less
than 20 minutes, and .145 that he returns after 20 minutes or more
have elapsed.

(a) What is the probability that he returns within 20 minutes?
[Ans. .85.]
(b) What is the probability that he takes the rest of the day off and
does not return at all?
(¢) Isit possible to determine the probability that he returns within
5 minutes? [Ans. No.]

8. If a coin is thrown three times, list the eight possibilities for the out-
comes of the three successive throws. A typical outcome can be written
(HTH). Determine a probability measure by assigning an equal weight
to each outcome. Find the probabilities of the following statements:

r. The number of heads that occur is greater than the number of
tails. [Ans. 4.]
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s:  Exactly two heads occur. [Ans. 3]

1. The same side turns up on every throw. [4ns. L]

9. For the statements given in Exercise 8, which of the following equalities
are true?

(@ Pr[rVs]=Pr[r]+ Pris]
(b) Pr[sV ] =Pr[s]+ Pr[s.
(¢) Pr[rV ~r]=Pr[r]+ Pr[~r]
(d) Pr{rVi=Pr[r] + Pr[1]

10. Which of the following pairs of statements (see Exercise 8) are incon-
sistent? (Recall that two statements are inconsistent if their truth sets
have no element in common.)

(a) r,s. (b) s, 1.
() r,~r d ru [Ans. (b) and (c).]

11. State a property which is suggested by Exercises 9 and 10.

12. A number is chosen from the set {1,2,3}. If weights have been
assigned to the three outcomes such that Pr{a 1 or 2 is chosen] = $
and Pr[a 2 or 3 is chosen] = %, find the weights. [Ans. 3, £, 2]

13.  Repeat Exercise 12 for each of the following cases
(a) Pr[al or2is chosen] = £ and

Pra 2 or 3 is chosen] = 2.
(b) Pr(a 2 is chosen] = 4, and
Prla 1 or 2 is chosen] =4+ Pr[a 2 or 3 is chosen).

2 PROPERTIES OF A PROBABILITY MEASURE

Before studying special probability measures, we shall consider some general
properties of such measures which are useful in computations and in the
general understanding of probability theory.

Three basic properties of a probability measure are

(A) m(X)=01if and only if X = &.
(B) 0 <m(X) <1 for any set X.
(C) For two sets X and 7,

mX U Y)=mX)+ m(Y)

if and only if X and Y are disjoint, i.e., have no elements in common.

The proofs of properties (A) and (B) are left as an exercise (see Exer-
cise 16). We shall prove (C).

We observe first that m(X) + m(Y) is the sum of the weights of the
elements of X added to the sum of the weights of Y. If X and Y are disjoint,
then the weight of every element of X U Y is added once and only once,
and hence m(X) + m(Y) = m(X U Y),

Assume now that X and Y are not disjoint. Here the weight of every
element contained in both X and Y—i.e, in X N Y—is added twice in the
sum m(X) + m(Y). Thus this sum is greater than m(X U Y) by an amount
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mXNY). By (A) and (B), if XN Y is not the empty set, then
m(X N Y)>0. Hence in this case we have m(X) + m(Y) > m(X U Y).
Thus if X and Y are not disjoint, the equality in (C) does not hold. Our
proof shows that in general we have

(C') For any two sets X and ¥,
m(X U Y) = m(X) + m(Y) — m(X N Y).

Since the probabilities for statements are obtained directly from the
probability measure m(X), any property of m(X) can be translated into a
property about the probability of statements. For example, the above
properties become, when expressed in terms of statements,

(a) Pr{p] =0 if and only if p is logically false.
(b) 0 < Pr[p] <1 for any statement p.
(¢) The equality

PripV gl = Prp] + Pr[q]

holds if and only if p and ¢ are inconsistent.
(¢’) For any two statements p and g,

Pr(pV gl = Pr(p] + Prig]l — Pr(p N ql.

Another property of a probability measure which is often useful in com-
putation is

D) m(X)=1-m(X),
or, in the language of statements,
() Pr[~p]=1—Prlp]

The proofs of (D) and (d) are left as an exercise (see Exercise 17).

It is important to observe that our probability measure assigns probability
0 only to statements which are logically false, i.e., which are false for every
logical possibility. Hence, a prediction that such a statement will be true
is certain to be wrong. Similarly, a statement is assigned probability 1 if
and only if it is true in every case, i.e., logically true. Thus the prediction
that a statement of this type will be true is certain to be correct. (While
these properties of a probability measure seem quite natural, it is necessary,
when dealing with infinite possibility sets, to weaken them slightly. We
consider in this book only finite possibility sets.)

We shall now discuss the interpretation of probabilities that are not 0
or 1. We shall give only some intuitive ideas that are commonly held con-
cerning probabilities. While these ideas can be made mathematically
more precise, we offer them here only as a guide to intuitive thinking.
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Suppose that, relative to a given experiment, a statement has been as-
signed probability p. From this it is often inferred that if a sequence of
such experiments is performed under identical conditions, the fraction of
experiments which yield outcomes making the statement true would be
approximately p. The mathematical version of this is the “law of large
numbers” of probability theory (which will be treated in Section 9). In cases
where there is no natural way to assign a probability measure, the probability
of a statement is estimated experimentally. A sequence of experiments is
performed and the fraction of the experiments which make the statement
true is taken as the approximate probability for the statement.

A second and related interpretation of probabilities is concerned with
betting. Suppose that a certain statement has been assigned probability p.
We wish to offer a bet that the statement will in fact turn out to be true.
We agree to give r dollars if the statement does not turn out to be true,
provided that we receive s dollars if it does turn out to be true. What should
r and s be to make the bet fair? If it were true that in a large number
of such bets we would win s a fraction p of the times and lose r a fraction
I — p of the time, then our average winning per bet would be sp—r(l —p).
To make the bet fair we should make this average winning 0. This will
be the case if sp = r(1 — p) or if r/s = p/(1 — p). Notice that this deter-
mines only the ratio of r to s. Such a ratio, written r:s, is said to give odds
in favor of the statement.

Definition The odds in favor of an outcome are r:s (rto s), if the probability
of the outcome is p, and r/s = p/(1 = p). Any two numbers having the
required ratio may be used in place of r and 5. Thus 6:4 odds are the same
as 3:2 odds.

EXAMPLE  Assume that a probability of 2 has been assigned to a certain horse winning
a race. Then the odds for a fair bet would be 3:4. These odds could be
equally well written as 3:1, 6:2 or 12 14, etc. A fair bet would be to agree
to pay $3 if the horse loses and receive $1 if the horse wins. Another fair
bet would be to pay $6 if the horse loses and win $2 if the horse wins.

EXERCISES
1. Let p and g be statements such that Pr [PV ql=% Prip] =2 and
Pr[~g] =3 Find Prp /\ gq]. [Ans. .
Using the results of Exercise 1, find Pr [~p V ~q]
Let p and ¢ be statements such that Pr [pl=14 and Prg] = 3 Are
p and g consistent? [Ans. Yes.]
4. Show that, if Pr[p] + Pr [9] > 1, then p and g are consistent.
5. A student is worried about his grades in English and Art. He estimates
that the probability of passing English is .4, that he will pass at least
one course with probability .6, but that he has only probability .1 of

2.
3
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passing both courses. What is the probability that he will pass Art?
[Ans. 3.]
Given that a school has grades A, B, C, D, and F, and that a student
has probability .9 of passing a course, and .6 of getting a grade lower
than B, what is the probability that he will get a C or D?  [Ans. ]
State what odds a person should give on the following events:
(a) That a card chosen at random from a 52-card deck is on ace.
(b) That a four turns up when a dice is thrown.
(c) That a coin which is flipped twice comes up heads both times.
Prove that if the odds in favor of a given statement are r:s, then the
probability that the statement will be true is r/(r + ).
Using the result of Exercise 8 and the definition of “odds,” show that
if the odds are r:s that a statement is true, then the odds are s:r that
it is false.
A man is willing to give 3:1 odds that the Democratic candidate will
win the next presidential election. What must the probability of a
Democratic victory be to make this a fair bet?
An American roulette wheel contains 38 slots (18 red, 18 black, and
2 green). What are the odds that red will turn up on a given spin?
A man offers 3:2 odds that A will occur, and 1:2 odds that B will
occur. If he knows that A and B cannot both occur, what odds should
he give that A or B will occur? [Ans. 14:1.]
Suppose now the man offers 2:3 odds that A will occur, and 2:1 odds
that B will occur. Again, he knows that A and B cannot both occur.
What odds should he give that A or B will occur?
A man offers to bet “dollars to doughnuts” that a certain event will
take place. Assuming that a doughnut costs a dime, what must the
probability of the event be for this to be a fair bet? [Ans. 1]
If X and Y are two sets such that X is a subset of ¥, prove that
m(X) < m(Y). Use this to prove that if p implies g then Pr [p] < Pr [g].
Show from the definition of a probability measure that properties (A)
and (B) of the text are true.
Prove property (D) of the text. Why does property (d) follow from
this property?
Let X, Y, and Z be any three sets, the let m be any probability measure.
Prove in two ways that m(X U Y U Z) = m(X) + m(Y) + m(Z) —
mXnNY —mXNZ) —-—mYNDZ)y+mXnNYnNZ). Use
a Venn diagram for the first proof. For the second, notice that X U
YUZ = (XU Y)U Z and use property (C') of the text.
Suppose we assume that X, Y, and Z are pairwise disjoint—i.e., that
XNY=XNZ=YNZ=28&. Showthat m(X U Y U Z) =
m(X) + m(Y) + m(2).
Suppose that we make the assumption (weaker than that in Exercise
19) that X N Y N Z = &. Show by example that it is not necessarily
the case that m(X U Y U Z) = m(X) + m(Y) + m(Z).
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21. Show that m(X U Y U Z) < m(X) + m(Y) + m(Z).

22. Translate the result of Exercise 18 into a result concerning three state-
ments p, g, and r.

23. Suppose PrpAgl=Pr[p Ar]=Pr{gNr]=0andPripV qV r]
= 1. What can be said about the statements p, g, and r?

24. Suppose a card is drawn from a deck of playing cards. Let p be the
statements “The card is an honor card. [i.e., an ace, king, queen, jack,
or ten]” let ¢ be the statement “The card is a spade,” and let r

"~ be the statement “The card is either a heart or the king of clubs.”
Then Pripl=4 Prlgl=4 Prirl=4% Prip/Agl=25, and
Pr{p Ar]l= 3. Find Pr[pV gV r]. Whatis the probability that the
card is neither a spade, a heart, nor an honor card?

25. The following is an alternative proof of property (C’) of the text. Give
a reason for each step.

(@ XUY=XNY)UXnNY)u(nix).
b) mXUY)=m(XNY)+mXNY)+mXnNY).
(©) m(XUY)=mX)+m¥)—mXnY).

26. Twowomen, A and B, go out to lunch. If the probability that A’s check
is exactly 33 is .25, the probability that B’s check is exactly $3 is .35,
and the probability that the larger of the two checks is exactly $3 is
.05, what is the probability that the smaller check is exactly $3? [Hint:
Enumerate the logical possibilities for the checks, and see which ones
correspond to the quantities given above.] [Ans. 55.]

3 THE EQUIPROBABLE MEASURE

We have already seen several examples where it was natural to assign the
same weight to all possibilities in determining the appropriate probability
measure. The probability measure determined in this manner is called the
equiprobable measure. The measure of sets in the case of the equiprobable
measure has a very simple form. In fact, if U has » elements and if the
equiprobable measure has been assigned, then for any set X, m(X) is r/n,
where r is the number of elements in the set X. This is true since the weight
of each element in X is 1/n, and hence the sum of the weights of clements
of X is r/n.

The particularly simple form of the equiprobable measure makes it easy
to work with. In view of this, it is important to observe that a particular
choice for the set of possibilities in a given situation may lead to the equi-
probable measure, while some other choice will not. For example, consider
the case of two throws of an ordinary coin. Suppose that we are interested
in statements about the number of heads which occur. If we take for the
possibility set the set W = {HH, HT, TH, TT} then it is reasonable to assign
the same weight to each outcome, and we are led to the equiprobable
measure. If, on the other hand, we were to take as possible outcomes the
set U = {no H, one H, two H}, it would not be natural to assign the same
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weight to each outcome, since one head can occur in two different ways,
while each of the other possibilities can occur in only one way.

Suppose that we throw two ordinary dice. Each die can turn up a number
from 1 to 6; hence there are 6 - 6 possibilities. We assign weight 75 to each
possibility. A prediction that is true in j cases will then have probability
j/36. For example, “The sum of the dice is 5” will be true if we get 1 + 4,
2 4+ 3,342, or 4+ 1, that is, the sum can be 5 in four different ways.
Hence the probability that the sum of the dice is 5 is g5 = §. The sum can
be 12 in only one way, 6 + 6. Hence the probability that the sum is 12

is 5.

Suppose that two cards are drawn successively from a deck of cards. What
is the probability that both are hearts? There are 52 possibilities for the
first card, and for each of these there are 51 possibilities for the second.
Hence there are 52 - 51 possibilities for the result of the two draws. We assign
the equiprobable measure. The statement “The two cards are hearts” is
true in 13+ 12 of the 52-51 possibilities. Hence the probability of this
statement is 13-12/52 - 51 = .

Assume that, on the basis of a predictive index applied to students A, B,
and C when entering college, it is predicted that after four years of college
the scholastic record of A will be the highest, C the second highest, and
B the lowest of the three. Suppose, in fact, that these predictions turn out
to be exactly correct. If the predictive index has no merit at all and hence
the predictions amount simply to guessing, what is the probability that such
a prediction will be correct? There are 3! = 6 orders in which the men might
finish. If the predictions were really just guessing, then we would assign
an equal weight to each of the six outcomes. In this case the probability
is reasonably large, we would hesitate to conclude that the predictive index
is in fact useful on the basis of this one experiment. Suppose, on the other
hand, it predicted the order of six men correctly. Then a similar analysis
would show that, by guessing, the probability is 1/6! = 1/720 that such a
prediction would be correct. Hence, we might conclude here that there is
strong evidence that the index has some merit.

1. A letter is chosen at random from the word “probability.” What is
the probability that it is a b? That it is a vowel? [Ans. & &.]
2. A card is drawn at random from a deck of playing cards.
(a) What is the probability that it is either a heart or a king but not
both? [Ans. 13.]
(b) What is the probability that it is an honor card (ten, jack, queen,
king, ace) and either a club or a spade?
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An office building with ten floors has a broken elevator which lets
people off at random floors. If 2 man starting on the first floor wants
to go to the fourth floor,
(a) What is the probability that he ends up on the floor he wants?
[Ans. &.]
(b) What is the probability that he ends up no closer to the fourth
floor than when he started?
A word is chosen at random from the set of words U = {men, bird,
ball, field, book}. Let p, g, and r be the statements:
p: The word has two vowels.
g: The first letter of the word is b.
r: The word rhymes with cook.
Find the probability of the following statements:

(@ p.

(b) q.

(¢) r

d pVyg.

@ ~(pAgAr

®» p—yg [Ans. 4]
8 ~p < g

A single die is thrown. Find the probability that

(a) An odd number turns up.

(b) The number which turns up is greater than two.

() A seven turns up.

A single die is thrown twice. What value for the sum of the two
outcomes has the highest probability? What value or values of the
sum has the lowest probability of occurring?

In Exercise 6, what value or values for the product of the two outcomes
has the highest probability of occurring?

A certain college has 500 students and it is known that

250 read French.

200 read German.

100 read Russian.
55 read French and Russian.
35 read German and Russian.
60 read German and French.
20 read all three languages.

Ifa student is chosen at random from the school, what is the probability
that the student

(a) Reads two and only two languages? [Ans. £.]
(b) Reads at least one language?

The letters of the word “connect” are scrambled and placed in a
random order.
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(a) What is the probability that they still spell “connect™?
[Ans. 1g65.]
(b) What is the probability that they are arranged in alphabetical

order? [Ans. 1555.]
() What is the probability that the first and last letters are the same?
[4ns. &.]

Suppose that three people enter a restaurant which has a row of six
seats. If they choose their seats at random, what is the probability that
they sit with noseats between them? What is the probability that none
of them is sitting in a seat next to somebody else?

Find the probability that a bridge hand will have suits of

(a) 5,4,3, and 1 cards. 4’(13)(13)(13)(13)
"\ 5/\4/\ 3 1

) =.129.
Ans (52)
13
(b) 6,4,2, and 1 cards. [Ans. 0473
(¢) 4,4,3, and 2 cards. [Ans. 216.]
(d) 43,3, and 3 cards. [Ans. .105.]

52
Th
ere are (13

ability that a bridge hand dealt at random will be all of one suit.
Estimate roughly the number of bridge hands dealt in the entire
country in a year. Is it likely that a hand of all one suit will occur
sometime during the year in the United States?
If ten people are seated at a circular table, what are the probabilities
that
(a) A particular pair of people are seated next to each other?

[Ans. 2]

) = 6.35 X 10! possible bridge hands. Find the prob-

(b) Three particular people are sitting together?
A contestant on a TV quiz show is shown four pieces of merchandise
and is given a list of four prices. She wins the grand prize if she matches
each piece of merchandise with its correct pricetag. Assume she knows
little about the current prices and assigns the prices randomly.
(a) What is the probability that she wins the grand prize?

[Ans. 2]
(b) What is the probability that she prices none of the items correctly?
A room contains a group of n people who are wearing badges num-
bered from 1 to n. If two people are selected at random, what 1s the
probability that the larger badge number is 4?7 Answer this problem
assuming that n = 3,4,5,6. [dns. 0; &; 2 4]
Find the probability of obtaining each of the following poker hands.
(A poker hand is a set of five cards chosen at random from a deck
of 52 cards.)
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(a) Royal flush (ten, jack, queen, king, ace in a single suit).

4
(52) = .0000015.]
5

(b) Straight flush (five in a sequence in a single suit, but not a royal
flush).

[Ans.

(40 — 4)

= .000014.
[Ans (52) ]
5
(¢) Four of a kind (four cards of the same face value).
624
[Ans. = .00024.]

(5)

(d) Full house (one pair and one triple of the same face value).

3744
[Ans. S = 0014]
5
(e) Flush (five cards in a single suit but not a straight or royal flush).
5148 — 40
[Ans. ((5\2)) = .0020.]
5
(f) Straight (five cards in a row, not all of the same suit).
10,240 — 40
[Ans. {o, ) = .0039.]

52

(5)
(g) Straight or better. [Ans. 0076.]
Find the probability of not having a pair in a hand of poker.
Find the probability of a “bust” hand in poker. (A hand is a “bust”
if there is no pair and it is neither a straight nor a flush.)

[Ans. .5012.]

In a survey, 100,000 people were interviewed. It was found that 65,832
of them had checking accounts, 43,971 of them had at least one credit
card, and 32,348 of them had neither. What is the probability that
a person selected at random from this sample has both a checking
account and a credit card?
A certain French professor announces that he will select three out of
eight pages of text to put on an examination and that each student
can choose one of these three pages to translate. What is the minimum
number of pages that a student should prepare in order to be certain
of being able to translate a page that he has studied?

Smith decides to study only five of the eight pages. What is the
probability that one of these five pages will appear on the examination?
What is the smallest number of pages that Smith can study and still
have probability greater than { of being able to translate one page?
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x4 TWO NONINTUITIVE EXAMPLES

There are occasions in probability theory when one finds a problem for
which the answer, based on probability theory, is not at all in agreement
with one’s intuition. It is usually possible to arrange a few wagers that will
bring one’s intuition into line with the mathematical theory. A particularly
good example of this is provided by the matching birthdays problem.

Assume that we have a room with r people in it and we propose the bet
that there are at least two people in the room having the same birthday,
i.e., the same month and day of the year. We ask for the value of r which
will make this a fair bet. Few people will be willing to bet even money
on this wager unless there were at least 100 people in the room. Most people
would suggest 150 as a reasonable number. However, we shall see that with
150 people the odds are approximately, 4,100,000,000,000,000, to 1 in favor
of two people having the same birthday, and that one should be willing
to bet even money with as few as 23 people in the room.

Let us first find the probability that in a room with r people, no two have
the same birthday. There are 365 possibilities for each person’s birthday
(neglecting February 29). There are, then, 365 possibilities for the birthdays
of r people. We assume that all these possibilities are equally likely. To
find the probability that no two have the same birthday we must find the
number of possibilities for the birthdays which have no day represented
twice. The first person can have any of 365 days for his birthday. For each
of these, if the second person is to have a different birthday, there are only
364 possibilities for his birthday. For the third man, there are 363 possi-
bilities if he is to have a different birthday than the first two, etc. Thus
the probability that no two people have the same birthday in a group of
r people is

365-364-...-(365 —r + 1)
= 365" '

The probability that at least two people have the same birthday is then
p, =1 —g, In Figure 1 the values of p, and the odds for a fair bet,
p,:(1 — p,), are given for several values of r.

We consider now a second problem in which intuition does not lead to
the correct answer. A hat-check girl has checked n hats, but they have
become hopelessly scrambled. She hands back the hats at random. What
is the probability that at least one man gets his own hat? For this problem
some people’s intuition would lead them to guess that for a large number
of hats this probability should be small, while others guess that it should
be large. Few people guess that the probability is neither large nor small
and essentially independent of the number of hats involved.

Let p; be the statement “the jth man gets his own hat back.” We wish
to find Pr{p, V p, V...V p,]. A probability of this form can be found
from the inclusion-exclusion formula as follows. We first add all proba-
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Figure 1

Probability of
Number of people | at least two with Approximate odds
in the room same birthday for a fair bet

5 027

10 A17

15 253

20 411 70:100
21 444 80:100
22 476 91:100
23 507 103:100
24 538 117:100
25 569 132:100
30 706 241:100
40 891 819:100
50 970 33:1
60 994 170:1
70 1,200:1
80 12,000:1
90 160,000:1
100 3,300,000:1
125 31,000,000,000:1
150 4,100,000,000,000,000: 1

bilities of the form Pr[p;], then subtract the sum of all probabilities of the
form Pr[p; /\ p;], then add the sum of all probabilities of the form
Pr[p; /\ p; /\ pi), etc. However, each of these probabilities represents the
probability that a particular set of men get their own hats back. These
probabilities are very easy to compute.

Let us find the probability that out of n» men some particular m of them
get back their own hats. There are n! ways that the hats can be returned.
If a particular m of them are to get their own hats there are only (n — m)!
ways that it can be done. Hence the probability that a particular m men
get their own hats back is :

(n — m)!
n!

n
There are (
m

mth group of terms contributes
/

n n — m)! 1
WIS

m

) different ways we can choose m men out of n. Hence the

n! m!



Section 4

Figure 2

EXERCISES

Probability Theory 95

Probability p, that
Number at least one man
of hats gets his own hat

2 .500000
666667
625000
633333
631944
632143
632118

00 ~1 ON L AW

to the alternating sum. Thus

where the + sign is chosen if n is odd and the — sign if # is even. In Figure
2, these numbers are given for the first few values of n.
It can be shown that, as the number of hats increases, the probabili-

ties approach a number 1 — (1/e) = 632121 . . ., where the number e =
271828 . . .is a number that plays an important role in many branches of
mathematics.

1. What odds should you be willing to give on a bet that at least two
of the presidents of the United States have had the same birthday?
Would you win the bet?

[Ans. More than 4:1. Yes, Polk and Harding were both born on
November 2.}

2. What odds should you be willing to give on the bet that at least two
of the presidents of the United States have died on the same day of
the year? Would you win the bet?

[Ans. More than 2.7:1. Yes; Jefferson, Adams and Monroe all died
on July 4.]

3. What odds should you be willing to give on a bet that at least two
people in the United States Senate have the same birthday?

4. What is the probability that at least two members of the House of
Representatives have the same birthday?

5. Find the probability that, in a group of r people, at least one pair has
the same birthmonth. How large does r have to be for this probability
to be greater than §? (Assume that the probability of being born in
any month is the same.)

6. Show that the probability that, in a group of r people, exactly one pair
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has the same birthday is

(r)365-364- (365 —r 4 2)
2 3657 '

r

. Show that 7, = (;) qr where ¢, is defined in Exercise 6 and

366 — r’
g, is the probability that no pair has the same birthday.
Find a formula for the probability of having more than one coincidence
of birthdays among r people, i.e., of having at least two pairs of
identical birthdays, or of three or more people having the same birth-
day. [Hint: Express the answer in terms of 7,.]
Is it very surprising that there was more than one coincidence of the
dates on which presidents died (see Exercise 2)?
A contest requires entrants to match the stage names of four movie
stars with their real names. Assuming a contestant guesses at random,
what is his probability of getting none right? Of getting exactly four
right? Exactly three? Two? One?
In how many ways can 8 rooks be placed on a chessboard so that none
can attack any of the others? What is the probability that, in such
an arrangement of rooks, the black diagonal has no rooks on it? (Do
not carry out the arithmetical details.) Would the probability change
if we used 16 rooks and a 16 X 16 chess board?
A teacher has her class of 75 students correct their own homework.
She collects the papers, shuffles them, and passes one to each student.
What is the approximate probability that no student receives his own
paper back?
The clubs are removed from a deck of playing cards, shuffled, and dealt
face up on a table. The position of each of the thirteen cards is noted,
and then they are picked up, shuffled, and again dealt face up on the
table. What is the approximate probability that no card occupies the
same position in both deals?
The integers 1,2, and 3 are written down in an arbitrary order. What
is the probability that no two adjacent integers are consecutive (ie.,
that the patterns 12 and 23 do not occur)? Do the problem for 1, 2, 3,
and 4.

5 CONDITIONAL PROBABILITY

Suppose that we have a given U and that measures have been assigned
to all subsets of U. A statement p will have probability Pr[p] = m(P).
Suppose we now receive some additional information, say that statement
g is true. How does this additional information alter the probability of p?

EXAMPLE 1  Suppose we throw an ordinary die, and we are interested in statement D

“A 3 turns up.

”

By our usual analysis the probability of this statement is
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3. Suppose now that someone looks at the die and tells us statement ¢, “An
odd number turned up.” How does knowing ¢ change our probability for
statement p? Clearly the possibility set has been reduced from
(1,2,3,4,5,6} to {1,3,5). Assigning equal weights to the new set gives
the new probability that a 3 turns up as 3.

The probability of p after the receipt of the information g is called its
conditional probability, and it is denoted by Pr[p|q], which is read “the
probability of p given ¢.” In this section we shall construct a method of
finding this conditional probability in terms of the measure m.

If we know that g is true, then the original possibility set U has been
reduced to Q and therefore we must define our measure on the subsets of
O instead of on the subsets of . Of course, every subset X of Q is a subset
of U, and hence we know m(X), its measure before g was discovered. Since
g cuts down on the number of possibilities, its new measure m’(X) should
be larger.

The basic idea on which the definition of m’ is based is that, while we
know that the possibility set has been reduced to O, we have no new
information about subsets of Q. If X and Y are subsets of O, and
m(X) = 2 - m(Y), then we will want m’(X) = 2 - m’(Y). This will be the case
if the measures of subsets of Q are simply increased by a proportionality
factor m’(X) = k- m(X), and all that remains is to determine k. Since
we know that 1 = m’(Q) = k + m(Q), we see that k = I/m(Q) and our new
measure on subsets of ‘U is determined by the formula

m(X
(1) m'(X) = ——)
m(Q)
How does this affect the probability of p? First of all, the truth set of

p has been reduced. Because all elements of O have been eliminated, the
new truth set of p is P N Q and therefore

m(P 0 Q) _ Prip /gl
m(0) Prigl

Note that if the original measure m is the equiprobable measure, then the
new measure m’ will also be the equiprobable measure on the set Q.

We must take care that the denominators in (1) and (2) be different from
zero. Observe that m(Q) will be zero if Q is the empty set, which happens
only if ¢ is self-contradictory. This is also the only case in which Pr [g] =0,
and hence we make the obvious assumption that our information ¢ is not
self-contradictory.

2) Priplgl=m(P N Q)=

In an election, candidate A has .4 chance of winning, B has .3 chance, C
has .2 chance, and D has .1 chance. Just before the election, C withdraws.
Now what are the chances of the other three candidates? Let ¢ be the
statement that C will not win, i.e., that A or B or D will win. Observe
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that Pr[g] = .8, hence all the other probabilities are increased by a factor
of 1/.8 = 1.25. Candidate A now has .5 chance of winning, B has .375,
and D has .125.

A family is chosen at random from the set of all families having exactly
two children (not twins). What is the probability that the family has two
boys, if it is known that there is a boy in the family? Without any informa-
tion being given, we would assign the equiprobable measure on the set
‘U = {BB, BG, GB, GG}, where the first letter of the pair indicates the sex
of the older child and the second that of the younger. The information that
there is a boy causes U to change to {BB, BG, GB}, but the new measure
is still the equiprobable measure. Thus the conditional probability that there
are two boys given that there is a boy is 4. If, on the other hand, we know
that the first child is a boy, then the possibilities are reduced to {BB, BG}
and the conditional probability is 4.

A particularly interesting case of conditional probability is that in which
Prp(q] = Pr[p]. That is, the information that g 1s true has no effect on
our prediction for p. If this is the case, we note that

3) Prip N g] = Pr[p] Prg}

And the case Pr(g|p] = Pr [4] leads to the same equation. Whenever
equation (3) holds, we say that p and q are independent. Thus if ¢ is not
a self-contradiction, p and g are independent if and only if Pr [plg] = Pr{p].

Consider three throws of an ordinary coin, where we consider the eight
possibilities to be equally likely. Let p be the statement “A head turns up
on the first throw” and ¢ be the statement “A tail turns up on the second
throw.” Then Pr[p] = Pr [¢g] =1 and Pr [pN\gql= 3 and therefore p and
g are independent statements.

While we have an intuitive notion of independence, it can happen that
two statements that may not seem to be independent are in fact inde-
pendent. For example, let r be the statement “The same side turns up all
three times.” Let s be the statement “At most one head occurs.” Then r
and s are independent statements (see Exercise 10).

An important use of conditional probabilities arises in the following
manner. A set of statements ¢,, q,, . . . + 4» 15 said to be a complete set of
alternatives if one and only one statement can be true. We wish to find
the probability of a statement p, given a complete set of alternatives g,
92 - - - gy such that the probability Pr[g;] as well as the conditional proba-
bilities Pr [p|q,] can be found for every i. Then in terms of these we can
find Pr[p] by

Prip] = Prig,]Pr(plq,] + Prig,] Pr(p|g,] + ... + Pr l¢.]1Pr[plq,).

The proof of this assertion is left as an exercise (see Exercise 13).
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A psychology student once studied the way mathematicians solve problems
and contended that at times they try too hard to look for symmetry in a
problem. To illustrate this she asked a number of mathematicians the
following problem: Fifty balls (25 white and 25 black) are to be put in two
urns, not necessarily the same number of balls in each. How should the
balls be placed in the urns so as to maximize the chance of drawing a black
ball, if an urn is chosen at random and a ball drawn from this urn? A quite
surprising number of mathematicians answered that you could not do any
better than 4, by the symmetry of the problem. In fact one can do a good
deal better by putting one black ball in urn 1, and all the 49 other balls
in urn 2. To find the probability in this case let p be the statement “A black
ball is drawn,” ¢, the statement “Urn 1 is drawn” and ¢, the statement
“Urn 2 is drawn.” Then ¢, and ¢, are a complete set of alternatives, so

Pr{p] = Prig:]Pr(plq.] + Prigz] Prplg.]
But Pr[g,] = Prg,] =4 and Pr{p|q;] = 1, Prp|q,] =33 Thus
Prip]=4-1+4-%=%§=.45.

When told the answer, a number of the mathematicians that had said 3
replied that they thought there had to be the same number of balls in each
urn. However, since this had been carefully stated not to be necessary, they
also had fallen into the trap of assuming too much symmetry.

1. A card is drawn at random from a pack of playing cards. What is
the probability that it is a 6 or a king, given that it is between 5 and
9 inclusive?

2. A die is loaded in such a way that the probability of a given number
turning up is proportional to that number (e.g., a six is 3 times as likely
to turn up as a two).

(a) What is the probability of rolling an odd number, given that a
six does not turn up? [Ans. 2]
(b) What is the probability of rolling a six, given that an even number
turns up? [Ans. 4]

3. Suppose we arrange the letters of the word “random” in a random

order.
(a) Find the probability that the letters are in alphabetical order given
that the new arrangement begins with @ and ends with r.
[Ans. 4]
(b) Which is greater, the probability that the two vowels are not
together or the probability that the two vowels are not together
and the new arrangement begins with d?

4. Referring to Exercise 8 in Section 3, what is the probability that the
man selected studies German if
(a) He studies French?
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(b) He studies French and Russian?

(¢) He studies neither French nor Russian?

A student takes a five-question true-false exam. What s the probability

that he will get all answers correct if

(a) He is only guessing?

(b) He knows that the instructor puts more true than false questions
on his exams?

(¢) He knows, in addition to (b), that the instructor never puts three
questions in a row with the same answer?

(d) He knows, in addition to (b) and (c), that the first and last ques-
tions must have the opposite answer?

(e) He knows, in addition to (b), (c), and (d), that the answer to the
second problem is “false™?

A die is thrown twice. What is the probability that the sum of the

faces which turn upis7,8, or9, given that one of them is a 4? Given

that the first throw is a 47 [Ans. £%; 4.]
If Prg] = £ and Pr[~p|~q] = 4, find Pr (pV ql [Ans. 4]

A certain motorist knows that before he reaches his destination the
road forks four times, giving 16 possible paths. However, he does not
remember which way he should turn at each of the forks. He decides
that at each fork he will pick randomly which direction to go; thus
each of the 16 possible patterns is equally likely. Unfortunately, after
the four turns he realizes that he is in the wrong place.

(@) What is the probability that he made a wrong turn at the first

fork?
(b) Given that he made the correct first turn, what is the probability
that his second turn was incorrect? [Ans. 4]

(c) Given that he made at least two correct turns, what is the proba-
bility that his first turn was correct?

Three persons, A, B, and C, are placed at random in a straight line.

Let 7 be the statement “B is on the left” and let 5 be the statement

“C 1s on the right.”

(a) What is Pr[r A 52

(b) Arerands independent? [Ans. No.]

Prove that statements » and s in Example 4 are independent.

Let a deck of cards consist of the jacks and queens chosen from a bridge

deck, and let two cards be drawn from the new deck. Find

(@) The probability that the cards are both Jacks, given that one is

a jack. [Ans. & = 27)]
(b) The probability that the cards are both jacks, given that one is
a red jack. [Ans. 5 = .38]]
(c) The probability that the cards are both Jacks, given that one is
the jack of hearts. [Ans. § = 43 ]

Which is greater, Pr [a bridge hand contains 4 aces it contains 1 ace]
or Pr[a bridge hand contains 4 aces|it contains the ace of spades]?
Let p be any statement and ¢, 92, 93 be a complete set of alternatives.
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Prove that

Pr(p] = Prig,lPriplq,] + Prig,] Prplq.] + Prigsl Priplgs]

The following example shows that r may be independent of p and ¢
without being independent of p /\ g and p V' g. We throw a coin twice.
Let p be “The first toss comes out heads,” g be “The second toss comes
out heads,” and r be “The two tosses come out different.” Compute
Prrl, Pririp], Prlriql Pririp N gl, PrirlpV gl [Ans. $,3,4,0,%
Assume that p and g are independent statements relative to a given
measure. Prove that each of the following pairs of statements are
independent relative to this same measure.

(a) p and ~q.

(b) ~q and p.

(¢) ~p and ~q.

Prove that for any three statements p, ¢ and r,

Prip Ng/\rl=Pripl-Priglpl-Pririp Nql

(a) What is true about Pr[p|q] and Pr[g]|p] if p and ¢ are incon-
sistent?
(b) Under what other circumstances will it be true that Prp|q] =
Prig|p]?
A card is drawn at random from a deck of playing cards. Are the
following pairs of statements independent?
(a) p: A jack is drawn.
g: A black card is drawn.
(b) p: A black jack, queen, or king is drawn.
g: A spade which is not a 2, 3, or 4 is drawn.
A multiple-choice-test question lists four alternative answers, of which
just one is correct. If a student has done his homework, then he is
certain to identify the correct answer; otherwise he chooses an answer
at random. Let p be the statement “A student does his homework”
and ¢ the statement “He answers the question correctly.” Let
Prp] = a.
(a) Find a formula for Pr{p|q] in terms of a.
(b) Show that Pr[p|q] > Pr[p] for all values of a. When does the
equality hold?
A simple genetic model for the color of a person’s eyes is the following:
There are two kinds of color-determining genes, B and b, and each
person has two color-determining genes. If both are b, he has blue
eyes; otherwise he has brown eyes. Assume that one-quarter of the
people have two B genes, one-quarter of the people have two b genes,
and the rest have one B gene and one b gene.
(a) 1fa man has brown eyes, what is the probability that he has two
B genes?
Assume that a man has brown eyes and that his wife has brown eyes.
A child born to this couple will get one gene from the man and one
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from his wife, the selection in each case being a random selection from

the parent’s two genes.

(b) What is the probability that the child will have blue eyes?

(c) If the child has brown eyes, what is the probability that both of
the parents have two B genes? [Ans. 4]

21. Two unfair coins, labeled A and B, are tossed. If Pr [A and B come
up heads] = } and Pr[A and B come up heads|at least one of them
comes up heads] = 4, find Pr[A comes up heads] and Pr[B comes
up heads]. Assume that A has the greater probability of coming up
heads and that the statements “A comes up heads” and “B comes up
heads” are independent.

22. Three red, three green, and three blue balls are to be put into three
urns, with at least two balls in each urn. Then an urn is selected at
random and two balls withdrawn.

(@) How should the balls be put in the urns in order to maximize
the probability of drawing two balls of different color? What is
the probability? [Partial Ans. 1.
(b) How should the balls be put in the urns in order to maximize
the probability of withdrawing a red and a green ball? What is
the maximum probability? [Partial Ans. 5.

23. A man who is extremely worried about having the plane in which he
is flying blown up nevertheless always carries a bomb with him when
he flies, because he has read that the probability of two people on the
same plane having bombs is very low. Is his reasoning correct?

6 FINITE STOCHASTIC PROCESSES

We consider here a very general situation which we shall specialize in later
sections. We deal with a sequence of experiments where the outcome on
each particular experiment depends on some chance element. Any such
sequence is called a stochastic process. (The Greek word stochos means
“guess.”) We shall assume a finite number of experiments and a finite
number of possibilities for each experiment. We assume that, if all the
outcomes of the experiments which precede a given experiment were known,
then both the possibilities for this experiment and the probability that any
particular possibility will occur would be known. We wish to make predic-
tions about the process as a whole. For example, in the case of repeated
throws of an ordinary coin we would assume that on any particular experi-
ment we have two outcomes, and the probabilities for each of these outcomes
is one-half regardless of any other outcomes. We might be interested,
however, in the probabilities of statements of the form, “More than two-
thirds of the throws result in heads,” or “The number of heads and tails
which occur is the same,” etc. These are questions which can be answered
only when a probability measure has been assigned to the process as a
whole. In this section we show how probability measure can be assigned,
using the given information. In the case of coin tossing, the probabilities




section 6

Figure 3

Probability Theory 103

Db e a /C
N \f
b Do e e b
Ps Pbd,a__, .
Db, d
> d
Pba, ¢ ¢

Da a b
< —

(hence also the possibilities) on any given experiment do not depend upon
the previous results. We shall not make any such restriction here since the
assumption is not true in general.

We shall show how the probability measure is constructed for a particular
example, and the procedure in the general case is similar.

We assume that we have a sequence of three experiments, the possibilities
for which are indicated in Figure 3. The set of all possible outcomes which
might occur on any of the experiments is represented by the set
{a, b, c d e ). Note that if we know that outcome b occurred on the first
experiment, then we know that the possibilities on experiment two are
{a, e, d}. Similarly, if we know that b occurred on the first experiment and
a on the second, then the only possibilities for the third are {c,f}. We denote
by p, the probability that the first experiment results in outcome a, and
by p, the probability that outcome b occurs in the first experiment. We
denote by p, , the probability that outcome d occurs on the second experi-
ment, which is the probability computed on the assumption that outcome
b occurred on the first experiment. Similarly for py .. Py es Pa,gsr Pa,e- WE
denote by p,, . the probability that outcome ¢ occurs on the third experiment,
the latter probability being computed on the assumption that outcome b
occurred on the first experiment and d on the second. Similarly for py, ¢, Pea r;
etc. We have assumed that these numbers are given and the fact that they
are probabilities assigned to possible outcomes would mean that they are
positive and that

Po+Po=1Pya+Poet Poa=1 and Poaa + Prae = 1, et

It is convenient to associate each probability with the branch of the tree
that connects the branch point representing the predicted outcome. We have
done this in Figure 3 for several branches. The sum of the numbers assigned
to branches from a particular branch point is one, e.g,,

Poa + Poet+ Pra=1

A possibility for the sequence of three experiments is indicated by a path
through the tree. We define now a probability measure on the set of all
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paths. We call this a tree measure. To the path corresponding to outcome
b on the first experiment, d on the second, and ¢ on the third, we assign
the weight py, * p, 4 * ppa .. That is the product of the probabilities associated
with each branch along the path being considered. We find the probability
for each path through the tree.

Before showing the reason for this choice, we must first show that it
determines a probability measure—in other words, that the weights are
positive and the sum of the weights is one. The weights are products of
positive numbers and hence positive. To see that their sum is one we first
find the sum of the weights of all paths corresponding to a particular
outcome, say b, on the first experiment and a particular outcome, say 4,
on the second. We have

Py Pva " Pvda + Po"Poa " Prac = Po 'Pb,d[Pbd,a + Pracl = po *Pra-

For any other first two outcomes we would obtain a similar result. For
example, the sum of the weights assigned to paths corresponding to outcome
a on the first experiment and ¢ on the second is Pa * Pa,c- Notice that when
we have verified that we have a probability measure, this will be the proba-
bility that the first outcome results in a and the second experiment results
in c.

Next we find the sum of the weights assigned to all the paths corre-
sponding to the cases where the outcome of the first experiment is b, We
find this by adding the sums corresponding to the different possibilities for
the second experiment. But by our preceding calculation this is

Po Poa t Po Poet Po Poa =Py Poa + P + Pral = p

Similary, the sum of the weights assigned to paths corresponding to the
outcome a on the first experiment is p,. Thus the sum of all weights is
Pa + p» = 1. Therefore we do have a probability measure. Note that we
have also shown that the probability that the outcome of the first experiment
is a has been assigned probability p, in agreement with our given probability.

To see the complete connection of our new measure with the given
probabilities, let X; = z be the statement “The outcome of the Jth experiment
was z.” Then the statement [X; =b A X, =d A\ X, =] is a compound
statement that has been assigned probability p, * p, , * Pra,c- The statement
[X; = b A\ X, = d]we have noted has been assigned probability p, - P»,q and
the statement [X; = b] has been assigned probability p,. Thus

PriX;=c|X,=d A\ X, = b] = 22 Pra Prac _
Py Poa

Pr[XZ:d|X1:b]:LPPM=
b

bd,c
b,d-

Thus we see that our probabilities, computed under the assumption that
previous results were known, become the corresponding conditional proba-
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bilities when computed with respect to the tree measure. It can be shown
that the tree measure which we have assigned is the only one which will
lead to this agreement. We can now find the probability of any statement
concerning the stochastic process from our tree measure.

Suppose that we have two urns. Urn 1 contains two black balls and three
white balls. Urn 2 contains two black balls and one white ball. An urn
is chosen at random and a ball chosen from this urn at random. What is
the probability that a white ball is chosen? A hasty answer might be 4
since there are an equal number of black and white balls involved and
everything is done at random. However, it is hasty answers like this (which
is wrong) which show the need for a more careful analysis.

We are considering two experiments. The first consists in choosing the
urn and the second in choosing the ball. There are two possibilities for the
first experiment, and we assign p; = p, = 3 for the probabilities of choosing
the first and the second urn, respectively. We then assign p; y = £ for the
probability that a white ball is chosen, under the assumption that urn 1
is chosen. Similarly we assignp, g = 2,p, w = %, P25 = § Weindicate these
probabilities on the possibility tree in Figure 4. The probability that a white

N}

[N
(3]

ball is drawn is then found from the tree measure as the sum of the weights
assigned to paths which lead to a choice of a white ball. This is -2 +
1 Z

1.1 —
3 — 15

3
Suppose that a man leaves a bar which is on a corner which he knows to
be one block from his home. He is unable to remember which street leads
to his home. He proceeds to try each of the streets at random without ever
choosing the same street twice until he goes on the one which leads to his
home. What possibilities are there for his trip home, and what is the
probability for each of these possible trips? We label the streets A, B, C,
and Home. The possibilities together with typical probabilities are given
in Figure 5. The probability for any particular trip, or path, is found by
taking the product of the branch probabilities.
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Figure 5

EXAMPLE 3

Figure 6

Home

Assume that you are presented with two slot machines, A and B. Each
machine pays the same fixed amount when it pays off. Machine A pays
off each time with probability 4, and machine B with probability 1. You
are not told which machine is A. Suppose that you choose a machine at
random and win. What is the probability that you chose machine A? We
first construct the tree (Figure 6) to show the possibilities and assign branch

1
/W
' A
1 \
2 1
3 L
1
1 /W
2
B\
3
% L

probabilities to determine a tree measure. Let p be the statement “Machine
A was chosen” and g be the statement “The machine chosen paid off.”
Then we are asked for

Pr(p /\q].

Priplq] = Prig]

The truth set of the statement p /\ ¢ consists of a single path which has
been assigned weight . The truth set of the statement ¢ consists of two
paths, and the sum of the weights of these pathsis 3+4 + 4-1 = 3.
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Thus Pr{p|g] = % Thus if we win, it is more likely that we have machine
A than B and this suggests that next time we should play the same machine.
If we lose, however, it is more likely that we have machine B than A, and
hence we would switch machines before the next play. (See Exercise 9.)

1. Construct a tree measure to represent the possibilities for four throws
of an ordinary coin. Assume that the probability of a head on any
toss is 3 regardless of any information about other throws.

2. Using the tree constructed in Exercise 1, find the probability of the
following events:

(a) Two heads and two tails occur. [Ans. 4]
(b) The third toss is heads, given that the first two were tails.

[Ans. 3]

(¢) The first and third tosses are the same, given that the second and

third tosses are the same. [Ans. 4.]

3. A man has found through long experience with a certain soda machine
that after depositing his money he will receive a soda with probability
8, his money will be returned with probability .1, and the machine
will take the money with probability .1. If his money is returned, he
deposits it again. If the machine takes his money, he kicks it, so that
when he deposits more money the possible outcomes and their proba-
bilities are soda, .85; return, 0; and take money, .15. After the second
try he gives up. Construct a tree measure to represent the possible
outcomes of the man’s encounter with the soda machine.

4. In Exercise 3 find the probability of the following events:

(a) The man gets a soda.

(b) The man loses some money.

(c) The man gets a soda on his second try.

(d) The man gets a soda, given that he tried twice.

5. A man wins a certain tournament if he can win two consecutive games
out of three played alternately with two opponents A and B. A is a
better player than B. The probability of winning a game when B is
the opponent is 3. The probability of winning a game when A is his
opponent is only 4. Construct a tree measure for the possibilities for
three games, assuming that he plays alternately but plays A first. Do
the same assuming that he plays B first. In each case find the proba-
bility that he will win two consecutive games. Is it better to play two
games against the stronger player or against the weaker player?

[Ans. 39; &, better to play strong player twice.]

6. A manufacturing plant makes a certain part on two different machines.
Of the parts made by machine A, 80 percent are good and 20 percent
defective; machine B is older and produces good parts only 75 percent
of the time. Construct a tree measure for the experiment of picking
a machine at random, then choosing two pieces of its output and



108 Probability Theory

10.

11.

12.

13.

Chapter 3

inspecting them. What is the probability that both pieces are good?
What is the probability that the pieces are good, given that they came
from machine A? What is the probability that the pieces came from
machine B, given that both are defective?
A cancer researcher has observed that 60 percent of young men begin
to smoke cigarettes. Once someone begins to smoke, he quits with
probability .25. Smokers develop lung cancer with probability .15,
while one-time smokers who have quit get lung cancer with probability
.I. Those men who have never smoked get lung cancer with probability
.025. Construct a tree measure which illustrates this data. What is the
probability that a man gets lung cancer? Given that he gets lung
cancer, what is the probability that he once smoked cigarettes?
An urn contains three coins. One coin is fair, one falls heads with
probability .6, and the other falls heads with probability .4. Construct
a tree measure, and find the probability that a coin chosen from the
urn at random and flipped will come up heads. Find the probability
that the coin chosen was the fair one, given that it came up tails.
[Ans. §; 4]
In Example 3, assume that the player makes two plays. Find the
probability that he wins at least once under the assumption that

(a) He plays the same machine twice. [Ans. 1]
(b) He plays the same machine the second time if and only if he won
the first time. [Ans. %5.

An urn initially contains two red and two blue balls. A ball is drawn
from the urn, and it and two more balls of the same color are replaced
in the urn. This process is carried out again, and finally a single ball
is drawn. Construct a tree measure for the possible outcomes of the
experiment. What is the probability that all three balls drawn are of
the same color? What is the probability that the third ball is blue,
given that the first two are red? What is the probability that the first
two balls have the same color? [Partial Ans. 3.]
A chess player plays three successive games of chess. His psychological
makeup is such that the probability of his winning a given game is
(3)¥*1, where k is the number of games he has won so far. (For instance,
the probability of his winning the first game is 3, the probability of
his winning the second game if he has already won the first game is
1, etc.) What is the probability that he will win at least two of the
three games. [Ans. 55.]
Two defective lightbulbs have become mixed with three good bulbs.
The bulbs are chosen one by one and tested until it is discovered which
bulbs are defective. What is the least possible number of draws neces-
sary? What is the greatest possible number of draws necessary? What
is the probability that at most three draws are needed? Exactly three
draws? Given that four draws are needed, what is the probability that
the second and fourth bulbs are defective?

A composer of aleatory (random) music writes his works in three-note
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sections. The first note of each section is randomly chosen from A,
C, and F. If the first note is A, the second is F with probability 4 and
B with probability 4. If the first note is C, the second is B with proba-
bility } and D with probability §. If the first note is F, the second is
E with probability 4 and A with probability & The third note is the
same as the first with probability § and is one note higher than the
first with probability 2 (ignore sharps and flats). What is the probability
that a given 3-note section contains a B? What is the probability that
it contains a B, given that it contains no note twice? (Musical notes
are arranged in ascending alphabetical order; thus B is one note higher
than A, etc.) .
Before a political convention, a political expert has assigned the fol-
lowing probabilities. The probability that the President will be willing
to run again is 4. If he is willing to run, he and his Vice-President
are sure to be nominated and have probability 2 of being elected again.
If the President does not run, the present Vice-President has probability
£ of being nominated, and any other presidential candidate has prob-
ability 4 of being elected. What is the probability that the present
Vice-President will be re-elected as either Vice-President or President?
[Ans. 33
A and B, finalists in a table tennis tournament, agree to play a best-
of-three series for the championship. A has probability .6 of winning
each game. What is the probability that A wins the championship?
What is the probability that exactly three games are needed? What
is the probability that the player who wins the first game goes on to
win the championship?
In a room there are three chests, each chest contains two drawers, and
each drawer contains one coin. In one chest each drawer contains a
gold coin; in the second chest each drawer contains a silver coin; and
in the last chest one drawer contains a gold coin and the other contains
a silver coin. A chest is picked at random and then a drawer is picked
at random from that chest. When the drawer is opened, it is found
to contain a gold coin. What is the probability that the other drawer
of that same chest will also contain a gold coin? [Ans. 4.]
Four slips of paper, marked with the integers 1 through 4, are placed
in a hat. What is the probability that the numbers on two slips drawn
at random from the hat are in ascending (not necessarily consecutive)
order?
A survey revealed that 75 percent of all mathematicians are eldest sons.
Given that 90 percent of mathematicians are male, and the average
family has three children, are the results surprising? (Assume that male
and female children are equally likely.)
A student claims to be able to distinguish beer from ale. He is given
a series of three tests. In each test he is given two glasses of beer and
one of ale and asked to pick out the ale. If he gets two or more correct
we shall admit his claim. Draw a tree to represent the possibilities
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(either he guesses right or he guesses wrong) for his answers. Construct
the tree measure corresponding to his guessing and find the probability
that his claim will be established if he guesses on every trial.

20. Urn A contains two red balls and one black ball; urn B contains one
ball of each color. An urn is selected at random and a ball drawn
from it. If the ball is black, it is returned to the urn; if it is red, it
is placed in the other urn. Then another ball is drawn, this one from
the other urn. Find the probability that the second ball drawn is black.
What is the probability that both balls are the same color? Given that
both balls drawn are red, what is the probability that the first urn
chosen was A?

7 BAYES’S PROBABILITIES

The following situation often occurs. Measures have been assigned in a
possibility space W. A complete set of alternatives, py, p, ..., p, has been
singled out. Their probabilities are determined by the assigned measure.
(Recall that a complete set of alternatives is a set of statements such that
for any possible outcome one and only one of the statements is true.) We
are now given that a statement ¢ is true. We wish to compute the new
probabilities for the alternatives relative to this information. That is, we
wish the conditional probabilities Pr p;|g] for each p;, We shall give two
different methods for obtaining these probabilities.

The first is by a general formula. We illustrate this formula for the case
of four alternatives: py, po, p3, ps. Consider Pr[p,|g]. From the definition
of conditional probability,

Pr[p, /\ q]
Prigl
But since p,, po, P35, P4, are a complete set of alternatives,
Prigl = Prip, /N gl + Prip, A\ gl + Pripy A gl + Prips /A g)
Thus

Prp,lql =

_ Prip, N g
Prip,lq] = Prip, Ngql+ Prip, Nql + Prips Ngl + Prip, N gl

Since Pr[p; /\ q] = Pr[p;] Prgq|p;], we have the desired formula

Pr{p, 4]
_ Pr{p,] - Prig|p,]
Pr{p,]* Pr{q| p,]+Prlp,] - Prlg| p,]+Prlps) - Prig| ps]+Prlp,] - Prig| p,]

Similar formulas apply for the other alternatives, and the formula generalizes
in an obvious way to any number of alternatives. In its most general form
it is called Bayes’s theorem.
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Suppose that a freshman must choose among mathematics, physics, chemis-
try, and botany as his science course. On the basis of the interest he
expressed, his adviser assigns probabilities of .4, .3, .2, and .1 to his choosing
each of the four courses, respectively. His adviser does not hear which
course he actually chose, but at the end of the term the adviser hears that
he received A in the course chosen. On the basis of the difficulties of these
courses the adviser estimates the probability of the student getting an A
in mathematics to be .1, in physics .2, in chemistry .3, and in botany .9.
How can the adviser revise his original estimates as to the probabilities of
the student taking the various courses? Using Bayes’s theorem we get

Pr [He took math|He got an A]

()1 Y]

(DY) + (3)2) + (2)3) + (1)9) 25
Similar computations assign probabilities of .24, 24, and .36 to the other
three courses. Thus the new information, that he received an A, had little
effect on the probability of his having taken physics or chemistry, but it
has made it much less likely that he took mathematics, and much more
likely that he took botany.

It is important to note that knowing the conditional probabilities of ¢
relative to the alternatives is not enough. Unless we also know the proba-
bilities of the alternatives at the start, we cannot apply Bayes’s theorem.
However, in some situations it is reasonable to assume that the alternatives
are equally probable at the start. In this case the factors Pr[p,],. . ., Pr[p,]
cancel from our basic formula, and we get the special form of the theorem:

If Pr{p,]=Pr[p,] = Pr[ps] =Pr[p,], then

Prq|p,) .
Prig|p,) + Prigip,] + Prigipsl + Prlg|p,l

Prip.lq] =

In a sociological experiment the subjects are handed four sealed envelopes,
each containing a problem. They are told to open one envelope and try
to solve the problem in ten minutes. From past experience, the experimenter
knows that the probability of their being able to solve the hardest problem
is .1. With the other problems, they have probabilities of .3, .5, and .8.
Assume the group succeeds within the allotted time. What is the probability
that they selected the hardest problem? Since they have no way of knowing
which problem is in which envelope, they choose at random, and we assign
equal probabilities to the selection of the various problems. Hence the above
simple formula applies. The probability of their having selected the hardest
problem is

1 1

1+3+5+8 17
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EXAMPLE 3

Figure 7

Figure 8

The second method of computing Bayes’s probabilities is to draw a tree,
and then to redraw the tree in a different order. This is illustrated in the
following example.

There are three urns. Each urn contains one white ball. In addition, urn
I contains one black ball, urn II contains two, and urn III contains three.
An urn is selected and one ball is drawn. The probability for selecting the
three urns is 3, 3, and }, respectively. If we know that a white ball is drawn,
how does this alter the probability that a given urn was selected?

First we construct the ordinary tree and tree measure (Figure 7).
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Next we redraw the tree, using the ball drawn as stage 1, and the urn
selected as stage 2. We have the same paths as before, but in a different
order. So the path weights are read off from the previous tree. The proba-
bility of drawing a white ball is

Bttt h=3
This leaves the branch weights of the second stage to be computed (see
Figure 8). But this is simply a matter of division. For example, the branch

/N /N

weights for the branches starting at “W” must be 1,4, 4 to yield the correct
path weights. Thus, if a white ball is drawn, the probability of having
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selected urn I has increased to %, the probability of having picked urn III
has fallen to , while the probability of having chosen urn II is unchanged
(see Figure 9).
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Figure 9

This method is particularly useful when we wish to compute all the
conditional probabilities. We shall apply the method next to Example 1.
The tree and tree measure for this example in the natural order is shown
in Figure 10. In that figure the letters M, P, C, and B stand for mathematics,
physics, chemistry, and botany, respectively.

Path weights
.04

.36
.06
.24
.06
.14
.09
.01

Figure 10

The tree drawn in reverse order is shown in Figure 11.

Path weights

/ M 04
__’ P 406
25 QC .06
B .09

/ M 36

75 -——__——__— P .24
§ C 14

B .01

Figure 11
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Each path in this tree corresponds to one of the paths in the original tree.
Therefore the path weights for this new tree are the same as the weights
assigned to the corresponding paths in the first tree. The two branch weights
at the first level represent the probability that the student receives an A
or that he does not receive an A. These probabilities are also easily obtained
from the first tree. In fact,

Pr[A] = .04 + 06 + .06 + .09 = 25
and
Pr[~A]=1 — 25 = 75.

We have now enough information to obtain the branch weights at the
second level, since the product of the branch weights must be the path
weights. For example, to obtain p, \, we have

25 pamu =204 or p,y=.l6.

But p, y 18 also the conditional probability that the student took math given
that he got an A. Hence this is one of the new probabilities for the alterna-
tives in the event that the student received an A. The other branch proba-
bilities are found in the same way and represent the probabilities for the
other alternatives. By this method we obtain the new probabilities for all
alternatives under the hypothesis that the student receives an A as well as
the hypothesis that the student does not receive an A. The results are shown
in the completed tree in Figure 12.

Path weights

.04
.24

o .06

. 25 NC .06

3;% ) B .09

48M 36

75 32 p 24

B .01
Figure 12
EXERCISES

L. A certain New England state has fair weather 20 percent of the time
and foul weather 80 percent of the time. If a given day is fair, the
probability that the next day is fair is .25; if a given day is foul, the
next day is also foul with probability .75. If it is fair today, what is
the probability that it was fair yesterday?
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A survey showed that 25 percent of American cars are compacts, 40
percent are intermediates, and 35 percent are standard size. If a
compact car is involved in an accident, the probability that its occu-
pants are seriously injured is .6. For an intermediate car the probability
is .5, and for standard size car it is .4. Given that the occupants of
a car were seriously injured in an accident, what is the probability that
the car was a compact? What is the probability that the car was an
intermediate? A standard?

For Exercise 2, construct the tree measure and the tree drawn in reverse
order.

On a multiple-choice exam there are four possible answers for each
question. Therefore, if a student knows the right answer, he has
probability 1 of choosing correctly; if he is guessing, he has probability
1 of choosing correctly. Let us further assume that a good student will
know 90 percent of the answers, a poor student only 50 percent. If
a good student chooses the right answer, what is the probability that
he was only guessing? Answer the same question about a poor student,

if the poor student chooses the right answer. [Ans. &, 4]
At a small coeducational college, 50 percent of the students are major-

ing in liberal arts, 10 percent in nursing, 10 percent in performing arts,
and 30 percent in education. The proportion of women in the various
majors is 40, 90, 60, and 50 percent respectively. Find the probability
that a given male student is enrolled in each of the majors.

Of 200 people attending an office picnic, 150 eat one helping of potato
salad, 30 eat two helpings, and 20 eat three helpings. Later many of
those who attended the picnic became sick, and it is discovered that
the potato salad was the cause. A doctor estimates that the probability
of becoming sick is .3 times the number of servings of potato salad
eaten. Find the probability that a person who became sick ate one,
two, or three helpings. Do the same for a person who did not get sick.
Three men, A, B, and C, are in jail, and one of them is to be hanged
the next day. The jailor knows which man will hang, but must not
announce it. Man A says to the jailor, “Tell me the name of one of
the two who will not hang. If both are to go free, just toss a coin to
decide which to say. Since I already know that at least one of them
will go free, you are not giving away the secret.” The jailor thinks
a moment and then says, “No, this would not be fair to you. Right
now you think the probability that you will hang is 4; but if I tell you
the name of one of the others who is to go free, your probability of
hanging increases to 4. You would not sleep as well tonight.” Was
the jailor’s reasoning correct? [Ans. No.]
A machine for testing radio tubes will detect a defective tube with
probability .95, but will show that a good tube is defective with proba-
bility .1. A technician knows that one tube in a radio with ten tubes
1s defective. He selects a tube at random, tests it, and finds that the
machine indicates the tube is defective. What is the probability that -
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the tube actually is defective? Suppose the machine says the tube is
good. What is now the probability that the tube is in fact defective?
(This problem should be done both with and without using Bayes’s
theorem.) A deck contains three cards. One is black on both sides,
another is red on both sides, and the third has one red side and one
black side. A card is selected from the deck at random and dealt onto
a table; the face showing is black. What is the probability that the
other face is also black?
One coin in a collection of 8 million coins has two heads. The rest
are fair coins. A coin chosen at random from the collection is tossed
ten times and comes up heads every time. What is the probability that
it is the two-headed coin?
Referring to Exercise 10, assume that the coin is tossed » times and
comes up heads every time. How large does n have to be to make
the probability approximately 4 that you have the two-headed coin?
[Ans. 23.]
A musicologist is attempting to determine the composer of a newly
discovered baroque ditty. He thinks it equally likely to be Archangelo
Spumani or his lesser-known brother Pistachio. Unfortunately both
composed only in the keys of A major and F minor; Archangelo used
the former 60 percent of the time, while Pistachio used the latter in
80 percent of his compositions. If the musicologist discovers that the
work is in F minor, what is the probability that it was written by
Archangelo? By Pistachio?
One-third of the subjects in a test of cold remedies are given vitamin
C, 4 are given antibiotics, and § are given a placebo. The colds of 3
of the vitamin-C group,  of the antibiotic group, and 2 of the placebo
group are cured. What is the probability that a subject whose cold
was not cured was given vitamin C? What is the probability that a
subject whose cold was cured was given a placebo?
The manager of an office employing 15 women and 5 men discovers
that the men are equally likely to use a paper clip as a nail cleaner,
as a paper fastener, or as ammunition for a rubber-band slingshot.
The women never shoot paper clips, but use them as nail cleaners with
probability .75 and as paper fasteners with probability .25. If a paper
clip is used as a nail cleaner, what is the probability that it was used
by a woman? What is the probability that a clip shot across the office
was shot by a man?

8 INDEPENDENT TRIALS WITH TWO OUTCOMES

In the preceding section we developed a way to determine a probability
measure for any sequence of chance experiments where there are only a
finite number of possibilities for each experiment. While this provides the
framework for the general study of stochastic processes, it is too general
to be studied in complete detail. Therefore, in probability theory we look
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for simplifying assumptions which will make our probability measure easier
to work with. It is desired also that these assumptions be such as to apply
to a variety of experiments which would occur in practice. In this book
we shall limit ourselves to the study of two types of processes. The first,
the independent trials process, will be considered in the present section.
This process was the first one to be studied extensively in probability theory.
The second, the Markov chain process, is a process that is finding increasing
application, particularly in the social and biological sciences, and will be
considered in Section 12.

A process of independent trials applies to the following situation. Assume
that there is a sequence of chance experiments, each of which consists of
a repetition of a single experiment, carried out in such a way that the results
of any one experiment in no way affect the results in any other experiment.
We label the possible outcome of a single experiment by a,, . . ., a,. We
assume that we are also given probabilities p,, . . . , p, for each of these
outcomes occurring on any single experiment, the probabilities being inde-
pendent of previous results. The tree representing the possibilities for the
sequence of experiments will have the same outcomes from each branch
point, and the branch probabilities will be assigned by assigning probability
p; to any branch leading to outcome g;. The tree measure determined in
this way is the measure of an independent trials process. In this section we
shall consider the important case of two outcomes for each experiment. The
more general case is studied in Section 10. '

In the case of two outcomes we arbitrarily label one outcome “success”
and the other “failure.” For example, in repeated throws of a coin we might
call heads success, and tails failure. We assume there is given a probability
p for success and a probability ¢ = 1 — p for failure. The tree measure for
a sequence of three such experiments is shown in Figure 13. The weights
assigned to each path are indicated at the end of the path.
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The question which we now ask is the following. Given an independent
trials process with two outcomes, what is the probability of exacrly x suc-
cesses in n experiments? We denote this probability by f(n, x; p) to indicate
that it depends upon n, x, and p.

Assume that we had a tree for this general situation, similar to the tree
in Figure 13 for three experiments, with the branch points labeled S for
success and F for failure. Then the truth set of the statement “Exactly x
successes occur” consists of all paths which go through x branch points
labeled S and n — x labeled F. For instance, in Figure 13 suppose x = 2
so that we are interested in the probability that “exactly two successes”
occur. We look for all the paths that go through two branch points labeled
S and (3 — 2) or one branch point labeled F. (There are three paths of
this type.) To find the probability of this statement we must add the weights
for all such paths. We are helped first by the fact that our tree measure
assigns the same weight to any such path, namely p®¢"~%. The reason for
this is that every branch leading to an S is assigned probability p, and every
branch leading to F is assigned probability g, and in the product there will
be x p’s and (n — x)¢’s. To find the desired probability we need only find
the number of paths in the truth set of the statement “Exactly x successes
occur.” But that is just the number of ways we can label x branch points
with § and n — x branch points with F. We found in Chapter 2 that this

labeling could be done in (Z) ways. Thus we have proved:

In an independent trials process with two outcomes the probability of exactly
X successes in n experiments is given by

S, x;p) = (Z)p”‘q"“””.

Consider n throws of an ordinary coin. We label heads “success” and tails
“failure,” and we assume that the probability is § for heads on any one throw
independently of the outcome of any other throw. Then the probability
that exactly x heads will turn up is

sy = ()2

For example, in 100 throws the probability that exactly 50 heads will turn

up is
100}/ 1 200
100 'l: —
/(100,505 3) (50)(2)’

which is approximately .08. Thus we see that it is quite unlikely that exactly
one-half of the tosses will result in heads. On the other hand, suppose that
we ask for the probability that nearly one-half of the tosses will be heads.
To be more precise, let us ask for the probability that the number of heads
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which occur does not deviate by more than 10 from 50. To find this we
must add

f(100, x;4) for x =40,41,...,60.

If this is done, we obtain a probability of approximately .96. Thus, while
it is unlikely that exactly 50 heads will occur, it is very likely that the number
of heads which occur will not deviate from 50 by more than 10.

Assume that we have a machine which, on the basis of data given, is to
predict the outcome of an election as either a Republican victory or a
Democratic victory. If two identical machines are given the same data, they
should predict the same result. We assume, however, that any such machine
has a certain probability g of reversing the prediction that it would ordinarily
make, because of a mechanical or electrical failure. To improve the accuracy
of our prediction we give the same data to r identical machines, and choose
the answer which the majority of the machines give. To avoid ties we assume
that r is odd. Let us see how this decreases the probability of an error due
to a faulty machine.

Consider r experiments, where the jth experiment results in success if the
jth machine produces the prediction which it would make when operating
without any failure of parts. The probability of success is then p = 1 — ¢.
The majority decision will agree with that of a perfectly operating machine
if we have more than r/2 successes. Suppose, for example, that we have
five machines, each of which has a probability of .1 of reversing the predic-
tion because of a parts failure. Then the probability for success is .9, and
the probability that the majority decision will be the desired one is

£(5,3;09) + £(5,4;0.9) + f(5,5;0.9),

which is found to be approximately .991 (see Exercise 3).

Thus the above procedure decreases the probability of error due to
machine failure from .1 in the case of one machine to .009 for the case of
five machines.

1. Compute for n =4, n = 6, and n = 8 the probability of obtaining
heads exactly half the time when an ordinary coin is thrown.

2. Do Exercise 1 for a loaded coin which has probability § of coming

up heads. How do the answers compare with those in Exercise 1?

[Ans. 211, 132, 087 ]

Verify that the probability 991 given in Example 2 is correct.

4. A machine produces light bulbs that are good with probability .95 and
defective with probability .05. What is the probability that a sample
of ten bulbs selected at random from the machine’s output contains
at most one defective bulb? (Do not carry out the computation.)

w
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Suppose an unprepared student takes a five-question multiple-choice
exam. Each question has four possible answers, only one of which is
correct. What is the probability that he can attain a passing grade of
80 percent by guessing?
A coin is to be thrown eight times. What is the most probable number
of heads that will occur? What is the number having the highest
probability, given that the first four throws result in heads?
A die is made by marking the faces of a regular dodecahedron with
the numbers 1 through 12. What is the probability that on exactly
three out of six throws of the die, a number larger than 8 turns up?
Suppose a coin is flipped six times. What is the probability that more
than half of the tosses come up tails? Answer the same for seven
throws, and for 17,219 throws.
Suppose seven coins are flipped eleven times each. What is the proba-
bility that more than half of the coins come up heads more than
one-half of the time?
[Ans. 3.] [Hint: Use the result of Exercise 8 twice.]

A small factory has ten workers. The workers eat their lunch at one
of two diners, and they are just as likely to eat at one as in the other.
If the proprietors want to be more than .95 sure of having enough seats,
how many seats must each of the diners have?  [Ans. Eight seats.]
Suppose we have a computer routine to produce random digits. What
is the probability that in ten trials of the routine, more than two zeros
are output?
A trapper has found through experience that he can expect a given
trap to catch an animal once every three weeks. How many traps
should he set to have probability at least .7 of catching at least two
animals a week?
In a certain board game players move around the board, and each
turn consists of a player’s rolling a pair of dice. If a player is on the
square marked “Park Bench,” he must roll a seven or doubles before
he is allowed to move out.
(a) What is the probability that a player stuck on “Park Bench” will

be allowed to move out on his next turn?
(b) A player stuck on “Park Bench” has probability greater than 3

of getting out after how many rolls? [Ans. (a) 4; (b) 4.]
A machine produces small electrical parts which are perfect with
probability .8, defective but usable with probability .15, and useless
with probability .05. Find the probability that a sample of ten parts
made by the machine contains exactly eight perfect parts. (Do not
carry out the computation.)
Find the probability that the sample in Exercise 14 contains seven
perfect parts, two defective but usable parts, and one useless part.

n—x+1)p
xX-q

Show that f(n, x; p) = f(n, x —1; p).
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For given n and p, find the k such that f(n, k; p) is the largest. [Hint:
We want f(n, k; p) > f(n, k — 1;p) and f(n k; p) > f(n, k + 1; p);
use the result of Exercise 16.]
Without actually computing the probabilities, find the value of x for
which f(20, x; .3) is largest.
A restaurant orders five pieces of apple pie and five pieces of cherry
pie. Assume that the restaurant has ten customers, and the probability
that a customer will ask for apple pie is § and for cherry pie is 2.
(a) What is the probability that the ten customers will all be able
to have their first choice? (Do not carry out the computation.)
(b) What number of each kind of pie should the restaurant order if
it wishes to order ten pieces of pie and wants to maximize the
probability that the ten customers will all have their first choice?
Suppose a computer routine for generating random digits is operated
1000 times. What is the most likely number of times the digit 7
appears?

9 THE LAW OF LARGE NUMBERS

In this section we shall study some further properties of the independent
trials process with two outcomes. In Section 8 we saw that the probability
for x successes in n trials is given by

fn,x; p) = (Z)p‘”q"”’-

In Figure 14 we show these probabilities graphically for n = 8 and p = 3.

Figure 14
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In Figure 15 we have done similarly for the case of n =7 and p = 3.
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Figure 15
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We see in the first case that the values increase up to a maximum value
at x = 6 and then decrease. In the second case the values increase up to
a maximum value at x = 5, have the same value for x = 6, and then
decrease. These two cases are typical of what can happen in general.

Consider the ratio of the probability of x + 1 successes in 7 trials to the
probability of x successes in n trials, which is

( n )p:t+1qn—z—l
x+1 _n—=xp

n\ .o T ox 41 ;
(1)

This ratio will be greater than one as long as (n — x)p > (x + 1)g
or as long as x <mp —gq. If np —gq is not an integer, the values

n . : :
( ) p*q"~" 1ncrease up to a maximum value, which occurs at the first
x

integer greater than np — g, and then decrease. In case np — ¢ is an
n
X

for x =np — g and x = np — g + 1, and then decrease.

Thus we see that, in general, values near np will occur with the largest
probability. It is not true that one particular value near np is highly likely
to occur, but only that it is relatively more likely than a value further from
np. For example, in 100 throws of a coin, np = 1000 - = 50. The proba-
bility of exactly 50 heads is approximately .08. The probability of exactly
30 is approximately .00002.

More information is obtained by studying the probability of a given

integer, the values ( ) pq"~" increase up to x = np — g, are the same




Section 9

Figure 16

Probability Theory 123

deviation of the proportion of successes x/n trom the number p; that is,
by studying for € > 0,

Pr [1% —pl < e].

For any fixed n, p, and e, the latter probability can be found by adding
all the values of f(n, x; p) for values of x for which the inequality
p — € <x/n<p + eistrue. In Figure 16 we have given these probabilities
for the case p = .3 with various values for € and ». In the first column we
have the case € = .1. We observe that as n increases, the probability that
the fraction of successes deviates from .3 by less than .1 tends to the value
1. In fact, to four decimal places the answer is 1.0000 after n = 400. In
the second column we have the same probabilities for the smaller value
of € = .05. Again the probabilities are tending to 1 but not so fast. In the
third column we have given these probabilities for the case e = .02. We
see now that even after 1000 trials there is still a reasonable chance that
the fraction x/n is not within .02 of the value of p = .3. It is natural to
ask if we can expect these probabilities also to tend to 1 if we increase n
sufficiently. The answer is yes and this is assured by one of the fundamental

theorems of probability called the law of large numbers. This theorem asserts
that, for any € > 0,

Pr| X~ pl <

tends to 1 as n increases indefinitely.

|

.L,¢‘<4 for p=23 and e=.1,05,02.
n

P{i—4<ﬂP{i—4<ﬂP{i—#<ﬂ
n n n n
20 5348 1916 1916
40 7738 3945 1366
60 8800 5184 3269
80 9337 6068 2853
100 9626 6740 2563
200 9974 8577 4107
300 9998 9326 5116
400 1.0000 9668 5868
500 1.0000 9833 6461
600 1.0000 9915 6944
700 1.0000 9956 7345
800 1.0000 9977 7683
900 1.0000 9988 7970
1000 1.0000 9994 8216
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EXAMPLE 1

It is important to understand what this theorem says and what it does
not say. Let us illustrate its meaning in the case of coin tossing.

We are going to toss a coin n times and we want the probability to be
very high, say greater than .99, that the fraction of heads which turn up
will be very close, say within .001, of the value .5. The law of large numbers
assures us that we can have this if we simply choose n large enough. The
theorem itself gives us no information about how large » must be. Let us,
however, consider this question.

To say that the fraction of the times success results is near p is the same
as saying that the actual number of successes x does not deviate too much
from the expected number np. To see the kind of deviations which might
be expected we can study the value of Pr[|x — np| > d]. A table of these
values for p = .3 and various values of n and d are given in Figure 17.
Let us ask how large d must be before a deviation as large as d could be
considered surprising. For example, let us see for each »n the value of d
which makes Pr[|x — np| > d] about .04. From the table, we see that d
should be 7 for n = 50, 9 for n = 80, 10 for n = 100, etc. To see deviations
which might be considered more typical we look for the values of d which
make Pr [|x — np| > d] approximately 4 Again from the table, we see that
d should be 3 or 4 for n = 50, 4 or 5 for n = 80, 5 for n = 100, etc. The
answers to these two questions are given in the last two columns of the table.
An examination of these numbers shows us that deviations which we would
consider surprising are approximately \/n while those which are more typical

are about one half as large or Vn/2.

This suggests that Vn, or a suitable multiple of it, might be taken as a
unit of measurement for deviations. Of course, we would also have to study
how Pr [|x — np| > d] depends on p. When this is done, one finds that \/npq
is a natural unit; it is called a standard deviation. It can be shown that for
large n the following approximations hold:

Prilx —np| > Vnpg] = 3174
Pr{jx — np| > 2Vnpg] = .0455
Pr[jx — np| > 3 Vnpq] = .0027.

That is, a deviation from the expected value of one standard deviation
is rather typical, while a deviation of as much as two standard deviations
is quite surprising and three very surprising. For values of p not too near
0 or 1, the value of \pq is approximately 4. Thus these approximations
are consistent with the results we observed from our table.

For large n, Pr{x — np > kV/npq] or Pr[x — np < —k\/npg] can be
shown to be approximately the same. Hence these probabilities can be
estimated for k = 1, 2, and 3 by taking } the values given above.

In throwing an ordinary coin 10,000 times, the expected number of heads
is 5000, and the standard deviation for the number of heads is
V10,000(3)@) = 50. Thus the probability that the number of heads which
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EXAMPLE 2

EXAMPLE 3

turn up deviates from 5000 by as much as one standard deviation, or 50,
is approximately .317. The probability of a deviation of as much as two
standard deviations, or 100, is approximately .046. The probability of a
deviation of as much as three standard deviations, or 150, is approximately
.003.

Assume that in a certain large city, 900 people are chosen at random and
asked if they favor a certain proposal. Of the 900 asked, 550 say they favor
the proposal and 350 are opposed. If, in fact, the people in the city are
equally divided on the issue, would it be unlikely that such a large majority
would be obtained in a sample of 900 of the citizens? If the people were
equally divided, we would assume that the 900 people asked would form
an independent trials process with probability § for a “yes” answer and }
for a “no” answer. Then the standard deviation for the number of “yes”
answers in 900 trials is 1/900(2)(3) = 15. Then it would be very unlikely that
we would obtain a deviation of more than 45 from the expected number
of 450. The fact that the deviation in the sample from the expected number
was 100, then, is evidence that the hypothesis that the voters were equally
divided is incorrect. The assumption that the true proportion is any value
less than 1 would also lead to the fact that a number as large as 550 favoring
in a sample of 900 is very unlikely. Thus we are led to suspect that the
true proportion is greater than 4. On the other hand, if the number who
favored the proposal in the sample of 900 were 465, we would have only
a deviation of one standard deviation, under the assumption of an equal
division of opinion. Since such a deviation is not unlikely, we could not
rule out this possibility on the evidence of the sample.

A certain Ivy League college would like to admit 800 students in their
freshman class. Experience has shown that if they accept 1250 students they
will have acceptances from approximately 800. If they admit as many as
50 too many students they will have to provide additional dormitory space.
Let us find the probability that this will happen assuming that the accept-
ances of the students can be considered to be an independent trials process.
We take as our estimate for the probability of an acceptance p = {555 = .64.
Then the expected number of acceptances is 800 and the standard deviation
for the number of acceptances is V1250 X .64 X .36 =~ 17. The probability
that the number accepted is three standard deviations or 51 from the mean
is approximately .0027. This probability takes into account a deviation
above the mean or below the mean. Since in this case we are only interested
in a deviation above the mean, the probability we desire is half of this or
approximately .0013. Thus we see that it is highly unlikely that the college
will have to have new dormitory space under the assumptions we have made.

We finish this discussion of the law of large numbers with some final
remarks about the interpretation of this important theorem.
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Of course no matter how large n is we cannot prevent the coin from
coming up heads every time. If this were the case we would observe a
fraction of heads equal to 1. However, this is not inconsistent with the
theorem, since the probability of this happening is (3)" which tends to 0
as n increases. Thus a fraction of 1 is always possible, but becomes increas-
ingly unlikely.

The law of large numbers is often misinterpreted in the following manner.
Suppose that we plan to toss the coin 1000 times and after 500 tosses we
have already obtained 400 heads. Then we must obtain less than one-half
heads in the remaining 500 tosses to have the fraction come out near 3.
It is tempting to argue that the coin therefore owes us some tails and it
is more likely that tails will occur in the last 500 tosses. Of course this is
nonsense, since the coin has no memory. The point is that something very
unlikely has already happened in the first 500 tosses. The final result can
therefore also be expected to be a result not predicted before the tossing
began.

We could also argue that perhaps the coin is a biased coin, but this would
make us predict more heads than tails in the future. Thus the law of
averages, or the law of large numbers, should not give you great comfort
if you have had a series of very bad hands dealt you in your last 100 poker
hands. If the dealing is fair, you have the same chance as ever of getting
a good hand.

Early attempts to define the probability p that success occurs on a single
experiment sounded like this. If the experiment is repeated indefinitely, the
fraction of successes obtained will tend to a number p, and this number
p is called the probability of success on a single experiment. While this
fails to be satisfactory as a definition of probability, the law of large numbers
captures the spirit of this frequency concept of probability.

1. 1In 64 tosses of an ordinary coin, what is the expected number of heads
that turn up? What is the standard deviation for the number of heads
that occur? [Ans. 32, 4.]

2. A die is loaded so that the probability of any face turning up is
proportional to the number on that face. If the die is rolled 150 times,
what is the expected number of times a three will turn up? What is

the standard deviation for the number of threes that turn up?

0
[Ans. 120 30

3. Suppose the die in Exercise 2 is tossed 75 times. What is the expected
number of times a three or a six will turn up? What is the standard
deviation for the number of such throws?

4. Anunknown coin is tossed 10,000 times and comes up heads 5100 times?
Is it likely that the coin is fair?

5. In alarge number of independent trials with probability p for success,
what is the approximate probability that the number of successes will
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deviate from the expected number by more than one standard deviation
but less than two standard deviations? [Ans. 272.]
A farmer has found that, on the average, 1 percent of his 1000 apple
trees die and must be replaced each year. The year after an atomic
power plant begins operating nearby, 19 of the farmer’s trees die.
Should he suspect that his trees are dying due to other than natural
causes? »

Consider n independent trials with probability p for success. Let r and
s be numbers such that p < r <s. What does the law of large numbers
say about

Pr[r<£<s]
n

as we increase n indefinitely? Answer the same question in the case
that r < p <s.
Although 10 percent of those receiving Ph.D’s in mathematics each
year are women, all ten people hired by the mathematics department
of a small college over the past five years have been men. Is there
reason to suspect that the department is discriminating against women?
A researcher studying the effects of diet on heart disease notes that
15 percent of all men over 55 have heart disease, and 47 men out of
a sample of 500 men over 55 on a low-cholesterol diet have heart
disease. Is it reasonable for him to hypothesize that a low-cholesterol
diet may reduce the incidence of heart disease?
What is the approximate probability that, in 10,000 throws of an
ordinary coin, the number of heads which turn up lies between 4850
and 51507 What is the probability that the number of heads lies in
the same interval, given that in the first 1900 throws there were 1600
heads?
Suppose we want to be 95 percent sure that the fraction of heads that
turn up when a fair coin is tossed n times does not differ from 1 by
more than .0l. How large should n be?

[Ans. Approximately 10,000.]
A small college found that, while it was all female, 2 percent of its
students majored in mathematics. After it became coeducational, the
college had 10 math majors in its first mixed graduating class of 400
students. Is it likely that coeducation had some effect on the number
of students electing to major in mathematics?
A preelection poll indicates that 55 percent of the voters will choose
candidate A. When the election is over, candidate A has received 5200
of the 9900 votes cast. How accurate was the poll?
Suppose that for each roll of a fair die you lose $1 when an odd number
comes up and win §1 when an even number comes up. Then after
40,000 rolls you can, with approximately 84 percent confidence, expect
to have lost not more than how many dollars?
The Dartmouth computer, having nothing better to do, flipped a coin
1,000,000 times. It obtained 499,452 heads. Is this number reasonable?
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*10 INDEPENDENT TRIALS WITH MORE THAN
TWO OUTCOMES

By extending the results of Section 8, we shall study the case of independent
trials in which we allow more than two outcomes. We assume that we have
an independent trials process where the possible outcomes are a,, dy, . . . ,dy,
occurring with probabilities py, p,, . . . , Py, respectively. We denote by

f(rl’ r2, A ] rk:p15p2a [ ,pk)
the probability that, in

n=ry+r,+...+r
such trials, there will be r; occurences of a,, r, or a,, etc. In the case of
two outcomes this notation would be f(ry, 75, p;, po). In Section 8 we wrote
this as f(n, r; p) = f(n, ry; p,) since r, and p, are determined from n, r,,
and p,. We shall indicate how this probability is found in general, but carry
out the details only for a special case. We choose k = 3, and n = 5 for
purposes of illustration. We shall find f(1,2,2; py, ps, pa3)-

We show in Figure 18 enough of the tree for this process to indicate the
branch probabilities for a path (heavy lines) corresponding to the outcomes
ay, ds, Ay, Ay, a5 The tree measure assigns weight pyps*pypep3 =
Py P35 p5 to this path.

/
p

as

2
aj 43 a2 ajz a3
Ps3 P3 P3 P3
ri
P2 2, p2 12,
T (] ) as 4| evemes— (1) aj
ay a1 a) a

Figure 18

There are, of course, other paths through the tree corresponding to one
occurrence of a,, two of a,, and two of a;. However, they would all be
assigned the same weight p, - p% - p3, by the tree measure. Hence to find
f(1,2,2; py, ps, p3), we must multiply this weight by the number of paths
having the specified number of occurrences of each outcome.

We note that the path a,, a,, a,, a,, a; can be specified by labeling the
numbers 1 to 5 with the outcomes a,, a,, a;. Thus trial 3 is labeled with
outcome ay, trials 1 and 4 are labeled with outcome a,, and trials 2 and
5 are labeled with outcome a;. Conversely, any such labeling of the numbers
1 to 5 which uses label a; once and labels a, and a4 twice each corresponds
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to a unique path of the desired kind. Hence the number of such paths is
the number of such labelings. But this is

( 5 )_ 5!
1,2,2) ~ 112121

(see Chapter 2, Section 5), so that the probability of one occurrence of a,,
two of a,, and two of ajy is

5
(1, 2’2) Pyt P3PS

The above argument carried out in general leads, for the case of inde-
pendent trials with outcomes ay, 4y, . . ., @ occurring with probabilities
P1v P2 - - -5 Py to the following.

The probability for r; occurrences of a,, r, occurrences of a,, etc., is given
by

n

f(l‘l,l‘z,...,l‘k;Pl,pz,...,pk):( . )P?'P?pzk
k

FisFosevn,

A die is thrown 12 times. What is the probability that each number will
come up twice? Here there are six outcomes, 1,2, 3,4,5,6 corresponding
to the six sides of the die. We assign each outcome probability . We are
then asked for

J2,2,2,2,2, 2 5, L L34 D),

222,22 (6 ) G GV (G ) = oo

Suppose that we have an independent trials process with four outcomes
a,, dy, az, a4 occurring with probability py, p,, pa, p,, respectively. It might
be that we are interested only in the probability that r; occurrences of a,
and r, occurrences of a, will take place with no specification about the
number of each of the other possible outcomes. To answer this question
we simply consider a new experiment where the outcomes are ay,d,, d;. Here
a, corresponds to an occurrence of either a, or a, in our original experiment.
The corresponding probabilities would be p,, p,, and Ps Withpy = pa + p,.
Let 73 =n — (r; + r,). Then our question is answered by finding the
probability in our new experiment for r, occurrences of a,, ry or a,, and
74 of @4, which is

which is

n T1pT 2573
( = )Pl P27P3"

rl’r2’r3

The same procedure can be carried out for experiments with any number
of outcomes where we specify the number of occurrences of such particular
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outcomes. For example, if a die is thrown ten times the probability that
a one will occur exactly twice and a three exactly three times is given by

LY )ENE)(E) = 0m. ..

EXERCISES

1. Gypsies sometimes toss a thick coin for which heads and tails are
equally likely, but which also has probability 4 of standing on edge
(i.e., neither heads nor tails). What is the probability of exactly two
heads and three tails in five tosses of a gypsy coin? [Ans. £4.]

2. Three horses, A, B, and C, compete in four races. Assuming that each
horse has an equal chance in each race, what is the probability that
A wins two races and B and C win one each? What is the probability
that the same horse wins all four races? [Ans. &, 55.]

3. Three children go into a restaurant where each gets either an ice-cream
cone, a sundae, or a milkshake. Assuming that each gets an ice-cream
cone twice as often as a milkshake and a sundae twice as often as an
ice-cream cone, what is the probability that at least two of them order
the same thing?

4. Assume that in a certain large college 40 percent of the students are
freshmen, 30 percent are sophomores, 20 percent are juniors, and 10
percent are seniors. A committee of eight is chosen at random from
the student body. What is the probability that there are equal numbers
from each class on the committee?

5. 1If four dice are thrown, find the probability that there are 2 twos and
2 threes, given that all the outcomes are less than four. [Ans. £.]

6. Let us assume that when a batter comes to bat, he has probability .6
of being put out, .1 of getting a walk, .2 of getting a single, .1 of getting
an extra-base hit. If he comes to bat five times in a game, what is
the probability that

(a) He gets a walk and a single (and three outs)? [Ans. %]
(b) He has a perfect day (no outs)? [Ans. 5335.]

(c) He gets a single, two extra base hits, and a walk (and one out)?
7. Assume that a single torpedo has a probability 4 of sinking a ship,
probability 1 of damaging it, and probability } of missing. Assume
further that two damaging shots are sufficient to sink a ship. What
is the probability that four torpedoes will succeed in sinking a ship?
[Ans. 33%]
8. A hiker is planning to make a three-day trip to the mountains. He
estimates that on a given day it is clear with probability 4, is cloudy
with probability 4, and rains with probability . He will consider the
trip enjoyable if he does not get rained on and if he has at least two
clear days. Assuming the weather on a given day is independent of
previous weather,
(a) Find the probability that he enjoys the trip.
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(b) Given that at least one day was not clear, what is probability that
lie enjoyed the trip?

Let us assume that in a World Series game a batter has probability

1 of getting no hits, } of getting one hit, and 1 of getting two hits,

assuming that the probability of getting more than two hits is negligi-

ble. In a four-game World Series, find the probability that the batter

gets

(a) Exactly two hits.

(b) Exactly three hits.

(¢) Exactly four hits.

(d) Exactly five hits.

(e) Fewer than two hits or more than five.

[Ans. &5 55 15 5 k]

Jones, Smith, and Green live in the same house. The mailman has
observed that on the average Jones receives twice as much mail as
Green and three times as much as Smith. If he has four letters for
this house, what is the probability that each man receives at least one
letter?
Assume that in a certain course the probability that a student chosen
at random will get an A is .1, that he will get a B is .2, that he will
get a C is 4, that he will get a D is .2, and that he will get an E is
1. What distribution of grades is most likely in the case of four
students? [Ans. One B, two C’s, one D.]
A professor decides that he will fail any student who misses more than
two classes in a given week or is absent or walks in late every day
in a given week. The class meets four times a week. A particular
student’s sleeping habits are such that he misses class 1 of the time,
walks in late 7 of the time, and arrives before the start of class 3 of
the time.

(a) What is the probability that he is failed during the first week of
the course?

(b) Whatis the probability that he is failed during the first two weeks
of the course? (Note that when he begins the second week, his
performance the first week does not matter any more.)

[Ans. 151.]

11 EXPECTED VALUE

In this section we shall discuss the concept of expected value. Although
it originated in the study of gambling games, it enters into almost any
detailed probabilistic discussion.

Definition If in an experiment the possible outcomes are numbers, a;, a.,

. » a, occurring with probability py, p,, . . . , py, then the expecred value

is defined to be

E=ap;+ap,+... .+ aqp.
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The term “expected value” is not to be interpreted as the value that will
necessarily occur on a single experiment. For example, if a person bets $1
that a head will turn up when a coin is thrown, he may either win $1 or
lose $1. His expected value is (1)3) + (—1)(3) = 0, which is not one of the
possible outcomes. The term “expected value” had its origin in the following
consideration. If we repeat an experiment with expected value E a large
number of times, and if we expect a, a fraction p, of the time, a, a fraction
p» of the time, etc., then the average that we expect per experiment is E.
In particular, in a gambling game E is interpreted as the average winning
expected in a large number of plays. Here the expected value is often taken
as the value of the game to the player. If the game has a positive expected
value, the game is said to be favorable; if the game has expected value zero
it is said to be fair; and if it has negative expected value it is described
as unfavorable. These terms are not to be taken too literally, since many
people are quite happy to play games that, in terms of expected value, are
unfavorable. For instance, the buying of life insurance may be considered
an unfavorable game which most people choose to play.

For the first example of the application of expected value we consider the
game of roulette as played at Monte Carlo. There are several types of bets
which the gambler can make, and we consider two of these.

The wheel has the number 0 and the numbers from 1 to 36 marked on
equally spaced slots. The wheel is spun and a ball comes to rest in one
of these slots. If the player puts a stake, say $1, on a given number, and
the ball comes to rest in this slot, then he receives from the croupier 36
times his stake, or $36. The player wins $35 with probability 5% and loses
$1 with probability #5. Hence his expected winnings are

B 1.3 = 1= _027.

This can be interpreted to mean that in the long run he can expect to lose
about 2.7 percent of his stakes.

A second way to play is the following. A player may bet on “red” or
“black.” The numbers from 1 to 36 are evenly divided between the two
colors. If a player bets on “red” and a red number turns up, he receives
twice his stake. If a black number turns up, he loses his stake. If' 0 turns
up, then the wheel is spun until it stops on a number different from 0. If
this is black, the player loses; but if it is red, he receives only his original
stake, not twice it. For this type of play, the gambler wins §1 with probability
8 breaks even with probability 4 -+t = 7, and loses $1 with probability
38 4+ 1.L =31 Hence his expected winning is

In this case the player can expect to lose about 1.35 percent of his stakes
in the long run. Thus the expected loss in this case is only half as great
as in the previous case.
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EXAMPLE 2

EXAMPLE 3

EXAMPLE 4

A player rolls a die and receives a number of dollars corresponding to the
number of dots on the face which turns up. What should the player pay
for playing, to make this a fair game? To answer this question, we note
that the player wins 1,2, 3, 4,5 or 6 dollars, each with probability 3. Hence,
his expected winning is

I®) +2() +3@) + 4 + 50) + 6(3) = 31.
Thus if he pays $3.50, his expected winnings will be zero.

What is the expected number of successes in the case of four independent
trials with probability 4 for success? We know that the probability of

X successes is (j)(%)(%)*— Thus
=0 QGG (GG 2 ()&
J&) +-()G)G)

In general, it can be shown that in »n trials with probability p for success,
the expected number of successes is np.

In the game of craps a pair of dice is rolled by one of the players. If the
sum of the spots shown is 7 or 11, he wins. If it is 2,3, or 12, he loses.
If it is another sum, he must continue rolling the dice until he either repeats
the same sum or rolls a 7. In the former case he wins, in the latter he loses.
Let us suppose that he wins or loses $1. Then the two possible outcomes
are +1 and —1. We shall compute the expected value of the game. First
we must find the probability that he will win.

We represent the possibilities by a two-stage tree shown in Figure 19.
While it is theoretically possible for the game to go on indefinitely, we do
not consider this possibility. This means that our analysis applies only to
games which actually stop at some time.

The branch probabilities at the first stage are determined by thinking of
the 36 possibilities for the throw of the two dice as being equally likely and
taking in each case the fraction of the possibilities which correspond to the
branch as the branch probability. The probabilities for the branches at the
second level are obtained as follows. If, for example, the first outcome was
a 4, then when the game ends, a 4 or 7 must have occurred. The possible
outcomes for the dice were

{G D (1,3).2,2), 4,3), 3,4, 2,5), (52), (1,6), 6, 1)).

Again we consider these possibilities to be equally likely and assign to the
branch considered the fraction of the outcomes which correspond to this
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branch. Thus to the 4 branch we assign a probability § = 3. The other
branch probabilities are determined in a similar way. Having the tree
measure assigned, to find the probability of a win we must simply add the
weights of all paths leading to a win. If this is done, we obtain 3. Thus
the player’s expected value is

1-GEhH+ (D3 =

Hence he can expect to lose 1.41 percent of his stakes in the long run. It
is interesting to note that this is just slightly less favorable than his losses
in betting on “red” in roulette.

_ I = — 014l

1. If 13 coins are thrown, what is the expected number of heads that will
turn up? [Ans. 18]

2. An urn contains two black and three white balls. Balls are successively
drawn from the urn without replacement until a white ball is obtained.
Find the expected number of draws required. Do the same for the
case of four black and six white balls.

3. Suppose that A tosses three coins and receives $8 if three heads appear,
$4 if two heads appear, $2 if one head appears, and $1 if no heads
appear. What is the expected value of the game to him? [Ans. $33]

4. Two players, A and B, play the following dice game. A shakes a die
that has three 2’s and three 3’s on the faces, while B shakes a die painted
with four I’s and two 6’s. Find A’s expected winning (or loss) for each
of the following sets of rules.

(a) The player that shakes the lower number pays the other player
$2. [Ans. $3.)
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(b) The player that shakes the lower number pays the other player
a number of dollars equal to the difference between the two
outcomes.

(¢) The player that shakes the lower number pays the other player
a number of dollars equal to the number shaken by the other
player.

A coin is thrown until the second time a head comes up or until three

tails in a row occur. Find the expected number of times the coin is

thrown. [Ans. 302

A man wishes to purchase a five-cent newspaper. He has in his pocket

one dime and five pennies. The newsman offers to let him have the

paper in exchange for one coin drawn at random from the customer’s
pocket.

(a) Is this a fair proposition and, if not, to whom is it favorable?

[4ns. Favorable to man.]

(b) Answer the same questions as in (a) assuming that the newsman

demands two coins drawn at random from the customer’s pocket.
[4ns. Fair proposition.]

Referring to Exercise 17 of Chapter 1, Section 5, assuming that each

speaker chooses his topic at random from those available to him,

(a) Find the expected number of speeches on brotherhood during a
given program.

(b) Find the smallest number of programs that we would have to
attend in order that the expected value of the number of speeches
on integrity that we hear is to be at least five.

Prove that if the expected value of a given experiment is F, and if

a constant ¢ is added to each of the outcomes, the expected value of

the new experiment is E + c.

Prove that, if the expected value of a given experiment is E, and if

each of the possible outcomes is multiplied by a constant k, the ex-

pected value of the new experiment is k - E.

A bets x cents against B’s 78 cents that, if two cards are dealt from

a shuffled pack of ordinary playing cards, both cards will be of the

same color. What value of x will make this bet fair?

Betting on “red” in roulette can be described roughly as follows. We

win with probability .49, get our money back with probability .01, and

lose with probability .50. Draw the tree for three plays of the game,
and compute (to three decimals), the probability of each path. What
is the probability that we are ahead at the end of three bets?

[Ans. 485.]

Assume that the odds are r:s that a certain statement will be true.

If a man receives s dollars if the statement turns out to be true, and

gives r dollars if not, what is his expected winning?

In the World Series, we assume that the stronger team has probability

6 of winning each game. In this case the probabilities of the series
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lasting 4, 5,6, or 7 games are .16, .27, .30, and .28, respectively. What
is the expected length of the World Series? [Ans. 5.75.]

14.  An office worker buys root beer from a defective machine which gives
him orange soda instead of root beer ¢ of the time. He keeps buying
soda until he gets his root beer or runs out of dimes. How many dimes
must he carry with him every day if he wants to be able to expect
to get root beer on at least 99 out of 100 days he uses the machine?

[Ans. 3.]

1S.  Suppose that in roulette at Monte Carlo we place 50 cents on “red”

and 50 cents on “black.” What is the expected value on the game?

Is this better or worse than placing $1 on “red”? Which of the two
games would it be more desirable to play?

16. Suppose that we modify the game of craps as follows: On a 7 or 11
the player wins $1; on a 2, 3, or 12 he loses $x; otherwise the game
is as usual, all losses being $x. Find the expected value of the new
game, and determine the value of x for which it becomes a fair game.

17. A gambler is given the choice of playing one of the following games.
Either he pays $10 and throws three dice, receiving in return the
number of dollars equal to the sum of the three outcomes, or he pays
$12 and throws two dice, receiving in return the number of dollars
equal to the product of the two outcomes. Which game should he play?

18. A pair of dice is rolled. Each die has the number 1 on two opposite
faces, the number 2 on two opposite faces, and the number 3 on two
opposite faces. The “roller” wins a dollar

(i) 1f the sum of 4 occurs on the first roll; or
(ii) if the sum of 3 or 5 occurs on the first roll and the same sum

occurs on a subsequent roll before the sum of 4 occurs.
Otherwise he loses a dollar.

(a) What is the probability that the person rolling the dice wins?
(b) What is the expected value of the game?  [Ans. (a) £; (b) &.

12 MARKOV CHAINS

In this section we shall study a more general kind of process than the ones
considered in the last three sections.

We assume that we have a sequence of experiments with the following
properties. The outcome of each experiment is one of a finite number of
possible outcomes a,a,, . ..,a, It is assumed that the probability of
outcome g; on any given experiment is not necessarily independent of the
outcomes of previous experiments but depends at most upon the outcome
of the immediately preceding experiment. We assume that there are given
numbers p;; which represent the probability of outcome g; on any given
experiment, given that outcome a; occurred on the preceding experiment.
The outcomes ay, a,, . . . , a, are called states, and the numbers p;; are called
transition probabilities. 1f we assume that the process begins in some partic-
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Figure 20

ular state, then we have enough information to determine the tree measure
for the process and can calculate probabilities of statements relating to the
overall sequence of experiments. A process of the above kind is called a
Markov chain process.

The transition probabilities can be exhibited in two different ways. The
first way is that of a square array. For a Markov chain with states a,, a,,
and as, this array is written as

P11 P12 Pis
P=(ps po P23
P31 P32 P33

Such an array is a special case of a matrix. Matrices are of fundamental
importance to the study of Markov chains as well as being important in
the study of other branches of mathematics. They will be studied in detail
in the next chapter.

A second way to show the transition probabilities is by a transition
diagram. Such a diagram is illustrated for a special case in Figure 20. The
arrows from each state indicate the possible states to which a process can
move from the given state.

—
[—

1 1
3 2

Q
2
3

The matrix of transition probabilities which corresponds to this diagram
is the matrix

a; ay ag

a, 0 1 0

— 1 1
P=a, |0 1 2
1 2

as 5 0 3

An entry of 0 indicates that the transition is impossible.

Notice that in the matrix P the sum of the elements of each row is 1.
This must be true in any matrix of transition probabilities, since the elements
of the /th row represent the probabilities for all possibilities when the process
is in state a;.

The kind of problem in which we are most interested in the study of
Markov chains is the following. Suppose that the process starts in state i.
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What is the probability that after n steps it will be in state j? We denote
this probability by p{. Notice that we do not mean by this the nth power
of the number p;;, We are actually interested in this probability for all
possible starting positions i and all possible terminal positions j. We can
represent these numbers conveniently again by a matrix. For example, for
n steps in a three-state Markov chain we write these probabﬂmes as the
matrix
(o o
P =p5 p3 PR

(n) (n) (n)
Psi P3z Ds:

EXAMPLE 1 Let us find for a Markov chain with transition probabilities indicated in
Figure 20 the probability of being at the various possible states after three
steps, assuming that the process starts at state a;. We find these probabilities
by constructing a tree and a tree measure as in Figure 21.

a

as

L
N

A

ay

Figure 21

The probability p{), for example, is the sum of the weights assigned by
the tree measure to all paths through our tree which end at state aj.
That is,

Similarly,
3 — — @ _—1-1.1—
pis=1-3-}=7 and pfi=1-3-3=1%

By constructing a similar tree measure, assuming that we start at state a,,
we could find PS), pS, and p$). The same is true for 258 p(33:3, and Y. If
this is carried out (see Exercise 7) we can write the results in matrix form

as follows:
a, 4a, das
1 1 1
a, 6§ 1 12
(3) _ 7 1 31
P a 36 24 712
a 4 1 25
3 \2¥ 1§ 5%
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EXAMPLE 2

Again the rows add up to 1, corresponding to the fact that if we start at
a given state we must reach some state after three steps. Notice now that
all the elements of this matrix are positive, showing that it is possible to
reach any state from any state in three steps. In the next chapter we shall
develop a simple method of computing P™.

Suppose that we are interested in studying the way in which a given state
votes in a series of national elections. We wish to make long-term predictions
and so shall not consider conditions peculiar to a particular election year.
We shall base our predictions only on past history of the outcomes of the
elections, Republican or Democratic. It is clear that a knowledge of these
past results would influence our predictions for the future. As a first ap-
proximation, we assume that the knowledge of the past beyond the last
election would not cause us to change the probabilities for the outcomes
on the next election. With this assumption we obtain a Markov chain with
two states R and D and matrix of transition probabilities

R D
R (1 —a a )
D b 1 -5/
The numbers a and b could be estimated from past results as follows. We
could take for a the fraction of the previous years in which the outcome
has changed from Republican in one year to Democratic in the next year,
and for b the fraction of reverse changes.

We can obtain a better approximation by taking into account the previous
two elections. In this case our states are RR, RD, DR, and DD, indicating
the outcome of two successive elections. Being in state RR means that the
last two elections were Republican victories. If the next election is a Demo-
cratic victory, we will be in state RD. If the election outcomes for a series
of years is DDDRDRR, then our process has moved from state DD to DD
to DR to RD to DR, and finally to RR. Notice that the first letter of the
state to which we move must agree with the second letter of the state from

which we came, since these refer to the same election year. Our matrix of
transition probabilities will then have the following form:

RR DR RD DD

RR [1 —a 0 a 0
DR b 0 1 -5 0
RD 0 l—c¢ 0 c
DD 0 d 0 1 —d

Again the numbers a, b, ¢, and d would have to be estimated. The study
of this example is continued in Chapter 4, Section 7.
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EXAMPLE 3 The following example of a Markov chain has been used in physics as a
simple model for diffusion of gases. We shall see later that a similar model
applies to an idealized problem in changing populations.

We imagine n black balls and » white balls which are put into two urns
so that there are n balls in each urn. A single experiment consists in choosing
a ball from each urn at random and putting the ball obtained from the
first urn into the second urn, and the ball obtained from the second urn
into the first. We take as state the number of black balls in the first urn.
If at any time we know this number, then we know the exact composition
of each urn. That is, if there are j black balls in urn 1, there must be n —
black balls in urn 2, n — j white balls in urn 1, and j white balls in urn
2. If the process is in state j, then after the next exchange it will be in state
J — 1, if a black ball is chosen from urn 1 and a white ball from urn 2.
It will be in state ;j if a ball of the same color is drawn from each urn.
It will be in state j + 1 if a white ball is drawn from urn 1 and a black
ball from urn 2. The transition probabilities are then given by (see Exer-
cise 12)

2j(n —j)
Pii =72
n—j\¢
Pij+1 = n J <n
Pix = 0 otherwise.

A physicist would be interested, for example, in predicting the composition
of the urns after a certain number of exchanges have taken place. Certainly
any predictions about the early stages of the process would depend upon
the initial composition of the urns. For example, if we started with all black
balls in urn 1, we would expect that for some time there would be more
black balls in urn 1 than in urn 2. On the other hand, it might be expected
that the effect of this initial distribution would wear off after a large number

of exchanges. We shall see later, in Chapter 4, Section 7, that this is indeed
the case.

EXERCISES
1. Draw a transition diagram for the Markov chains with transition
probabilities given by the following matrices:

0100
30 4 B 1000
010 111 0 1 1 000
1 0 2 1l 1 1 1 1 1 1 1 1
3 3/ 2 3 6/° 2 20 12 6 4 2
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Give the matrix of transition probabilities corresponding to the follow-
ing transition diagrams:

What is the matrix of transition probabilities for the Markov chain
in Example 3, for the case of two white balls and two black balls?
Find the matrix P for the Markov chain determined by the matrix

of transition probabilities
i i 6 13
P:(l 2). [Ans.(Q 2&)]
3 3 3% 36

Find the matrices P, P®, PY for the Markov chain determined by
the transition probabilities

1 00
010
0 0 1
Find the same for the Markov chain determined by the matrix
0 0 1
0 1 0]).
1 00

(a) Whatis the relationship between independent trials processes and
Markov chains?
[Ans. Every independent trials process, given a
particular starting state, is a Markov chain.]
(b) Set up a transition diagram and matrix for tossing a fair coin.
Find P9 and P9,
(¢) Repeat part (b) for a coin that comes up heads with proba-
bility 3.

Referring to the Markov chain with transition probabilities indicated
in Figure 21, construct the tree measures and determine the values
of

3) ,(3) ,(3)

(3) (3 (3)
P51 Psas P33 and  pi, pi), pa .
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Suppose that a Markov chain has two states, a; and a,, and transition
probabilities given by the matrix

L)
by
By means of a separate chance device we choose a state in which to
start the process. This device chooses a; with probability 4 and a, with
probability 4. Find the probability that the process is in state a, after
the first step. Answer the same question in the case that the device
chooses a; with probability 1 and a, with probability 4. [4ns. §; 4]
A certain calculating machine uses only the digits 0 and 1. It is
supposed to transmit one of these digits through several stages. How-
ever, at every stage there is a probability p that the digit which enters
this stage will be changed when it leaves. We form a Markov chain
to represent the process of transmission by taking as states the digits
0 and 1. What is the matrix of transition probabilities?
For the Markov chain in Exercise 9, draw a tree and assign a tree
measure, assuming that the process begins in state 1 and moves through
three stages of transmission. What is the probability that the machine
after three stages produces the digit 1, i.e., the correct digit? What
is the probability that the machine changed the digit from 1 but ended
up with a | after three stages?
A student has a class that meets on Monday, Wednesday, and Friday.
He decides on any one of these days to go to class with a probability
that depends only on whether or not he went to the last class. If he
did go to class on one day, he goes to the next class with probability
4. If he did not go to one class, he goes to the next class with probability
3. Set up the matrix of transition probabilities and find the probability
that if he went to class on Monday, he will also attend the class on
Friday of that week.
Explain why the transition probabilities given in Example 3 are correct.
Assume that a man’s profession can be classified as professional, skilled
laborer, or unskilled laborer. Assume that of the sons of professional
men 80 percent are professionals, 15 percent are skilled laborers, and
5 percent are unskilled laborers. In the case of sons of skilled laborers,
50 percent are skilled laborers, 25 percent are professionals, and 25
percent are unskilled laborers. Finally, in the case of unskilled labor-
ers, 40 percent of the sons are unskilled laborers and 30 percent each
are in the other two categories. Assume that every man has a son,
and form a Markov chain by following a given family through several
generations. Set up the matrix of transition probabilities. Find the
probability that the grandson of a skilled laborer is a professional man.
[Ans. 4.]
In Exercise 13 we assumed that every man has a son. Assume instead
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that the probability a man has a son is .75. Form a Markov chain
with four states. The first three states are as in Exercise 13, and the
fourth state is such that the process enters it if a man has no son, and
that the state cannot be left. This state represents families whose male
line has died out. Find the matrix of transition probabilities and find
the probability that a skilled laborer has a grandson who is a profes-
sional man. [Ans. 225.]
In another model for diffusion, it is assumed that there are two urns
which together contain N balls numbered from 1 to N. Each second
a number from 1 to N is chosen at random, and the ball with the
corresponding number is moved to the other urn. For N = 4 set up
a Markov chain by taking as state the number of balls in urn 1. Find
the transition matrix.

In a two-player game, each player starts out with three chips. Two
dice are then tossed. If the sum of the numbers tossed is less than
7, player A gets a chip from player B. If the total is greater than 7,
B gets a chip from A. 1f a 7 is tossed, either the player with less chips
gets one from the other player or, if the players are even, they remain
even. The game continues until one player runs out of chips. Using
as states the number of chips that A has, set up the transition matrix.
(Assume that once A gets to the state 0 or 6 he stays there with
probability 1 next time.)

In Exercise 16, find the following:

(a) The probability that B loses in three turns. [Ans. 1172258']
(b) The probability that B loses in three turns starting with two chips
left.
() PY.
(d) The probability that A loses in five or less turns.
34,625
L ——— =~ .139.
[Ans VE 3 ]

*13 GAMBLER’S RUIN

In this section we shall study a particular Markov chain, which is interesting
in itself and has far-reaching applications. Its name, “gambler’s ruin,”
derives from one of its many applications. In the text we shall describe
the chain from the gambling point of view, but in the exercises we shall
present several other applications.

Let us suppose that you are gambling against a professional gambler or
gambling house. You have selected a specific game to play, on which you
have probability p of winning. The gambler has made sure that the game
is favorable to him, so that p <4. However, in most situations p will be
close to 3. (The cases p =4 and p > 4 are considered in the exercises.)
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At the start of the game you have A dollars, and the gambler has B
dollars. You bet $§1 on each game, and play until one of you is ruined.
What is the probability that you will be ruined? Of course, the answer
depends on the exact values of p, 4, and B. We shall develop a formula
for the ruin-probability in terms of these three given numbers.

First we shall set the problem up as a Markov chain. Let N=A4 + B,
the total amount of money in the game. As states for the chain we choose
the numbers 0,1,2,. .., N. At any one moment the position of the chain
is the amount of money you have. The initial position is shown in Fig-
ure 22.

Your money His money
A A
lr L4 3
] A

If you win a game, your money increases by $1, and the gambler’s fortune
decreases by $§1. Thus the new position is one state to the right of the
previous one. If you lose a game, the chain moves one step to the left.
Thus at any step there is probability p of moving one step to the right, and
probability ¢ = 1 — p of one step to the left. Since the probabilities for
the next position are determined by the present position, it is a Markov
chain.

If the chain reaches 0 or N, we stop. When 0 is reached, you are ruined.
When N is reached, you have all the money, and you have ruined the
gambler. We shall be interested in the probability of your ruin, ie., the
probability of reaching 0.

Let us suppose that p and N are fixed. We actually want the probability
of ruin when we start at 4. However, it turns out to be easier to solve
a problem that appears much harder: Find the ruin-probability for every
possible starting position. For this reason we introduce the notation x;, to
stand for the probability of your ruin if you start in position / (that is, if
you have i dollars).

Let us first solve the problem for the case N = 5. We have the unknowns
Xo» X1, Xg, X3, X4, and x5. Suppose that we start at position 2. The chain
moves to 3, with probability p, or to 1, with probability g. Thus

Pr [ruin|start at 2] = Pr[ruin|start at 3]+ p + Pr[ruin|start at 1}- g,

using the conditional probability formula, with a set of two alternatives.
But once it has reached state 3, a Markov chain behaves just as if it had
been started there. Thus

Pr [ruin|start at 3] = x.
And, similarly,

Pr [ruin|start at 1] = x,.
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We obtain the key relation
Xg = pX3 + gx;.
We can modify this as follows: using p + ¢ = 1, we have
Xy = (p + @y = px3 + gx,
p(xa — x3) = q(x; — x,)
Xy = Xy = r(xy — X3),

where r = p/g, and hence r < 1. When we write such an equation for each
of the four “ordinary” positions, we obtain

)] Xo — Xy = r(x; — X,)
Xy — Xy =r(Xy — X3)
Xy — X3 = r(xg3 — X,)
X3 — X4 = r(xy — Xj).

We must still consider the two extreme positions. Suppose that the chain
reaches 0. Then you are ruined, hence the probability of your ruin is 1.
While if the chain reaches N = 5, the gambler drops out of the game, and
you can’t be ruined. Thus

(2) Xo = 1, x5 = 0.

If we substitute the value of x; in the last equation of (1), we have
x3 — x4 = rx,. This in turn may be substituted in the previous equation,
etc. We thus have the simpler equations

xg=1-x,
X3 — X4 =71X,
— 2
(3) Xg — X5 = r2x,

— x. =3
X, — Xy = rix,
— x. = 4
Xog — X; = rix,.

Let us add all the equations. We obtain
Xo=(0+r+r2+r3+rix,
From (2) we have that x, = 1. We also use the simple identity
(1 —nQ +r+r2+r3+r4)=l‘——r5,
which implies

1 — 5

l+r+r2+r¥4+rt=

And then we solve for x,:

_ 1l —r
X,;—ﬁg.

If we add the first two equations in (3), we have that x3 =+ rx,.
Similarly, adding the first three equations, we solve for x,, and adding the
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Ruin-probabilities for p = 45, 48, 49, 495.
p =45
A 1 5 10 20 50
I S50 905 973 997 1
5 260 132 910 988 1
10 204 666 881 984 1
20 185 638 868 982 1
50 182 633 .866 982 1
p = 48
A 1 5 10 20 50
| 520 .865 941 981 999
5 202 .599 788 923 994
10 131 472 690 878 990
20 095 381 606 832 985
50 078 334 555 801 982
p=49
A 1 5 10 20 50
1 S10 .850 926 969 994
5 184 550 731 871 972
10 110 402 599 788 951
20 069 287 472 .690 921
50 045 204 363 586 881
A 1 5 10 20 50
1 505 .842 918 961 989
5 175 525 699 838 948
10 .100 367 550 131 905
20 058 242 402 599 .839
50 031 143 259 438 731
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EXERCISES

first four equations we obtain x,. We now have our entire solution:

1 — rt x_l—r3 x_l—r2 y. = 1=
1 -5 727 1 5 73 3 YT -

4) Xy =

The same method will work for any value of N. And it is easy to guess
from (4) what the general solution looks like. If we want x4, the answer
is a fraction like those in (4). In the denominator the exponent of r is always
N. In the numerator the exponent is N — A4, which equals B. Thus the
ruin-probability is

1 — B
(5) Xa =7 'V.

—

We recall that 4 is the amount of money you have, B is the gambler’s stake,
N =A + B, p is your probability of winning a game, and r =p/(1 = p).

In Figure 23 we show some typical values of the ruin-probability. Some
of these are quite startling. If the probability of p is as low as 45 (odds
against you on each game 11:9) and the gambler has $20 to put up, you
are almost sure to be ruined. Even in a nearly fair game, say p = 495,
with each of you having $50 to start with, there is a .731 chance for your
ruin.

It is worth examining the ruin-probability formula, (5), more closely.
Since the denominator is always less than 1, your probability of ruin is at
least 1 — r®. This estimate does not depend on how much money you have,
only on p and B. Since r is less than 1, by making B large enough we can
make r® practically 0, and hence make it almost certain that you will be
ruined.

Suppose, for example, that a gambler wants to have probability .999 of
ruining you. (You can hardly call him a gambler under those circum-
stances!) He must make sure that r < .001. For example, if p = 495, the
gambler needs $346 to have probability .999 of ruining you, even if you
are a millionaire. If p = .48, he needs only $87. And even for the almost
fair game with p = .499, $1727 will suffice.

There are two ways that gamblers achieve this goal. Small gambling
houses will fix the odds quite a bit in their favor, making » much less than
1. Then even a relatively small bank of B dollars suffices to assure them
of winning. Larger houses, with B quite sizable, can afford to let you play
nearly fair games.

1. Suppose you are playing the “shell game” with a gambler. (In this
game, the gambler hides a pea under one of three cups and shuffles
them around, and you guess which cup it is.) If you guess correctly,
you win $1; if you guess wrong, you lose $1. Suppose you each start
out with $2 and play until someone is ruined. What is your probability
of losing all your money?
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10.

11.

12.
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Verify that the proof of the text is still correct when p > 4. Interpret
formula (5) for this case.

Show that if p > 1 and both parties have a substantial amount of
money, your probability of ruin is approximately 1/r%.

Suppose that both the gambler and the player in Exercise 1 start with
$10. Find the approximate probability of the gambler being ruined.
(Use Exercise 3.)

Modify the proof in the text to apply to the case p = §. What is the
probability of your ruin? [Ans. B/N.]
Suppose the game in Exercise 1 is being played with two cups, and
you start with $10, the gambler with $15. What is your probability
of being ruined?

A man leaves a bar in a state of intoxication, and starts to walk
randomly. Fifty steps to the left of the bar is the subway entrance,
and 50 steps to the right of the bar is the police station. What is the
probability that the man makes it to the subway before arriving at
the police station if:

(a) He is equally likely to take a step to the right as to the left?
(b) He has probability .52 of taking a step to the left?

(¢) He has probability .55 of taking a step to the right?

A demon operates a gate between two halves of a box. Initially each
side of the box contains 20 molecules. The demon attempts to operate
the gate in such a way that all the molecules end up on the left side
of the box. Since the inside of the box is quite dark, however, he
succeeds only 51 percent of the time; on the other occasions when he
opens the gate, a molecule escapes from left to right. (The gate shuts
so quickly that only one molecule passes through it each time 1t is
opened.) Suppose the demon operates the gate until all the molecules
are on one side or the other. What is the probability that all will be
on the left side? [Ans. .690.]
What is the approximate value of x, if you are rich and the gambler
starts with $1? Assume the game is weighted so the gambler has the
advantage.

Suppose you are playing the shell game of Exercise 1 with a poverty-
stricken gambler who has only $1, while you are a millionaire. What,
approximately, is the probability that you will be ruined?

Consider a simple model for evolution. On a small island there is room
for 1000 members of a certain species. One year a favorable mutant
appears. We assume that in each subsequent generation either the
mutants take one place from the regular members of the species, with
probability .6, or the reverse happens. Thus for example, the mutation
disappears in the very first generation with probability .4. What is the
probability that the mutants eventually take over? [Hini: See Exer-
cise 9.] [Ans. 1.]
After a single crystal of the (fictional) substance ice-eight is added to
a container of water, there is probability .9 that one molecule of water
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changes to ice-eight every minute, and probability .1 that a crystal of
ice-eight changes back to water. What is the approximate probability
that the entire contents of the container will eventually consist of
ice-eight?

13. You are in the following hopeless situation: You are playing the shell
game of Exercise 1, in which you have only 4 chance of winning. You
have $1, and your opponent has $15. What is the probability of your
winning all his money if
(a) You bet $1 each time?

(b) You bet all your money each time? [Ans. .

14. Repeat Exercise 13 for the case of a fair game, where you have proba-
bility 4 of winning.

NOTE: Exercises 15-18 deal with the following win problem: A and
B are playing a game in which A has probability .6 of winning. They
play until A wins three games or B wins two games.

I5.  Set up the process as a Markov chain in which the states are (a, b),
where A has won a games and B has won b games.

16. For each state (g, b), find the probability that A wins. '

17. What is the probability that A will achieve his goal first? [Ans. 2L ]

I8.  Suppose that payments are made as follows: If A wins three games,
he receives $1; if B wins two games then A pays $1. What is the
expected value of A’s winnings, to the nearest penny?
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