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INTRODUCTION

A well-defined collection of objects is known as a ser. This concept, in its
complete generality, is of great importance in mathematics since all of
mathematics can be developed by starting from it.

The various pieces of furniture in a given room form a set. So do the
books in a given library, or the integers between 1 and 1,000,000 or all
the ideas that mankind has had, or the human beings alive between 1 billion
B.C. and A.D. 10 billion. These examples are all examples of finite sets, that
is, sets having a finite number of elements. All the sets discussed in this
book will be finite sets.

The collection of all tall people is not a well-defined set, because the word
“tall” is not precisely defined. On the other hand the set of all people whose
height is six feet or more is a well-defined set, because we can determine
whether any given person belongs to the set simply by measuring his height.

There are two essentially different ways of specifying a set. One can give
a rule by which it can be determined whether or not a given object is a
member of the set, or one can give a complete list of the elements in the
set. We shall say that the former is a description of the set and the latter
is a listing of the set. For example, we can define a set of four people as
(a) the members of the string quartet which played in town last night, or
(b) four particular persons whose names are Jones, Smith, Brown, and
Green. It is customary to use braces to surround the listing of a set; thus
the set above should be listed {Jones, Smith, Brown, Green}.

We shall frequently be interested in sets of logical possibilities, since the
analysis of such sets is very often a major task in the solving of a problem.
Suppose, for example, that we were interested in the successes of three
candidates who enter the presidential primaries (we assume there are no
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Figure 1

other entries). Suppose that the key primaries will be held in New Hamp-
shire, Minnesota, Winsonsin, and California. Assume that candidate A
enters all the primaries, that B does not contest in New Hampshire’s primary,
and C does not contest in Wisconsin’s. A list of the logical possibilities is
given in Figure 1. Since the New Hampshire and Wisconsin primaries can

Possibility Winner in Winner in | Winner in | Winner in
Number New Hampshire | Minnesota Wisconsin | California
Pl A A A A
P2 A A A B
P3 A A A C
P4 A A B A
P5 A A B B
P6 A A B C
P7 A B A A
P8 A B A B
P9 A B A C
P10 A B B A
P11 A B B B
P12 A B B C
P13 A C A A
Pl4 A C A B
P15 A C A C
P16 A C B A
P17 A C B B
P18 A C B C
P19 C A A A
P20 C A A B
P21 C A A C
P22 C A B A
P23 C A B B
P24 C A B C
P25 C B A A
P26 C B A B
P27 C B A C
P28 C B B A
P29 C B B B
P30 C B B C
P31 C C A A
P32 C C A B
P33 C C A C
P34 C C B A
P35 C C B B
P36 C C B C
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each end in two ways, and the Minnesota and California primaries can each
end in three ways, there are in all2-2-3+3 = 36 different logical possibilities
as listed in Figure 1.

A set that consists of some members of another set is called a subser of
that set. For example, the set of those logical possibilities in Figure 1 for
which the statement “Candidate A wins at least three primaries” is true,
is a subset of the set of all logical possibilities. This subset can also be
defined by listing its members: {P1, P2, P3, P4, P7, P13, P19}.

In order to discuss all the subsets of a given set, let us introduce the
following terminology. We shall call the original set the universal set,
one-element subsets will be called unir sers, and the set which contains no
members the empty set. We do not introduce special names for other kinds
of subsets of the universal set. As an example, let the universal set U consist
of the three elements {a, b, c}. The proper subsets of U are those sets
containing some but not all of the elements of U. The proper subsets here
consist of three two-element sets—namely, {a, b}, {4, ¢}, and {b, c}—and
three unit sets—namely, {a}, {b}, and {c}. To complete the picture, we
also consider the universal set a subset (but not a proper subset) of itself,
and we consider the empty set* &, which contains no elements of U, as
a subset of U. At first it may seem strange that we should include the sets
U and & as subsets of U, but the reasons for their inclusion will become
clear later.

We saw that the three-element set above had 8 = 27 subsets. In general,
a set with n elements has 2” subsets, as can be seen in the following manner.
We form subsets £ of U by considering each of the elements of U in turn
and deciding whether or not to include it in the subset P. If we decide to
put every element of ‘U into £, we get the universal set, and if we decide
to put no element of U into P, we get the empty set. In most cases we
shall put some but not all the elements into P and thus obtain a proper
subset of L. We have to make n decisions, one for each element of the
set, and for each decision we have to choose between two alternatives. We
can make these decisions in 2+2- ... -2 = 2" ways, and hence this is the
number of different subsets of ‘U that can be formed. Observe that our
formula would not have been so simple if we had not included the universal
set and the empty set as subsets of ‘U.

In the example of the voting primaries above there are 236 or about 70
billion subsets. Of course, we cannot deal with this many subsets in a
practical problem, but fortunately we are usually interested in only a few
of the subsets. The most interesting subsets are those which can be defined
by means of a simple rule such as “the set of all logical possibilities in which
C loses at least two primaries.” It would be difficult to give a simple
description for the subset containing the elements {P1, P4, P14, P30, P34}.
On the other hand, we shall see in the next section how to define new subsets
in terms of subsets already defined.

*Many books use ¢ to symbolize the empty set.
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EXAMPLES

EXERCISES

We illustrate the two different ways of specifying sets in terms of the primary
voting example. Let the universal set U be the logical possibilities given
in Figure 1.

1. What is the subset of U in which candidate B wins more primaries
than either of the other candidates? Answer: {P11, P12, P17, P23, P26,
P28, P29}.

2. What is the subset in which the primaries are split two and two?
Answer: {P5, P8, P10, P15, P21, P30, P31, P35}.

3. Describe the set {P1, P4, P19, P22}. Answer: The set of possibilities
for which A wins in Minnesota and California.

4. How can we describe the set {P18, P24, P27}? Answer: The set of
possibilities for which C wins in California, and the other primaries are split
three ways.

1. In the primary example, list each of the following sets.

(a) The set in which A and C win the same number of primaries.

(b) The set in which the winner of the New Hampshire primary does
not win another primary.

(¢) The set in which C wins all four primaries.

2. Again referring to the primary example, give simple descriptions of
the following sets.

(a) [P1, P4, P8, P11, P15, P18, P19, P22, P26, P29, P33, P36].
(b) [P18, P22, P26].
(c¢) [PL,PIL, P19, P29]

3. The primaries are considered decisive if a candidate can win three
primaries, or if he wins two primaries including California. List the
set in which the primaries are decisive.

4. List the set of four-letter “words” formed by writing down the letters
of the word srop in all possible ways. [Hint: The set has 24 elements.]

5. In Exercise 4, list the following subsets:

(a) The set of English words. [Partial Ans. There are 6.]

(b) The set in which the letters are in alphabetical order either from

left to right or from right to left.

(¢) The set in which p and ¢ are next to each other,

(d) The set in which only s is between o and .

(¢) The set in which ¢ and s are at the ends.

Find all pairs in Exercise 5 in which one set is a subset of the other.

A baker has four feet of display space to fill with some combination

of bread, cake, and pie. A loaf of bread takes one-half foot of space,

a cake takes one foot, and a pie takes two feet. Construct the set of

possible distributions of shelf space, considering only the total space

allotted to each kind of item.

8. In Exercise 7, list the following subsets.

Y
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(a) The set in which as much space is devoted to pie as to cake.
(b) The set in which equal space is given to two different items, and
at least two different items are displayed.
(¢) The set in which six or more items are displayed.
(d) The set in which at least two of the above conditions are satisfied.
9. A man has 65 cents in change, but he has no pennies and has at least
as many dimes as nickels. Find the set of possibilities for his collection
of coins.
10. In Exercise 9, list the following subsets.
(a) The set in which the man has exactly one quarter.
(b) The set in which the man has more half-dollars than quarters.
(¢) The set in which the man has fewer than six coins.
(d) The set in which none of the above conditions is satisfied.
11. A set has 51 elements. How many subsets does it have? How many
of the subsets have an even number of elements? [Ans. 251, 250]
12. Do Exercise 11 for the case of a set with 52 elements.

2 OPERATIONS ON SUBSETS

In Chapter 1 we considered the ways in which one could form new state-
ments from given statements. Now we shall consider an analogous proce-
dure, the formation of new sets from given sets. We shall assume that each
of the sets that we use in the combination is a subset of some universal
set, and we shall also want the newly formed set to be a subset of the same
universal set. As usual, we can specify a newly formed set either by a
description or by a listing.

If P and Q are two sets, we shall define a new set P N Q, called the
intersection of P and Q as follows: P N Q is the set which contains those
and only those elements which belong to both P and Q. As an example,
consider the logical possibilities listed in Figure 1. Let P be the subset in
which candidate A wins at least three primaries, i.e., the set {P1, P2, P3,
P4, P7, P13, P19}; let Q be the subset in which A wins the first two primaries,
i.e., the set {P1, P2, P3, P4, P5, P6}. Then the intersection P N Q is the set
in which both events take place, i.e., where A wins the first two primaries
and wins at least three primaries. Thus P N Q is the set {P1, P2, P3, P4}.

If P and Q are two sets, we shall define a new set P U Q called the union
of P and Q as follows: P U Q is the set that contains those and only those
elements that belong either to P or to Q (or to both). In the example in
the paragraph above, the union P U Q is the set of possibilities for which
either A wins the first two primaries or wins at least three primaries, ie.,
the set {P1, P2, P3, P4, PS5, P6, P7, P13, P19}.

To help in visualizing these operations we shall draw diagrams, called
Venn diagrams,* which illustrate them. We let the universal set be a rectangle
and let subsets be circles drawn inside the rectangle. In Figure 2 we show

*Named after the English logician John Venn (1834-1923).
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Figure 2

u

two sets P and Q as shaded circles, P shaded in color and Q in gray. Then
the area shaded in both color and gray is the intersection P N Q and the
total shaded area is the union P U Q.

If P is a given subset of the universal set ‘U, we can define a new set
P called the complement of P as follows: P is the set of all elements of U
that are not contained in P. For example, if, as above, Q is the set in which
candidate A wins the first two primaries, then Q is the set {P7, P8, . . ., P36).
The shaded area in Figure 3 is the complement of the set P. Observe that
the complement of the empty set & is the universal set ‘U, and also that
the complement of the universal set is the empty set.

ol

Figure 3 Figure 4

Sometimes we shall be interested in only part of the complement of a
set. For example, we might wish to consider the part of the complement
of the set Q that is contained in P, i.e., the set P N Q. The shaded area
in Figure 4 is P N Q.

A somewhat more suggestive definition of this set can be given as follows:
Let P — Q be the difference of P and Q, that is, the set that contains those
elements of P that do not belong to Q. Figure 4 shows that P N Q and
P — Q are the same set. In the primary voting example above, theset P — Q
can be listed as {P7, P13, P19}.

The complement of a subset is a special case of a difference set, since
we can write 0 = W — Q. If P and Q are nonempty subsets whose inter-
section is the empty set, i.e.,, P N Q = &, then we say that they are disjoint
subsets.
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In the primary voting example let R be the set in which A wins the first
three primaries, i.e., the set {P1, P2, P3}; let S be the set in which A wins
the last two primaries, ie. the set {Pl,P7,P13, P19, P25, P31}. Then
R N § = {P1} is the set in which A wins the first three primaries and also
the last two, that is, he wins all the primaries. We also have

R U S = {P1, P2, P3, P7, P13, P19, P25, P31},

which can be described as the set in which A wins the first three primaries
or the last two. The set in which A does not win the first three primaries
is R = {P4,P5,. .. P36} Finally, we see that the difference set R — S is
the set in which A wins the first three primaries but not both of the last
two. This set can be found by taking from R the element P1 which it has
in common with S, so that R — S = {P2, P3}.

Let us give a step-by-step construction of the Venn diagram for the set
(PN QO)U@nN O). Figure 5 shows the set P N Q which is the same as

PNQ
p Q
PO
P Q
(PNQ)U(PNQ)
P Q
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EXERCISES

the set of Figure 2 shaded in both color and gray; Figure 6 shows the set
P N O which is the same as the complement of the shaded area in Figure 2.
Finally, Figure 7 is the union of the two areas in Figures 5 and 6 and is the
answer desired.

1. Draw Venn diagrams for the following sets:

@ PNOQ.
® PUO.
(¢ PUDOQ.
d PUO.

2. Give a step-by-step construction of the diagram for ((P U Q) —
(PN Q)N D

3. Venn diagrams are also useful when three subsets are given. Construct
such a diagram, given the subsets P, O, and R. ldentify each of the
eight resulting areas in terms of P, O, and R.

4. In assigning dormitory roomates, a college considers a student’s sex,
whether or not the student wants to live in a coed dorm, and whether
the student is a freshman or an upperclassman. Draw a Venn diagram,
and identify each of the eight areas.

5. Let F be the set of females, U the set of upperclassmen, and C the
set of students desiring to live in a coed dorm. Define (symbolically)
the following sets:

(a) Upperclass males who do not want to live in a coed dorm.
[Ans. UN F N C.]
(b) Women who want to live in a coed dorm.
(¢) Male students who want to live in a coed dorm and are freshmen.
(d) Women who are not freshmen and do not want to live in a coed
dorm.

6. The college decides that two students can be roommates if both are of
the same sex or if both are upperclassmen who want to live in a coed
dorm. Identify the sets of students with the property that any two
members of the set can be roommates.

7. The results of a survey of church attendance and golf playing are given
in the following table:

Golfs and Doesn’t Golf
Golfs and Doesn’t Doesn’t Golf | and Doesn’t
Occupation | Attends Attend and Attends Attend
Doctor 15 20 3 2
Lawyer 10 9 9 6
CPA 8 0 11 7
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Let D = doctor, L = lawyer, C = CPA, G = golfs, 4 = attends. Determine
the number of people in each of the following classes.

10.

11.

@ DNGNA.

® CNGNA.
() (GUA)NL.
@ (DUL)YNG. [Ans. 54.]
© LN4NG)UMUNG)). [Ans. 43.]

In Exercise 7, which set of each of the following pairs has more
members?

@ (DNG)—AorLU(GN A

b) 8orCNANG?

(c) (DUL)or C?

A college student hired to survey 1000 beer drinkers and record their
age, sex, and educational level turned in the following figures: 700
males, 600 people over 25 years of age, 400 college graduates, 250 male
college graduates, 225 college graduates over 25, 350 males over 25,
and 150 male college graduates over 25. After turning in his results,
he was fired. Why? [Hint: Draw a Venn diagram with three circles—for
males, college graduates, and those over 25. Fill in the numbers in
each of the eight areas, using the data given above. Start from the
end of the list and work back.]

A survey of 110 lung cancer patients showed that 70 were cigarette
smokers, 60 lived in urban areas, and 35 had hazardous occupations.
Forty of the smokers lived in urban areas, 15 had hazardous occupa-
tions, and 5 were in both categories. Ten of the patients with hazardous
occupations neither lived in an urban area nor smoked.

(a) How many of the patients living in urban areas had hazardous

occupations? [Ans. 15.]
(b) How many of those living in the urban areas neither smoked nor
had hazardous occupations? [Ans. 10.]

(¢) How many patients smoke if and only if they live in an urban area?

(d) How many patients neither smoked, nor lived in an urban area,
nor had a hazardous occupation?

A second survey of 100 patients had the following results: 45 smokers

who lived in urban areas, 37 of whom did not have a hazardous

occupation; 20 people with hazardous occupations, of whom 10 live

in urban areas and 10 smoke; 75 smokers; and 10 who neither smoke,

nor have a hazardous occupation, nor live in an urban area.

(a) How many patients with hazardous occupations neither smoke
nor live in an urban area? [Ans. 8]

(b) How many patients live in an urban area?

() How many patients smoke if and only if they do not have a
hazardous occupation?

(d) How many patients smoke, have a hazardous occupation, and live
in an urban area?
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12. The following table summarizes the responses of 100 students asked
what they thought about during math lectures:

| Class and Neither Food | Only Only Food and
Status Nor Football | Food | Football | Football
Senior Majors 20 12 4 6
Senior Nonmajors 8 10 15 0
Junior Majors 2 1 6 1
uunior Nonmajors 3 5 5 2 J

All the categories can be defined in terms of the following four: M (majors),
S (seniors), F (food), and FT (football). How many students fall into each
of the following categories?

(ay S ) JUF [Ans. 91.]
b) S—-M (g SNMNF_

() M-S h) (SUF)—FT [Ans. 28.]
d JANMNFNFT i) SNMN(FUFT) [Ans. 20.]
() JNF) Gy SuJ

3 THE RELATIONSHIP BETWEEN SETS
AND COMPOUND STATEMENTS

The reader may have observed several times in the preceding sections that
there was a close connection between sets and statements, and between set
operations and compounding operations. In this section we shall formalize
these relationships.

If we have a number of statements relative to a set of logical possibilities,
there is a natural way of assigning a set to each statement. First we take
the set of logical possibilities as our universal set. Then to each statement
we assign the subset of logical possibilities of the universal set for which
that statement is true. This idea is so important that we embody it in a
formal definition.

Definition Let U be a set of logical possibilities, let p be a statement relative
to it, and let P be that subset of the possibilities for which p is true; then
we call P the truth set of p.

If p and g are statements, then p \/ ¢ and p /\ g are also statements and
hence must have truth sets. To find the truth set of p V g, we observe that
it is true whenever p is true or g is true (or both). Therefore we must assign
to p V ¢ the logical possibilities which are in P or in Q (or both); that 1s,
we must assign to p V g the set P U Q. On the other hand, the statement
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p /\ q is true only when both p and g are true, so that we must assign to
p/\gtheset PN Q.

Thus we see that there is a close connection between the logical operation
of disjunction and the set operation of union, and also between conjunction
and intersection. A careful examination of the definitions of union and
intersection shows that the word “or” occurs in the definition of union and
the word “and” occurs in the definition of intersection. Thus the connection
between the two theories is not surprising.

Since the connective “not” occurs in the definition of the complement
of a set, it is not surprising that the truth set of ~p is P. This follows since
~p is true when p is false, so that the truth set of ~p contains all logical
possibilities for which p is false, that is, the truth set of ~p is P.

The truth sets of two propositions p and g are shown in Figure 8. Also
marked on the diagram are the various logical possibilities for these two
statements. The reader should pick out in this diagram the truth sets of
the statements p V ¢, p /\ g, ~p, and ~q.

Both false

Figure 8 Figure 9

The connection between a statement and its truth set makes it possible
to “translate” a problem about compound statements into a problem about
sets. It is also possible to go in the reverse direction. Given a problem about
sets, think of the universal set as being a set of logical possibilities and think
of a subset as being the truth set of a statement. Hence we can “translate”
a problem about sets into a problem about compound statements.

So far we have discussed only the truth sets assigned to compound
statements involving V, /\, and ~. All the other connectives can be defined
in terms of these three basic ones, so that we can deduce what truth sets
should be assigned to them. For example, we know thatp — ¢ is equivalent
to ~p V g. Hence the truth set of p — g is the same as the truth set of
~p V g, that is, it is P U Q. The Venn diagram for p — ¢ is shown in
Figure 9, where the shaded area is the truth set for the statement. Observe
that the unshaded area in Figure 9 is the set P — Q = P N 0, which is
the truth set of the statement p /\ ~¢. Thus the shaded area is the set

r——

— C .
(P — Q) = P N O, which is the truth set of the statement ~[p /\ ~¢]. We
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Figure 10

EXAMPLE 1

EXAMPLE 2

have thus discovered the fact that (p — q), (~p V g), and ~(p /\ ~q) are
equivalent. Itis always the case that two compound statements are equiva-
lent if and only if they have the same truth sets. Thus we can test for
equivalence by checking whether they have the same Venn diagram.

Suppose that p is a statement that is logically true. What is its truth set?
Now p is logically true if and only if it is true in every logically possible
case, so that the truth set of p must be . Similarly, if p is logically false,
then it is false for every logically possible case, so that its truth set is the
empty set &.

Finally, let us consider the implication relation. Recall that p implies g
if and only if the conditional p — ¢ is logically true. Butp — ¢ is logically

true if and only if its truth set is U, that is, (P — Q) = U, or (P — Q) = &.
From Figure 4 we see that if P — Q is empty, then P is contained in Q.
We shall symbolize the containing relation as follows: P C Q means “P is
a subset of Q.” We conclude that p = ¢ if and only if P C Q.

Figure 10 supplies a “dictionary” for translating from statement language
to set language, and back. To each statement relative to a set of possibilities
9 there corresponds a subset of al—namely, the truth set of the statement.

Statement Language Set Language

r R

s S
~r R
rVs RUS
r/\s RNS
F— s (ﬁ)
r=>s RCS
res R =

This is shown in lines 1 and 2 of the figure. To each connective there
corresponds an operation on sets, as illustrated in the next four lines. And
to each relation between statements there corresponds a relation between
sets, examples of which are shown in the last two lines of the figure.

Verify by means of a Venn diagram that the statement [pV (~p V g)] is
logically true. The assigned set of this statement is [P U (P U Q)] and its
Venn diagram is shown in Figure 11. In that figure the set P is shaded
in color, and the set P U Q is shaded in gray. Their union is the entire
shaded area, which is U, so that the compound statement is logically true.

Demonstrate by means of Venn diagrams that p V (g /\ r) is equivalent to
(Vg N(p \V/ ). The truth set of p V (g A r) is the entire shaded area
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of Figure 12a, and the truth set of (p V ¢) /\ (p V r) is the area in Figure
12b shaded in both color and gray. Since these two sets are equal, we see
that the two statements are equivalent.

Figure 12a

Figure 12b

Show by means of a Venn diagram that ¢ implies p — ¢. The truth set
of p — q is the shaded area in Figure 9. Since this shaded area includes
the set Q, we see that ¢ implies p — ¢.

1. Use Venn diagrams to test the following statements for equivalences.

(a)
(b)
()
(d)
(e)
(f)

~(p Vg
~p V ~q.
~(p N .
~p N\ ~q.
4 —p-
~(~p — 9.
[Ans. (a), (d), and (f) are equivalent; (b) < (¢).]

2. Use Venn diagrams to tell which of the following statements are
logically true and which are logically false.
(@ p/\ ~p.
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w

10.

®) @AV (~pV ~9q). [4ns. Logically true.]
© A9V A~9

@ ~pVig-p)

(e) p—(qg—p)-

0 ~@p->9Ng

Derive a test for inconsistency of p and g, using Venn diagrams.
Three or more statements are said to be inconsistent if they cannot
all be true. What does this say about their truth sets?

Use Venn diagrams for the following statements to test whether one
implies the other.

@@ pNgp/N\~q b) ~@g—=prp—9g
© pNg ~pVa @ ~p/Ngq
e pVgp—(~p—9. ® (p-o>g9N\~q qg9—p

Find statements having each of the following as truth sets.
(@ (PNQO)—R
b (R—Q)U(Q~—R)

(¢) P—(QUR).

@) (PN Q)U(PUR).

Use truth tables to find whether the following sets are all different.
(a) (PanR)U(PanR)U(PQOR).

®) [P—(QURIURNDOQ).

(¢) ONRK

@ (PNQON RHUPNQONR).

© [(PNOUMPNRUENQI—(pNQONR).

® PNONRUNQUR —(QNR)]=(PNONR)
Use truth tables to find whether each of the following sets is empty.
@ P—-—0)N(Q - P). [Ans. Empty.]

———

) (PUQ)N(QUR)NPUR)
) (PNRYNPNO. [Ans. Not empty.]

pr— ~
d (PUR)N Q.
e (PNQ-—-PL
@ PNE—-R)—((PNQ) —R).
Show, both by the use of truth tables and by the use of Venn diagrams,
that p V (g A r) is equivalent to (p V ¢) /\ (p V r).
Use truth tables for the following pairs of sets to test whether one is
a subset of the other.

(@) PNY; [R— (P U Q)
®) PNQON@UR);PUR
(¢ PN(QUR); PNO.
@ PNQ; PNO.

e 0, (PUQNPL

) P-—(Q-R;P-0)—R
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11. The symmetric difference of P and Q is defined to be (P — Q) U
(Q — P). What connective corresponds to this set operation?

4 PERMUTATIONS

The first step in the analysis of a scientific problem is the determination
of the set of logical possibilities. Next it is often necessary to determine
how many different possible outcomes there are. We shall find this particu-
larly important in probability theory. Hence it is desirable to develop
general techniques for solving counting problems. In this section and the
next we shall discuss the two most important cases in which it is possible
to achieve formulas that solve the problem. When a formula cannot be
derived, one must resort to certain other general counting techniques, tricks,
or, in the last resort, complete enumeration of the possibilities.

As a first problem let us consider the number of ways in which a set of
n different objects can be arranged. A listing of n different objects in a certain
order is called a permutation of the n objects. We consider first the case
of three objects, a, b, and c. We can exhibit all possible permutations of
these three objects as paths of a tree, as shown in Figure 13. Each path

Figure 13

exhibits a possible permutation, and there are six such paths. We know
there are six paths from the following argument: we have 3 choices for the
first object; after this first choice we can choose the second object in 2 ways;
then the last object must be listed; thus the total number of listings is
3-2-1=6. We could also list these permutations as follows:

abc, bca,
ach, cab,
bac, cba.

If we were to construct a similar tree for n objects, we would find that
the number of paths could be found by multiplying together the numbers
n,n— 1, n — 2, continuing down to the number 1. The number obtained
in this way occurs so often that we give it a symbol, namely n!, which is
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EXAMPLE 1

EXAMPLE 2

EXAMPLE 3

(13

read “n factorial.” Thus, for example, 3!=3-2-1=6, 4=
4-3-2+1 =24, and so on. For reasons that will be clear later, we define
0! = 1. Thus we can say there are n! different permutations of n distinct
objects.

Seven different machining operations are to be performed on a part, but
they may be performed in any sequence. We may then consider 7! = 5040
different orders in which the operations may be performed.

Ten workers are to be assigned to 10 different jobs. In how many ways
can the assignments be made? The first worker may be assigned in 10
possible ways, the second in any of the 9 remaining ways, the third in 8,
and so forth: there are 10! = 3,628,800 possible ways of assigning the
workers to the jobs.

A company has n directors. In how many ways can they be seated around
a circular table at a board meeting, if two arrangements are considered
different only if at least one person has a different person sitting on his right
in the two arrangements? To solve the problem, consider one director in
a fixed position. There are (n — 1)! ways in which the other people may
be seated. We have now counted all the arrangements we wish to consider
different. Thus there are also (n — 1)! possible seating arrangements.

For many counting problems it is not possible to give a simple formula
for the number of possible cases. In many of these the only way to find
the number of cases is to draw a tree and count them. In some problems,
the following general principle is useful.

A General Principle If one thing can be done in exactly r different ways,
for each of these a second thing can be done in exactly s different ways,
for each of the first two, a third can be done in exactly ¢ ways, and so on,
then the sequence of things can be done in r-s-. . .ways.

EXAMPLE 4

Suppose we live in town X and want to go to town Z by passing through
town Y. If there are three roads from X to Y, and two roads from Y to
Z, in how many ways can we go from town X to town Z? By applying
the general principle we see that there are 3+2 = 6 ways.

The validity of this general principle can be established by thinking of
a tree representing all the ways in which the sequence of things can be done.
There would be r branches from the starting position. From the ends of
each of these r branches there would be s new branches, and from each
of these ¢ new branches, and so on. The number of paths through the tree
would be given by the product.r-s-7....
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The number of permutations of n distinct objects is a special case of this
principle. If we were to list all the possible permutations, there would be
n possibilities for the first, for each of these n — 1 for the second, etc., until
we came to the last object, and for which there is only one possibility. Thus
there are n(n — 1) . . . 1 = n! possibilities in all.

An automobile manufacturer produces four different models; models A and
B can come in any of four body styles—sedan, hardtop, convertible, and
station wagon—while models C and D come only as sedans or hardtops.
Each can can come in one of nine colors. Thus models A and B each have
4 -9 = 36 distinguishable types, while C and D have 2-9 = 18 types, so
that in all

2:36 +2-18 = 108

different car types are produced by the manufacturer.

Suppose there are n applicants for a certain job. Three interviewers are
asked independently to rank the applicants according to their suitability.
It is decided that an applicant will be hired if he is ranked first by at least
two of the three interviewers. What fraction of the possible reports would
lead to the acceptance of some candidate? We shall solve this problem by
finding the fraction of the reports that do not lead to an acceptance and
subtract this answer from 1. Frequently an indirect attack of this kind is
easier than the direct approach. The total number of reports possible is
(n')?, since each interviewer can rank the men in n! different ways. If a
particular report does not lead to the acceptance of a candidate, it must
be true that each interviewer has put a different man in first place. By
our general principle, this can be done in n(n — 1)(n — 2) different ways.
For each possible first choice, there are {(n — 1)!}’ ways in which the re-
maining men can be ranked by the interviewers. Thus the number of reports
that do not lead to acceptance is

nin — y(n = 2)[(n — DI
Dividing this number by (n!)’, we obtain

(n - D(n—-2)

n®

as the fraction of reports that fail to accept a candidate. The fraction that
leads to acceptance is found by subtracting this fraction from I, which gives

3n—-2

n

For the case of three applicants, we see that § of the possibilities lead to
acceptance. Here the procedure might be criticized on the grounds that even
if the interviewers are completely ineffective and are essentially guessing,
there is a good chance that a candidate will be accepted on the basis of
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the reports. For n equal to ten, the fraction of acceptances is only 28, so
that it is possible to attach more significance to the interviewers’ ratings,
if they reach a decision.

EXERCISES

1. A salesman is going to call on five customers. In how many different
sequences can he do this if he
(a) Calls on all five in one day?

(b) Calls on three one day and two the next?
[Ans. (a) 120; (b) 120.]

2. A machine shop has three milling machines, five lathes, six drill presses,
and three grinders. In how many ways can a part be routed that must
first be ground, then milled, then turned on a lathe, and then drilled?
In how many ways can it be routed if these four operations can be
performed in any order?

3. A department store wants to classify each of its customers having a
charge account by using a three-character code consisting of n letters
followed by 3 — n digits. How large must n be if there are 5000 charge
accounts? What if there are 10,0007 20,000?

4. Modify Example 7 so that, to be accepted, an applicant must be first
in two of the interviewers’ ratings and must be either first or second
in the third interviewer’s rating. What fraction of the possible reports
lead to acceptance in the case of three applicants? In the case of n?

[Ans. §; 4/n2]

5. A company has six officers and six directors; two of the directors are
officers. List the possible memberships of a committee of four men
who are either officers or directors in terms of the number of members
who are (a) just officers, (b) just directors, and (c) both officers and
directors.

6. In Exercise 5, how many ways are there of obtaining a committee of
four consisting of
(a) Three who are just officers and one who is officer and director?
(b) One who is just an officer, one who is just a director, and two

who are officers and directors?
(¢) At least two who are only directors and at least one who 1s officer
and director?
(d) At least two officers and at least two directors (assuming a man
who is both officer and director satisfies both quotas)?
[4ns. 160.]

7. Show the possible arrangement of machines A, B, C, and D in a circle.
How many are there?

8. How many possible ways are there of seating six people A, B, C, D,
E, and F at a circular table if
(a) A must always have B on his right and C on his left?
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10.

11.

12.

13.

14.

15.
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(b) A must always sit next to B?

(c) A cannot sit next to B?

In seating n people around a circular table, suppose we distinguish

between two arrangements only if at least one person has at least one

different person sitting next to him in the two arrangements. That is,

we do not regard two arrangements as different simply because the

right-hand and left-hand neighbors of a person have interchanged

places. Now how many distinguishable arrangements are there?

A certain symphony orchestra always plays one of the 41 Mozart

symphonies, followed by one of 25 different modern works, followed

by one of the 9 Beethoven symphonies.

(a) How many different programs can it play?

(b) How many different programs can be given if the pieces can be
played in any order?

(¢) How many three-piece programs are possible if more than one
piece from the same category can be played?

Find the number of arrangements of the five symbols that can be

distinguished. (The same letters with different subscripts indicate

distinguishable objects.)

(a) Ay, A, B, B, B [Ans. 120.]
) A, A, B, B, B, [Ans. 60.]
(¢) A, A, B,B,B. [dns. 10.]

Show that the number of distinguishable arrangements possible for n
objects, n, of type 1, n, of type 2, and so on for r different types is

n!
! «o.nt
ny'ln,! n,!

A student takes a five-question multiple-choice test, each question
having answer a, b, c, or d. If he knows that the answers to the test
consist of two a’s and one each of b, ¢, and d and he answers accord-
ingly, in how many different ways can be answer the test? In what
fraction of these will he get four or more right answers? In what

fraction will he get three or more right? [Partial Ans. 60.]
How many signals can a ship show if it has eight flags and a signal
consists of five flags hoisted vertically on a rope? [Ans. 6720.]

We must arrange four green, one red, and four blue books on a single

shelf. All books are distinguishable.

(@) In how many ways can this be done if there are no restrictions?

(b) In how many ways if books of the same color must be grouped
together?

(¢) In how many ways if, in addition to the restriction in (b) the red
books must be to the left of the blue books?

(d) In how many ways if, in addition to the restrictions in (b) and
(c), the red and blue books must not be next to each other?

[Ans. 576.]
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16. (a) How many five-digit numbers can be formed from the digits
1,2,3,4,5 using each digit only once?
(b) How many of these numbers are less than 33,000?

17. A housewife who has just returned from shopping realizes that she
has left her sunglasses at either the bank, the post office, the drugstore,
or the grocery store, and so she must go back and search for them.
Assume that when she returns to the building where she left them,
she finds them and then goes directly home.

(a) In how many different orders can all four places be searched?

(b) Assume we now know that she found her glasses at the third place
she returned to. How many different searches can she have made?

(¢) If we know only that her glasses were left at the bank, how many
different searches can she have made?

5 LABELING PROBLEMS

The second general type of counting problem that we want to consider may
be described as follows. We have n objects and we wish to label each of
these objects with one of r different types of labels. To be more specific,
we wish to determine the total number of ways that we can label the 7 objects
with r labels if 1, of the objects are to be given the first type of label, n,
the second type, and so on, where n;, ny, . . ., n, are given nonnegative
integers such that ny + ny + -+ + n, = n.

As an example assume that we have eight customers, A, B, C, D, E, F, G,
and H, and we wish to assign to each of them one of three salesmen, Brown,
Jones, or Smith. And we want to make this assignment so that Brown is
assigned to three customers, Jones to three, and Smith to two. Notice that
we can interpret the problem as that of assigning a label—Brown, Jones,
or Smith—to each of the eight customers. In how many ways can this
assignment be made?

One way to assign the customers is to list them in some arbitrary order
(that is, select a permutation of them) and then assign Brown to the first
three, Jones to the next three, and Smith to the last two. There are 8!
permutations or listings of the customers, but not all of these lead to different
assignments. For instance, consider the following assignment:

|BCA|DFE|HG]|.

Here, Brown is assigned to B, C, and A, Jones to D, F, and E, and Smith
to H and G. Notice that another permutation such as

|ABC|DEF |GH|

gives the same customer assignments, since it differs only in the sequences
for particular salesmen. There are 3!-3!-2! such listings, since we can
arrange the three customers of Brown in 3! different ways, and for each of
these, the customers of Jones in 3! different ways, and for each of these,
the customers of Smith in 2! different ways. Since there are 3!-3!-2!
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different listings that lead to the same assignments and 8! listings in all,
there are 8!/(3!-3!-2!) different assignments of customers to salesmen.

The same argument could be carried out for r salesmen and » customers
with n, assigned to the first salesman, 7, to the second, and so on. In fact
there is really nothing special about the argument for this example, so we
have the following basic result. Let ny, ny, . . . , n, be nonnegative integers
with ny + ny + -+ + n, = n. Then:

The number of ways that n objects can be labeled with r different types of
labels, n, with the first type, n, with the second, and so on, is

n!

nt . ..on!
ny'n,! n,!

We shall denote this number by the symbol

I
Ny fo, . o o 1,

The special case when r = 2, meaning that there are just two types of
labels, is particularly important. The problem is often stated in the following
way. We are given a set of n elements; in how many ways can we choose
a subset with j elements? If we interpret the problem to mean labeling each
element as either “in the set” or “not in the set,” we see that it is just a
labeling problem whose answer is

( n )_ nl
WENANITES
and hence this is also the number of subsets with j elements. The no-

tation (j nn j) is commonly shortened to (n) These numbers are
5 - j

known as binomial coefficients.
Notice that every time we choose a subset of j elements to put in our
subset we are also choosing a subset of n — j elements to leave out. In this

way we see that
( ) ( — ) (n n— )
j j’ h ./ .]

The aces and kings are removed from a bridge deck, and from the resulting
eight-card deck a hand of two cards is dealt. How many such two-card
hands are there? By the principle just stated we see that there are

(g) = (2) = 28 such hands, since choosing a two-card hand is just the

same as choosing the remaining six cards to keep in the deck. (The reader
should enumerate the 28 possible two-card hands.)
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EXAMPLE 2

EXAMPLE 3

EXAMPLE 4

EXERCISES

A company buys a certain electronic component from three vendors. In
how many ways can it place six orders, two with vendor A, three with vendor
B, and one with vendor C? This is just the problem of labeling each of
the six orders with one of three labels, A, B, or C. There are

6 \_ 6
(2,3,1)‘ ETTI

ways of carrying out the labeling.

On August 20, 1970, 1551 different stock issues were traded on the New
York Stock Exchange. Of these, 701 advanced, 530 declined, and 320 closed
unchanged from the previous day. In how many ways could this have
happened? We must label each stock as “advanced,” “declined,” or “un-
changed.” There are

1551!
7011530!320!

different ways in which this particular result could occur. This number is
approximately equal to 1.1+ 10795,

This example will be important in probability theory, which we take up
in the next chapter. If a coin is tossed six times, there are 26 pos-
sibilities for the outcome of the six throws, since each throw can
result in either a head or a tail. How many of these possibilities result
in four heads and two tails? We can interpret each assignment of outcomes
to be a labeling of each integer from 1 to 6 with either H or T, corres-
ponding to whether heads or tails came up on that toss. Since we required

that four be labeled H and two T, the answer is (2

a coin, a similar analysis shows that there are (

) = 15. For n throws of

n
r
of H’s and T’s of length n that have exactly r heads and n — r tails.

) different sequences

1. Compute the following numbers:

(5) (2 ) [Ans. 28.]

® ()
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(d) (; 8) [4ns. 780.]
o (3)

0 (3,

(8 (23,1 [Ans. 30.]
® (413)

Show that

(a)_a-(a—l)-(a—2)-----(a—b+2)~(a—b+1)
bl b(b—1+(b—=2)---+2-1 ’

where there are exactly b terms in both the numerator and the denom-
inator.

A group of six workers is to be assigned to six of nine available jobs.
If we are only interested in which jobs are assigned, and not the specific
worker-job assignments and if all of the workers are assigned jobs, in
how many ways can the jobs be assigned to the workers? How many
possibilities are there for the unassigned jobs, if three of the jobs are
sure to be assigned? [Ans. 84, 20.]

Give an interpretation for (g) and aso for (n) Can you now give
n

a reason for making 0! = 1?

A hospital has just received eight chairs, four red and four blue. In
how many different ways can these be distributed between two waiting
rooms if each room must receive at least three chairs and at least one
chair of each color? (Assume chairs of the same color are of different
types, and thus distinguishable.)

From a lot containing six pieces, three good and three defective, a sample
of three pieces is drawn. If we distinguish each piece, find the number
of possible samples that can be formed

(a) With no restrictions. [Ans. 20.]
(b) With three good pieces and no defectives. [Ans. 1.]
(c) With two good pieces and one defective. [Ans. 9.]
(d) With one good piece and two defectives. [Ans. 9.]
(e) With no good pieces and three defectives. [Ans. 1]

What is the relation between your answer in part (a) and the answers
to the remaining four parts?
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7. Exercise 6 suggests that the following should be true:
2n\ _ (n\(n n n
(n ) h (0)(11) * (1)(11 — 1) +
n n n\n\ _ (n\? n\ )1)2
(2)(11 — 2) * * ()1)(0) B (O) * (1) + + (n '

Show that it is true.

8. Consider a town with four plumbers, A,B,C,and D. On a certain
day eight residents of the town telephone for a plumber. If each
resident selects a plumber from the telephone directory, in how many
ways can it happen that
(a) Three residents call A, three call B, one calls C, and one calls

D?
(b) The distribution of calls to the plumbers is three, three, one, and
one? [Ans. 6720.]

9. In a class of 20 students, grades of A, B, C, D, and F are to be assigned.

Omit arithmetic details in answering the following;

(a) In how many ways can this be done if there are no restrictions?

(b) In how many ways can this be done if the grades are assigned
as follows: 2 A’s,3 B’s, 10 C’s, 3 Drs, and 2 F’s?

(¢) In how many ways can this be done if the following rules are
to be satisfied: exactly 10 C’s; the same number of A’s as F’s;
the same number of B’s and D’s; always more B’s than A’s?

20 20 20
[A”S' (5, 10, 5) + (1,4, 10, 4, 1) + (2, 3,10, 3,2)‘]

10. In how many ways can a machine produce nine pieces, five of which
are good and four of which are defective? In how many ways if no
two consecutive pieces are both good or both defective?

11. Establish the identity

(-0
rNk] — \k/\r —k

for n > r > k in two ways, as follows:

(a) Replace each expression by a ratio of factorials and show that
the two sides are equal.

(b) Consider the following problem: From a set of n people a com-
mittee or r is to be chosen, and from these r people a steering
subcommittee of k people is to be selected. Show that the two
sides of the identity give two different ways of counting the
possibilities for this problem.

12. A brewing company contracts with a television station to show three
spot commercials a week for 52 weeks. The commercials consist of

2 series of cartoons. It is decided that in no two weeks will exactly

the same three cartoons be shown. What is the minimum number of
cartoons that will accomplish this?
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13. Twenty bridge players enter a tournament and form ten partnerships.
Seven of the players are good bridge players, ten are mediocre, and
three are terrible. How many possibilities are there for the winning
partnership if we know that the winning partnership
(a) Contained no terrible player? [Ans. 136.]
(b) Contained two good players?

(c) Contained one good and one mediocre player?

14. Referring to Exercise 13, answer the following questions, omitting
arithmetic computations.

(a) How many possible sets of ten partnerships are there?

(b) How many sets of ten partnerships are possible if no two terrible
players play together?

(¢) How many sets of ten partnerships are possible if, in addition to
restriction (b), no two good players play together and no two
mediocre players play together?

15. A group of nine people is to be divided into three committees of two,
three, and six members, respectively. The chairman of the group is
to serve on all three committees and is the only member of the group
who serves on more than one committee. In how many ways can the
committee assignments be made? [Ans. 168.]

16. A landlord decides to repaint two of his apartments, each having five
rooms. Assuming that he uses only green, yellow, and blue paint and
that each room is to be painted with only one color.

(a) How many different ways are there of painting the apartments?

[Ans. 310]

(b) How many different ways are there of painting the apartments,
given that no more than two colors are to be used in any one
apartment? [Ans. 8649.]

6 SOME PROPERTIES OF BINOMIAL COEFFICIENTS

The binomial coefficients (n) introduced in Section 5 will play an
J

important role in our future work. We give here some of the more important
properties of these numbers.

A convenient way to obtain these numbers is given by the famous
Pascal triangle, shown in Figure 14. To obtain the triangle we first write
the 1I’s down the sides. Any of the other numbers in the triangle has the
property that it is the sum of the two adjacent numbers in the row just
above. Thus the next row in the triangle is 1, 6, 15, 20, 15,6, 1. To find the
n

J
n and see where the diagonal line corresponding to the value of j intersects

binomial coefficient ( ) e look in the row corresponding to the number

2) = 6 is in the row marked n = 4 and on the

this row. For example, (4

diagonal marked j = 2.
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p=3 ey | 3 3 1 /f=4
n=4-—p 1 4 6 4 /;:5
n=>5——p | 5 10 10 5 1
. ) . ° . ) o
Figure 14 . . . ° . ° ® °

The property of the binomial coefficients upon which the triangle is based

=) )

This fact can be verified directly (see Exercise 5), but the following argu-

ment is interesting in itself. The number (n + 1) is the number of subsets
J

with j elements that can be formed from a set of n + 1 elements. Select one

n+1
J

do not. The latter are subsets of j elements formed from n objects, and

of the n + 1 elements, x. Of the ( ) subsets some contain x, and some

hence there are (7) such subsets. The former are constructed by adding

x to a subset of j — 1 elements formed from » elements, and hence there
are ( n 1) of them. Thus

(1=620+0)

If we look again at the Pascal triangle, we observe that the numbers in
a given row increase for a while, and then decrease. In fact, they increase
to a unique maximum when 7 is even or to two equal maxima when » is
odd.

An important application of binomial coefficients is in the expansion of
products of the form (x + )3, (a — 2b)¥, and so on. We shall derive a
general formula for these by making use of the binomial coefficients.

Consider first the special case (x + y)3. We write this as

(x + y)® = (x + y)x + p)x + ).
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To perform the multiplication, we choose either an x or y from each of the
three factors and multiply our choices together; we do this for all possible
choices and add the results. To state this as a labeling problem, note that
we want to label each of the three factors with the two labels x and y. In
how many ways can we do this using two x labels and one y? The preceding

section gives the answer (3> = 3. Hence the coefficient of x2y in the expan-

2
sion of the binomial is 3. More generally, the coefficient of the term of the

form xy3~7 will be (3) for j =0,1,2,3. Thus we can write the desired
J

= Q)+ Qe (o ()

= x3 + 3x%y + 3xy% + 3.

expahsion as

Binomial Theorem The expansion of (x + y)" is given by
n— (M)n n n-1 n n-2,2
(e +) _(n)x +(n—1)x y+(n_2)x 4

h m—1 n n
+ +(1)x} +(o)y'

Let us find the expansion for (@ — 2b)3. To fit this into the binomial theorem,
we think of x as being a and y as being — 2b. Then we have

(a — 2b)3 = a® + 3a%(=2b) + 3a(—2b)* + (—2b)3
= a3 — 6a%bh + 12ab? — 8b°.

1. Extend the Pascal triangle to n = 16. Save the result for later use.

2. (a) Show that a set with » elements has 2" subsets. [Hint: Assume you
have two different kinds of labels: “in the subset” and “not in the
subset.” In how many different ways can we label the n elements

of the set?]
B+ () ()

(b) Prove that
using the fact that a set with »n elements has 2" subsets.

(11)=10)
v+ 1/ j+1\j/

3. Using the fact that
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compute <2S7) for s=1,2,3,4,5 starting with the fact that

()=

4. Forn < m prove that

m\{n m\{n myfn myfn m+ n
(3)X6) = () + () =+ GG = (37)
by carrying out the following two steps:

(a) Show that the left-hand side counts the number of ways of choosing
equal numbers of men and women from sets of m men and n
women.

(b) Show that the right-hand side also counts the same number by
showing that we can select equal numbers of men and women by

selecting any subset of n persons from the whole set, and then
combining the men selected with the women not selected.

5. Prove that
(n . L ) —-( . " ) (n )9

using only the fact that
(n) _ n!
jro gt =t

6. Expand by the binomial theorem:

(a) (x + D% [4ns. x* + 4x3 4+ 6x2 + 4x + 1]
(b) (2x + >

(© (x -2y

d Qa— x4

() (Bx + 4y)°.

@ (100 — 2)%

7. Using the binomial theorem, prove that

@ ()+()+ @)+ +(1)=2
o (5)-()+G)- )+ =()=0mrn>0

+7 APPLICATIONS OF COUNTING TECHNIQUES

One of the important areas in which finite mathematics is applied is in
solving combinatorial decision problems. In such problems there are a finite
number of ways in which a certain procedure can be carried out, and for
each of these ways a cost or value can be calculated. We want to select
a way of carrying out the procedure that has minimum cost or maximum
value.

~F
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One method for solving combinatorial decision problems is to enumerate
all the possible ways of carrying out the procedure and selecting the one
that is most desirable. Although this is theoretically possible, it may be
practically impossible since the number of alternatives frequently is too large
to enumerate completely even with the aid of an electronic computer. Hence
methods that do not require complete enumeration are needed to solve such
problems.

We illustrate the use of counting techniques to help solve such problems.

Consider a city with a grid of streets as shown in Figure 15. Jones and
Smith are at corner A and want to go to corner B, which is four blocks
east and five blocks north of A. In how many ways can they make the

journey and travel exactly nine blocks?

L ———q

A———

You may wish to try to count all possible ways, but if you try you are
very likely to become tired and confused. This would be especially true
if the distances were larger, say 100 blocks east and 100 blocks north!
However we can reformulate the problem so that it is easy if we notice that
all that Jones and Smith have to do is to make nine decisions, each decision
being to go a block either east or north, with exactly four of the nine
decisions being to go east and the remaining five to go north. For instance,
one series of decisions, leading to the path shown dotted in Figure 15, is
represented by the decisions

“east, north, east, north, north, north, east, east, north.

Once we understand this reformulation of the problem, its solution is easy,
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EXAMPLE 2

Figure 16

since the number of ways we can choose four out of nine decisions to be
east (or equally well five out of nine to be north) is clearly

9y _ (9 _6-7-8-9 _
(4) - (5) = T.72.3.4 = 120 paths
The general problem is just as easy. If Jones and Smith are going 4 blocks
east and k blocks north, the total number N of possible paths is given by

h + k) (h + k)
N = = .
(3=
Let us make this into a combinatorial decision problem by requiring that
the number of corners turned on the path be a minimum. At least one corner
must be turned. A little experimentation will show that two paths exist which
turn at only one corner. These are (1) go four blocks east and five blocks

north and (2) go five blocks north and four blocks east. These two answers
solve the decision problem.

Suppose that point B is now three blocks east and five blocks north, and
that the streets are alternate one-way east-west and north-south as indicated
by the arrows in Figure 16. Smith is going to walk from A to B but Jones
is going to take a taxi. We know that Smith must walk eight blocks and

there are (g) = 56 possible paths he can take. After they arrive at B Jones

and Smith compare notes. Smith said the taxi drove him ten blocks. Was
the taxi driver honest?
The answer is yes, and it follows from the next theorem.

OO

~
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Figure 17
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Theorem Consider a city with alternating one-way streets in both east-west
and north-south directions. The shortest driving path between any two
points A and B where B is northeast of A and the roads at A go east and
north is either the same or exactly two blocks longer than the shortest
walking path.

The proof is quite simple since we can easily show that, starting from
A we can go to every corner of a four-block square except the center in
exactly the same distance either by driving or walking (see the corners
marked X in Figure 17.) To drive to the center of a four-block square (that
is, to one of the corners not marked with an X in Figure 17) we drive first
to an adjacent corner and then go to the center of the four-block square
using the one-way streets. The latter step adds two additional blocks to the
trip.

You may also wish to prove that if the roads at A go east and north and
B is southwest of A, then the shortest driving path is either two or four
blocks longer than the shortest walking path.

It is also true that the one-way-street pattern reduces the number of
possible driving paths from A to B. In Exercise 1 you will be asked to show
that there are six driving paths from A to B in Figure 16. Of these six there
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is only one that requires only two corners—and all the rest have more—so
that the combinatorial decision problem now has a unique answer.

It often happens that a counting problem can be formulated in a number
of different ways that sound quite different but that are in fact equivalent.
And in one of these ways the answer may suggest itself readily. To illustrate
how a reformulation can make a hard-sounding problem seem fairly easy,
consider the following problem. Count the number of ways that » indis-
tinguishable objects can be put into r cells. For instance, if there are three
objects and three cells, the number of different ways can be enumerated
as follows (using O for object and bars to indicate the sides of the cells):

' 000 : :
;00 10 | :
'00 | F O
'O |1 00 :
'O 0 0 |
0 ' 00 |
: , 000 | :
| 00 0 |
: O 100 |
: : 1 000

We see that in this case there are ten ways the task can be accomplished.
But the answer for the general case is not clear.

If we look at the problem in a slightly different manner, the answer
suggests itself. Instead of putting the objects in the cells, we imagine putting
the cells around the objects. In the above case we see that three cells are
constructed from four bars. Two of these bars must be placed at the ends.
We think of the two other bars together with our three objects as occupying
five intermediate positions. Of these five intermediate positions we must
choose two of them for bars and three for the objects. Hence the total

number of ways we can accomplish the task is (g ) = (g) = 10, which is
the answer we got by counting all the ways.

For the general case we can argue in the same manner. We have r cells
and n objects. We need r + 1 bars to form the r cells, but two of these
must be fixed on the ends. The remaining r — 1 bars together with the n
objects occupy r — 1 + n intermediate positions. And we must choose r — 1
of these for the bars and the remaining n for the objects. Hence our task
can be accomplished in

(=0

different ways.
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EXAMPLE 3

EXERCISES
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Seven people enter an elevator that will stop at five floors. In how many
different ways can the people leave the elevator if we are interested only
in the number that depart at each floor, and do not distinguish among the
people? According to our general formula, the answer is

(457 )=(3)-w

Suppose we are interested in finding the number of such possibilities in
which at least one person gets off at each floor. We can then arbitrarily
assign one person to get off at each floor, and the remaining two can get
off at any floor. They can get off the elevator in

£r5)-0-

different ways.

1. In Figure 16 show that there are exactly six different driving paths
from A to B.

2. Find the unique path from A to B requiring only two corners in Figure
16.

3. In Figure 15 suppose that point C is two blocks east and three blocks
north of point A. How many ways are there of going from A to C
and then to B by paths that are nine blocks long? [Ans. 60.]

4. In Figure 16 suppose that point C is one block east and one block
north of A. How many driving paths are there for going from A to
C and then to B that use the fewest number of blocks?

S. Four partners in a game require a total score of exactly 20 points to

win. In how many ways can they accomplish this? [Ans. (233 )]

6. In how many ways can eight apples be distributed among four boys?
In how many ways can this be done if each boy is to get at least one
apple?

7. Suppose we have n balls and r boxes with n > r. Show that the number
of different ways that the balls can be put into the boxes which insures
that there is at least one ball in every box is (’: B 11)

8. Identical prizes are to be distributed among five boys. It is observed
that there are 15 ways that this can be done if each boy is to get at
least one prize. How many prizes are there? [Ans. 7.]

9. By an ordered partition of n with r elements we mean a sequence of
nonnegative integers, possibly some 0, written in a definite order, and
having n as their sum. For instance, {1,0,3} and {3,0,1} are two
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different ordered partitions of 4 with three elements. Show that the

number of ordered partitions of n with r elements is (n tr- 1).
n
10. Show that the number of different possibilities for the outcomes of

rolling n dice is (n + 5).
n
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