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*Applications to
behavioral science

problems

1. COMMUNICATION AND SOCIOMETRIC
MATRICES

Matrices having only the entries 0 and 1 are useful in the analysis of
graphs and networks. We shall not attempt to give a complete treat-
ment of the subject here, but merely illustrate some of its more interest-
ing applications.

A communication network consists of a set of people, 41, As, . . .,
A.,, such that between some pairs of persons there is a communication
link. Such a link may be either one-way or two-way. A two-way com-
munication link might be made by telephone or radio, and a one-way
link by sending a messenger, lighting a signal light, setting off an ex-
plosion, etc. We shall use the symbol >> to indicate such a connection;
A;>> A; shall mean that that individual 4; can communicate with A4,
(in that direction). The only requirement that we put on the symbol is

() It is false that 4;>> A for any /; that is an individual cannot
(or need not) communicate with himself.

It is convenient to use directed graphs to represent communication
networks. Two such graphs are drawn in Figure 1. Individuals are
represented on the graph as (lettered) points and a communication
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Sec. 1 APPLICATIONS TO BEHAVIORAL SCIENCE PROBLEMS 385

relation between two individuals as a directed line segment (line segment
with an arrow) connecting the two individuals.

We can also represent communication networks by means of square
matrices C having only O and 1 entries, which we call communication

'?3 As
A R A Ay
Aq Aq
(a) (b)
Figure 1

matrices. The entry in the ith row and jth column of C is equal to 1 if
A can communicate with 4, (in that direction) and otherwise equal
to 0. Thus the communication matrices corresponding to the com-
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Figure 2

munication networks of Figure 1 are shown in Figure 2.

Notice that the diagonal entries of the matrices in Figure 2 are all
equal to 0. This is true in general for a communication matrix, since
the matrix restatement of condition (i) is

(l) For all I, ci; = 0.

It is not hard to see that any matrix having only 0 and 1 entries, and
with all zeros down the main diagonal, is the communication matrix
of some network.

By a dominance relation we shall mean a special kind of communica-
tion relation in which, besides (i), the following condition holds.
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(i) For each pair i, j, with i # j, either 4:>> 4; or 4,>> A4, but
not both; that is, in every pair of individuals, there is exactly
one who is dominant.

It has been observed that in the pecking order of chickens a dominance
relation holds. Also, in the play of one round of a round robin contest
among athletic teams, if ties are not allowed (as in baseball), then a
dominance relation holds.

The reader may have been surprised that we did not assume that if
A;>> A;and 4;>> A, then A;>> Ax. This is the so-called transitive law
for relations. A moment’s reflection shows that the transitive law need
not hold for dominance relations. Thus if team A beats team B and
team B beats team C (in football, say), then we cannot assume that
team A will necessarily beat team C. In every football season there are
instances in which “upsets” occur.

Dominance relations may also be depicted by means of directed
graphs. Two such are shown in Figure 3. The graph in Figure 3a

Figure 3

represents the situation: A4; dominates As, 4> dominates As, and A,
dominates A;. Similarly, the graph in Figure 3b represents the situa-
tion: A, dominates 4, and A4s;, and A4, dominates A4;. These graphs
represent the two essentially different dominance relations that are
possible among three individuals (cf. Exercise 1).

Dominance relations may also be defined by means of matrices,
called dominance matrices, defined as for communication matrices. In
Figure 4 we have shown the two dominance matrices corresponding to
the directed graphs of Figure 3.

Since a dominance matrix is derived from a dominance relation, we
can investigate the effects of conditions (i) and (ii) above on the entries
in the matrix. Condition (i) simply means that all entries on the main
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diagonal (the one which slants downward to the right) of the matrix
must be zero. Condition (ii) means that, whenever an entry above the
main diagonal of the matrix is 1, the corresponding entry of the matrix
which is placed symmetrically to it through the main diagonal is 0, and

010 011
D={0 0 1} D={0 0 1
1 00 0 0O

() (b)
Figure 4

vice versa. To state these conditions more precisely, suppose that there
are n individuals, and let D be a dominance matrix with entries d;;.
Then the conditions above are

(1) dii=0fori= 1,2,...,n.
(i) If i ¢ j, then d;; = 1 if and only if d;; = 0.

Every dominance relation is also a communication relation, hence
we shall concentrate on the latter, and what we say about them will
also be true for the former.

Since a communication matrix C is square, we can compute its
powers, C?, C3 etc. Let E = C? and consider the entry in the ith
row and jth column of E. It is

€ij = CiCij -+ CioCoj -+ « . . + CinCaj-

Now a term of the form cacir; can be nonzero only if both factors are
nonzero, that is, only if both factors are equal to 1. Butif ¢ = 1, then
individual 4; communicates with 4, ; and if ¢;; = 1, then individual A4;
communicates with 4;. In other words, A;>> A > A;. We shall call
a communication of this kind a two-stage communication. (To keep
ideas straight, let us call 4; >> A; a one-stage communication.) We can
now see that the entry e;; gives the total number of two-stage communi-
cation paths there are between A, and A4, (in that direction). For ex-
ample, let C be the matrix

C =

o.—.‘p—ap—a

1
1
0
0

O OO
C OO —

Then C2 is the matrix
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0 01 2
C: = 0 0 01
0 00O
0 00O

Thus we see that in this example 4, has one two-stage communication
path with 4; and two two-stage communicat ons with A,; similarly,
A, has one two-stage communication with 4,. These can be written
down explicitly as

A1> A >> A,

A1> A2 > Ay,

A1 > A3 >> Ay,

A2 > As> A,

The directed graph for this (dominance) situation is given in Figure 5.
The reader should trace out on the graph of Figure 5 the two-stage
communication paths given above.

A,

A,
Ase < > A,
Figure 5

Theorem. Let a communication network of n individuals be such
that, for every pair of individuals, at least one can communicate in one
stage with the other. Then there is at least one person who can com-
municate with every other person in either one or two stages. Similarly,
there is at least one person who can be communicated with in one or
two stages by every other person.

Stated in matrix language, the above theorem is: Let C be the com-
munication matrix for the network described above; then there is at
least one row of S = C -+ C? which has all its elements nonzero, except
possibly the entry on the main diagonal. Similarly, there is at least one
column having this property. '

Notice that every dominance relation satisfies the hypotheses of the
theorem, but there are communication networks, not dominance rela-
tions, that also satisfy these hypotheses.

Proof. We shall prove only the first statement since the proof of the
second is analogous.
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First we shall prove the following statement: If 4, cannot communi-
cate in either one or two stages with 4,, where i £ 1, then A4; can com-
municate in one stage with at least one more person than can 4,. We
prove this in two steps. First by the hypothesis of the theorem, we see
that:

(a) If it is false that A; > A,, then 4;>> A,.

Second we can prove that:

(b) Suppose that for all k it is false that 4, >> A, > 4;; it follows
that, if 4; > A, then also 4;>> A;.

For if A, >> A,, it is false that A4, > A,; hence, by the hypothesis of
the theorem, it is true that 4;>> A;.

Now (b) says that every one-stage communication possible for A4, is
also possible for 4;. From this and (a), it then follows that A; can
make at least one more (one-stage) communication than can A4,;.

We now return to the proof of the theorem. Let ri, rs, . . ., r, be the
row sums of the matrix C. By renaming the individuals, if necessary,
we can assume that the largest row sum is r, that is, r, > r, for k =
1,2,...,n We shall show that 4, can communicate with everyone
else in one or two stages. (The proof is based on the indirect method.)
Suppose, on the contrary, that there is an individual A4;, where i > 1,
with whom 4, cannot so communicate. By the statement proved above,
A can communicate in one stage with at least one more person than
A can. But this implies that ; > ri, which contradicts the fact that we
have named the individuals so that r;, > r,;. This contradiction estab-
lishes the theorem.

An additional conclusion which can be made from the proof of the
theorem is that the individual or individuals having the largest row sum
in the matrix C can communicate with everyone else in one or two
stages. Similarly, the individuals having the largest column sum can be
communicated with by everyone in one or two stages.

The network shown in Figure 6
satisfies the hypothesis of the theo- Az
rem, hence its conclusion. The
communication matrix for this net-
work is
A1

A, < " A,
Figure 6

-0 O O
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0
1
1

O - OO

1
1
0
0



390 APPLICATIONS TO BEHAVIORAL SCIENCE PROBLEMS Chap. Vi

Here the maximum row sum of 2 occurs in rows one, three, and four,

so that A, As, and A; can communicate with everyone else in one or
two stages. (Find the necessary communication paths in Figure 6.)
However, it requires three stages for A» to communicate with 4. The
maximum sum of 3 occurs in column two so that 4, can be communi-
cated with by everyone else in one or two stages (actually one stage is
enough). It happens also that A; and 4, can also be communicated
with in one or two stages; however, as observed above, 4; cannot be.

Neither of the networks in Figure 1 satisfies the hypothesis of the
theorem. It happens that the network in Figure 1a does satisfy the con-
clusion of the theorem, while the network in Figure 1b does not. (See

Exercise 7.)

As a final application of dominance matrices, we shall define the
power of an individual. By the power of an individual in a dominance
situation, we mean the total number of one-stage and two-stage domi-
nances which he can exert.- Since the total number of one-stage domi-
nances exerted by A, is the sum of the entries in row 7 of the matrix D,
and the total number of two-stage dominances exerted by A, is the sum
of the entries in row i of the matrix D2, we see that the power of 4; can
be expressed as follows:

The power of 4, is the sum of the entries in row 7 of the
matrix S = D + D
In the example of Flgure 7 it is easy to check that the powers

b of the various individuals are the

following.
The power of 4 is 5. « it
A The power of Bis 2. A
Ce < *B The power of Cis 3. © Z
Figure 7 The power of Dis 4. U 3

Example. (Athletic contest). The idea of the power of an individual
can be used to judge athletic events. For example, the result of a single
round of a round robin athletic event results in the following data.

Team A beats teams B and D.
Team B beats team C.
Team C beats team A.
Team D beats teams C and B.

Then it is easy to check that this is precisely the dominance situation
shown in Figure 7. By the analysis given above we can rate the teams
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in the following order according to their respective powers: 4, D, C,
and B.

It should be remarked that the above definition of the power of an
individual is not the only one possible. In Exercise 13 below we suggest
another definition of power which gives different results. Before using
one or the other of these definitions, a sociologist should examine them
carefully to see which (if either) fits his needs.

EXERCISES

1. Show that there are only two essentially different pecking orders
possible among three chickens, namely, those given in Figure 3. [Hint: Use
directed graphs.]

2. Find the dominance matrices D corresponding to the following directed
graphs.

Az
A,
Ay
A, < »Ay Ayl > *A,
(a) (b)
Az
A
A > *A,

(c)

o= OO
— ek (O
-0 OO
OO O =
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3. Compute the matrices D?and S = D 4 D?and determine the powers
of each of the individuals in the examples of Exercise 2.

0110 0211
0000 0000
2 — A .
[4ns. (0) D 010 1) {20 1 ]i%04dl
1100

—
N
Pt
(=}

4. Find the communication matrices for the following communication
networks.

A1 - Az .
A, As
A A Aa
A A A, As
(a)
Ay
As A3
A, Az Ay
(c) (d)
0 01O
1 0 0O
[Ans. (a) 110 0 .
1 010

5. Draw the directed graphs corresponding to the following communica-
tion matrices.

010!
@ (o o 1) ®)
110 00 0 1
1110
0101 0000
1010 000 1
@11 001 @11 00 0
0110 001 0




Sec. 1 APPLICATIONS TO BEHAVIORAL SCIENCE PROBLEMS 393

6. Which of the communication networks whose matrices are given in
Exercise 5 satisfy the hypothesis of the theorem of this section?
[Ans. (2) and (c).]
7. Show that the network in Figure 1a satisfies the conclusion of the
theorem, while the network in Figure 1b does not.

8. By computing the matrix S in each case, find the persons who can
communicate with everyone else in one or two stages and those who can be
communicated with in one or two stages, for the communication matrices in
Exercise 5. (In some cases such persons need not exist.)

[Ans. (a) Everyone; (b) everyone; (d) neither type of person exists.]

9. Find all the essentially different pecking orders that are possible among
four chickens. [Ans. There are four essentially different ones.]

10. If C is any communication matrix, give the interpretation of the entries
in the columns of the matrix S = C -+ C2. Also give the interpretation for
the column sums of S.

11. Find all communication networks among three individuals which
satisfy the hypothesis of the theorem of this section. How many of these are
essentially different? [4ns. There are seven.]

12. A round robin tennis match among four people has produced the
following results.
Smith has beaten Brown and Jones.
Jones has beaten Brown.
Taylor has beaten Smith, Brown, and Jones.
By finding the powers of each player, rank them into first, second, third, and
fourth place. Does this ranking agree with your intuition?
[Ans. Taylor has power = 6, Smith has power = 3, Jones has power
= 1, and Brown has power = 0.]

13. Let the power; of an individual be the power as defined in the text
above. Define a new power, called power,, of an individual as follows: If
D is the dominance matrix for a group of n individuals, then the power; of
A; is the sum of row i of the matrix -

S’ =D+ iD2,
Find the power of each of the teams in the athletic team example in the text.
Show that the power. of a team need not equal his power,. Comment on the
result.

14. Find the power; of the players in Exercise 12. Discuss its relation with

the power, of each of the players.
[Ans. Taylor has power, = §, Smith has power; = 3, Jones has power,

= 1, Brown has power; = 0.]
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15. If C is a communication matrix, give an interpretation for the entries
of the matrix C3. Do the same for the matrix C4.
[Ans. The entry in row i and column j of C? gives the number of three-
stage communications from i to j; the same entry of C* gives the num-
ber of four-stage communications from i to j.]

16. If C is a communication matrix, give an interpretation for the entries
ofthematrix S=C+C*+ C3 4 ...+ C™
17. Prove the second statement of the theorem of the present section.

18. Prove that the following statement is true: In a communication net-
work involving three individuals, it is possible for a message starting from
any person to get to any other person if and only if the following condition
is satisfied: each individual can send a message to at least one person and can
receive a message from at least one person.

19. Show that the matrix form of the condition in Exercise 18 is: Every
row and column of the communication matrix must have at least one nonzero
entry.

20. Is the statement in Exercise 18 true for a communication network
involving two individuals? For four or more individuals? [Ans. Yes; no.]

2. EQUIVALENCE CLASSES IN COMMUNICATION
NETWORKS

When considering communication networks, it becomes obvious that
the various members of the network play different roles. Some mem-
bers can only send messages, some can only receive them, and others
can both send and receive. Subsets of members are also important.
We shall consider subsets of members having the following two prop-
erties: (a) every member of the subset can both send and receive
messages (not necessarily in one step) to and from every other member
in the subset; and (b) the subset having property (a) is as large as
possible. We shall show that it is possible to partition the set of all
people in the network into subsets (called equivalence classes) having
these two properties, and that between such equivalence classes there
is at most a one-way communication link. We then apply our results
to three different problems, (i) putting any nonnegative matrix into
canonical form, (ii) the classification of states in a Markov chain, and
(iii) the solution of an archeological problem.

As in the previous section, let Ay, ..., 4, be the members of the
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communication network. We define a relation, R, between some pairs
of these members as follows: let 4;RA4; mean “A, can send a message
r 9

to A; (in that direction and not necessarily in one step) or else i = j.
Then it is easy to show that the relation R has the following two

properties:

(1) ARA; for every 1. (Reflexive axiom)
(2) A.RA; and 4,RA, implies A,.RA,. (Transitive axiom)

To see this, note that property (1) follows from the definition of R,
and (2) follows since if 4; can send a message to A; and A4, can send a
message to A, then A4; can send a message to A4, by routing it through A;.

If S is any set and R is any relation defined for members of S that
satisfies axioms (1) and (2), then R is called a weak ordering on S.

We next define another relation on the states of the network. Let
ATA; hold if and only if (4.R4;) A (4,RA)), that is, A,TA; holds if
and only if “A; has a two-way communication with 4; or else i = j.”
It is easy to show that the relation T has the following three properties:

(3) ATA.. (Reflexive axiom)
(4) ATA;if and only if 4,TA.. (Symmetric axiom)
(5) A.TA; and A;TA; implies A;TA;. (Transitive axiom)

In Exercise 1 the reader is asked to establish these three axioms.

If S'is any set and T is any relation defined for members of S that
satisfies axioms (3), (4), and (5), then T is called an equivalence relation
on S. The principal result about equivalence relations defined over a
set S is that they partition S into equivalence classes.

DEerFINITION. We say that A; and A; are equivalent if A;TA;. For any
A, the equivalence class E; that it determines is the truth set of the state-
ment 4, TA,, i.e., it is the set of all 4; such that 4, TA; is true.

Theorem 1. The equivalence classes of T partition S, the set of
members of the communication network.

Proof. We must show that every member A4; of S belongs to one and
only one equivalence class. Let S’ be the equivalence class of 4;. Since
ATA; [from (3) above], we know that A, belongs to S’, which shows
that 4, belongs to some equivalence class, and also that .S’ is not empty.

Now let 4; and A, be any two members of S, and let S" and S”,
respectively, be their equivalence classes. We shall show that either
S"NS”"=8 or else S"=8".If NS’ =6 then we are done.
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Hence, suppose that there is an element X of Sin §" M §”. Since X
is in S’, we have 4, T.X; and since X is in S”, we have 4,TX. Using 4)
we have XTA;. But, by virtue of transitivity (5), 4.TX and XTA4; im-
plies 4, TA;, hence A;isin S’. Let Y be any element is S”/ so that A4;TY.
Using transitivity again, we have 4,T4; and A;TY so that Y is in §'.
We have thus shown that every element of $” isin §’, i.e., S C S’. In
the same manner, one can show that S’ C S”. Hence S’ = S,

Since we have shown that every member of S belongs to an equiva-
Jence class, and that every pair of equivalence classes are either identical
or else disjoint, we have shown that they partition S, completing the
proof of the theorem.

We now define a relation R on the equivalence classes of S. Namely,
we let S'RS” mean, “either S’ = S” or else some member of S’ can
send a message to some member of S/. We leave it to the reader in
Exercise 6 to show that R is a weak ordering of the set of equivalence
classes of S.

Theorem 2. Let S’ and S” be two equivalence classes; then, if
S’RS”, it is false that S”’RS’. In other words, at most one-way com-
munication is possible between equivalence classes.

Proof. Suppose, on the contrary, that " and S” are two equivalence
classes such that S'RS” and S”’RS’. Then there is an element X in .S’
that can communicate with some element Y in S’'; and there is an ele-
ment Z in S’ that can communicate with some element U in S’. Since
Y and Z are in S, two-way communication is possible between them;
and since X and U are in S’ they also have two-way communication.
Hence Y can communicate with Z, Z can communicate with U and U
can communicate with X. Therefore X and Y are in the same equiva-
lence class, contradicting the assumption that they were in different (and
hence disjoint) equivalence classes. This completes the proof.

For applications it is important to be able to find the equivalence
classes for a given communication network. We develop an iterative
method that constructs the following sets.

(6) T, the set of states A, can send a message 7o (not necessarily in

one step),

(7) F:, the set of states that A, can receive a message Jfrom (not

necessarily in one step),

(8) E., the equivalence class of 4.

4
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It is easily seen (see Exercise 7) that Ex = T, M Fy, so that we develop
a method for interatively (that is, step by step) constructing the sets T3
and F,. We illustrate the method with an example.

Example 1. We wish to get in contact with five alumni of a certain
college, but do not know all their addresses. However, we have in-
formation of the form, “Jones knows where Brown is,” “Smith knows
where Doe is,” etc. We summarize this information in the communica-
tion matrix of Figure 8. In that figure for i # j we put 1 in the i,jth

Brown Jones Smith Adams Doe

Brown 0 0 0 0 0

Jones 1 0 0 1 0

Smith 0 0 0 0 1

Adams 0 1 1 0 0

Doe 0 0 0 0 0
Figure 8

entry if the ith person knows where the jth one is. What is the smallest
number of people that we must contact in order to send a message to
all of them?

In order to solve this problem we first find the “send-to” lists for each
person. We start by listing all the persons a person can contact in zero
or one steps; these data come directly out of the communication matrix.
These people form the “first stage approximation” to the “send-to”
lists. Next we go down the list of persons and add to his “send-to” list
all the people who can be contacted by people already on his first-stage
approximate “send-to” list. The results are the “second-stage approxi-
mation to the send-to lists.” We continue this process, step by step,
until for the first time we go through the list and do not add any mem-
ber to any person’s “send-to”” list. We then have the actual “send-to0”
sets for each person, since going through the process again would not
change any list. The computations for the example in Figure 8 are
shown in Figure 9.

The first-stage approximation to the “send-to” list is shown in the
second column of Figure 9. On the first pass through the list we add
3 to Jones’s list, which is indicated by bold-face in the third column.
We also add 1 and 5 to Adams’ list, also indicated by bold-faced
numerals. On the next pass through the computation we add 5 to
Jones’s list and make no other changes. The next pass through the
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computation produces no further changes so that the final lists shown
in the third column of Figure 9 is the complete “send-to” list for each

person.

Zero- or One-Stage

Person Communication Send-to List
1 Brown 1 1
2 Jones 1,2,4 1,2,4,3,5
3 Smith 3,5 3,5
4 Adams 2,3, 4 2,3,41,5
5 Doe 5 5

Figure 9

We see that we have solved the problem posed above, for by contact-
ing either Jones or Adams, we can relay a message to each of the five
alumni members.

Let us go further and find the “receive-from” lists and the equiva-
lence classes for each person in the network. The “receive-from™ lists
are easy, for we simply go down the “send-to” list and if we find mem-
ber k on the ith person’s “send-to” list, we put i on the kth person’s
«receive-from” list. And we compute the equivalence classes from the
relationship Ex = T% M Fi. These computations are shown in Figure 10.

Person Send-to List Receive-from List Equivalence Class
1 Brown 1 1,2,4 {1}
2 Jones 1,2,4,3,5 2,4 {2,4}
3 Smith 3,5 2,3, 4 {3}
4 Adams 2,3,4,1,5 2,4 {2, 4}
5 Doe 5 2,3,4,5 {5}
Figure 10

It is interesting to draw the graph of the weak ordering relation R on
the equivalence classes. To find the graph we simply check whether
one-way communication is possible between each pair of equivalence
classes. Then we connect two equivalence classes in the graph if such
one-way communication is possible and if there is no intermediate class

PR

e
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in the communication path. The graph of the weak ordering relation
for the matrix of Figure 8 is shown in Figure 11. Note that equivalence
class {2, 4} can communicate directly to {1} and

{3} and to {5} through {3}. This graph shows {5}

very clearly the fact, noted above, that in order to

contact all members of the group it is sufficient ) {3}

to contact either member of the equivalence class

{2’ 4} . {2,4}
Figure 11

We can use the weak ordering of equivalence
classes to put the matrix of Figure 8 in a canonical form, which is
characterized by the following definition.

DEerINITION. Let C be any communication matrix, and let §’, S”, . . .,
be the equivalence classes of its states. Then, by a canonical form of
C, we shall mean a reordering of the rows and columns of C so that
the following two properties are satisfied.

(i) Members of a given equivalence class are listed next to each
other.

(ii) No equivalence class S’ is listed until all classes S” “above” it
in the graph of the equivalence classes have already been listed,
i.e., S’ is not listed until all classes such that S’'RS” have already

been listed.

Example 1 (continued). We illustrate this definition in terms of the
matrix A of Figure 8. Using the weak ordering diagram of Figure 11,
we see that the following listing of the states (row indices) of 4 will
satisfy the definition: 1, 5, 3, 2, 4. The resulting matrix is shown in
Figure 12. In that figure dotted lines appear along the main diagonal,
indicating the equivalence classes. Note that above the main diagonal
blocks the only entries are zeros. Matrices having this property are
called block triangular.

The same kind of canonical form is possible for any nonnegative
matrix 4, if we let C(4) be the communication matrix derived from 4
by putting zeros on the main diagonal, and replacing positive off-
diagonal entries by ones. We discuss this for Markov chain transition
matrices. When the matrix under consideration is the transition matrix
of a Markov chain, the classification of the states is extremely important
in the study of the behavior of the chain, as the following definition

indicates.
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Brown Doe Smith Jones Adams

1 Brown 0 0 0 0 0

S Doe 0 0 0 0 0

3 Smith 0 1 0 0 0

2 Jones 1 0 0 0 1

4 Adams 0 0 1 1 0
Figure 12

DerINITION. Let P be the transition matrix of a Markov chain, and
let C(P) be the matrix obtained from P by replacing each diagonal
entry by 0 and replacing each positive off-diagonal entry by 1. Let
S’y 8§, . .. be the equivalence classes of the states of C(P); then

(1) The maximal equivalence classes, that is, those classes that can-
not send to other classes, are called ergodic sets. Members of ergodic
sets are called ergodic states. 1f an ergodic set contains a single state,
that state is an absorbing state.

(it) All equivalence classes that can send messages to other classes
are called transient sets. Members of transient sets are called transient
states.

Example 2. Consider the transition matrix

00100
03 2 £ 0
P=11000 0]
00010
004% 0 2

Changing the diagonal entries to zeros and the positive off-diagonal
entries to ones gives

C(P) =

VoW N e

CO = OO ™
CooCcCoCoOoN
—_—0 O = W
COOm—mO
C OO OO W

Lo T a0 S R I o DY o N o DO @ TRV WY N N 4 /N ek s PA e o~ s

]
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In Exercise 8 the reader will be asked to show that the equivalence
classes of C(P) are {4}, {1, 3}, {5}, and {2}. Moreover, the graph of
the weak ordering relation on these classes is as

shown in Figure 13. As before, the graph is obtained (4} 0, 3}
by checking whether or not one-way communica- T T
tion is possible between each pair of equivalence (2} -~ {5}
classes. From this diagram and the above definition Figure 13

we see that {4} and {1, 3} are ergodic sets and
that {4} is an absorbing state; also {2} and {5} are transient sets. A
canonical form of the matrix found by listing the states in the order

4,1,3,5,2is

110 0 0 O
0/0 1|0 O
P = 0j1 010 O
0 0 3|%2]0
p 01 0}

Note again that it is block triangular, as indicated by the dotted lines.
There are other orders in which to list the states, which lead to slightly
different canonical forms for the matrix (see Exercise 9).

We conclude this section with an application of the above theory to
an archeological problem.

Example 3. Recent archeological investigations in Asia Minor, be-
tween the Mediterranean and Black Seas, have disclosed the existence
of an ancient Assyrian civilization dating back to at least the nineteenth

century B.C. This civilization came to light when peasants working in

fields turned up clay tablets having written inscriptions. Upon being
translated, these tablets turned out to be letters written between mer-
chants located at various cities and towns of the ancient civilization.
The letters contained the name of the sender, the name of the receiver,
and an order to buy, sell, or transport goods, to pay money, etc. But
the date of the letter was not included. In addition, merchants in dif-
ferent villages sometimes had the same name, and the location of the
merchant was not always made clear in each of the letters. More
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than 2500 such tablets have been discovered; their contents give rise
to two different problems. The first problem is to try to order the
merchants according to their chronological dates. A second problem
is to try to determine when the same name refers. to more than one
person. By studying the communication network that can be set up
from the data of the tablets, we shall illustrate with small examples
methods of trying to get partial answers to these questions.

To illustrate an approach to the first problem, suppose that we set
up a (hypothetical) communication matrix for a group of ten merchants,
as indicated in the matrix of Figure 14. In that matrix an entry of 1 is

1 2 3 4 5 6 7 8 9 10

1 0 0 0 0 0 1 0 0 0 0
2 /0 0 1 0 1 0 0 0 0 0
310 1 0 0 1 1 0 0 0 0
41 0 0 0 0 0 0 0 1 0 1
51 O 1 1 0 0 0 0 0 0 0
6y O 0 0 0] 0 0 0 0 0 0
71 0 0 0 0 0 0 0 1 0 0
810 0 1 0 0 0 0 0 1 0
9 \0 0 0 0 0 0 1 0 0 0
10 1 0 0 0 0 0 0 0 0 0

Figure 14

made in the 7,jth entry if merchant i sent a letter to merchant j. Carry-
ing out the same analysis as in Example 1 the equivalence classes are
found to be {6}, {1, 10}, {2, 3, 5}, {7, 8,9}, and {4}. The graph of
the weak ordering relation on these classes is shown in Figure 15. It

was determined, as before, by seeing whether

{6} there is one-way communication between

/ N each pair of equivalence classes. It is clear
{2,3,5} that members of a given equivalence class

{1,10} t are contemporaries. But it is not clear which
{7,8,9} of the equivalence classes is earlier, merely

7 from the one-way communication between

{4} them. However, further analysis of the con-

Figure 15 tent of the messages might help to establish

this. For instance, if one of the messages
exchanged among merchants 7, 8, and 9 were related to one of the
messages exchanged among merchants 2, 3, and 5, then it would be
reasonable to assume that they are all contemporaries. We see that here
is a case in which mathematics cannot furnish the complete answer
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to the problem, but merely indicate directions in which to search
for more information.

To illustrate the second problem mentioned above, we use some
actual data (see p. 865 of the second reference listed at the end of the
chapter) summarized in the communication matrix of Figure 16. The

<

1 2 3 4 5 6 7 8 9 10
1 ASSUR-TAB 0 1 0 0 0 0 0 1 0 1
2 PUSHU-KIN 1 0 1 1 1 1 0 1 1 0
3 LaQIPUM 0 1 0 1 0 1 0 1 1 0
4 AMUR-ISHTAR 0 1 1 0 1 1 1 1 1 1
5 ASSUR-TAKLAKU 0 1 0 1 0 1 0 0 0 1
6 ASSUR-NA’DA 0 1 1 1 1 0 1 0 0 0
T ASSUR-IMITTI 0 0 0 1 0 1 0 0 0 0
8 m(1)p-rLuMm 1 1 1 1 0 0 0 0 1 0
9 HINA 0 1 1 1 0 0 0 1 0 0
10 TARAM-KUBIM. i 0 0 1 1 0 0 0 0
Figure 16

matrix is symmetric, indicating that either there is a two-way (direct)
communication between two individuals or else no (direct) communica-
tion at all. All the merchants belong to the same equivalence class, so
that the previous analysis does not shed any light on their relative dates,
except that they are contemporaries. But is it possible that some names
really stand for two different individuals? No definite answer can be
provided to this question, but some indications can be provided by
finding the cligues in the communication network.

DEFINITION. A cligue of a communication network is a subset C of
individuals containing at least three members, with the following two
properties.

(1) Every pair of members of the clique has two-way communica-

tion.
(1) The subset C is as large as possible with every pair of members

having property (i).

The problem of finding all cliques has been solved but is too lengthy,
to describe here. We content ourselves with listing all the maximal

cliques for the data of Figure 16. They are
{1,2,8}, {2,3,4,6}, {2,3,4,8,9}, {2,4,5¢6}, {4,6,7}.

From this list we can derive the frequency with which each merchant
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occurs in a clique, as shown in Figure 17. From that table it is evident
that merchants 2 PUSHU-KIN and 4 AMUR-ISHTAR occur most frequently
in cliques, and hence these names are most likely to be homonyms for
two different people. Here again, mathematics does not completely

Merchant 1 2 3 4 5 6 7 , 8 9 10

Number of times 1 4 2 4 1 3 1

s . 2 1 0
in a clique

Figure 17

solve the problem, but merely indicates the direction in which to look
for further evidence.

The above calculations, though oversimplified, are illustrative of the
kinds of calculations that must be done n order to study the complete -
communication network revealed by the 2500 tablets so far found at
the archeological site.

EXERCISES
1. Show that the relation T satisfies (3), (4), and (5).

2. Show that the relation ““ > is a weak ordering relation on the set of
integers. [Hint: Show that x > y, for x and y integers, satisfies (1) and 2).]

3. Show that the relation “="" is an equivalence relation on the set of all
rational numbers (fractions). What are the equivalence classes it determines ?

4. Let x and y be any two words and ‘et xRy mean “Word x occurs no
later than word y in the dictionary.” Show that R is a weak order on the set
of words.

5. Let x and y be people and let xTy mean “x is the same height as y.”
Show that T is an equivalence relation. What are the equivalence classes it
determines? Show that the relation “at least as tall as” ‘s a weak ordering
relation on these equivalence classes.

6. Let R and T be the relations defined in the text; let S/, S”, . . . be the
equivalence classes determined by T; and let S’R.S” be as defined in the text.
Show that R satisfies properties (1) and (2), that 1s, it is a weak ordering on
the set of equivalence classes.

7. Let E,, T}, and Fy be as defined in the text. Show that E, = T, N F,.

8. Find the equivalence classes of the communication matrix given in
Example 2.
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9. Show that there are ten different canonical forms for the transition
matrix of Example 2,

10. Show that if 4 can communicate with B in a communication network
having n persons, then it must be possible to do this in not more than n — 1
steps.

11. Suppose that there are six different individuals each of whom knows
the location of certain others.sThis information is summarized in the fol-
lowing communication matrix.

1 23 45 6
1 0 000 OO
2 1 00 010
3 0 00 0O 1
4 01 0001
5 1 0 00 0O
6 0 00110

(a) Find the equivalence classes of T.
(b) Draw the graph of the weak ordering relation on the equivalence

classes.
(c) Suppose you know where 3 is and you want to find out where 1 is.
What is the shortest communication path from 3 to 1?
[Partial Ans. It has ength 3.]

(d) What is the longest such communication path?
[Partial Ans. It has length 5.]
12. Classify each of the states of the Markov chain whose transition matrix
is given below, and put the matrix into a canonical form. [Hint: Use some of
the results of Exercise 11.]

1 000O00O
£+ 00013 O
0 00 0 O01
0 2 00 0 1%
2 000 2O
0 00 % % 3
[Ans. One canonical form is
1 00 00O
2 30000
110000
002 01%0O0
0 3403 30
0 00010

State 1 is absorbing; all other states are transient.]
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13. If a matrix M can be put into the form
A 0
M=(3 o)
where 0 is the zero matrix then M is said to be reducible or decomposable. If
A and C are square and nonsingular show that
At 0
-.1 =
M ( —C'BA™! C—l)'
14. Use the results of Exercise 13 to show how a canonical form of a non-
negative matrix can be used to simplify the work of finding its inverse.

15. (a) Show that the Markov chain in Exercise 12 is an absorbing Markov

chain.

(b) Find the matrix Q in canonical form. Show that the matrix I — Q
is block triangular.

(c) Use the results of Exercises 13 and 14 to find N = (I — Q).
[Ans. With the canonical form of the answer to Exercise 12, the

inverse is
£ 00 0O
£ 10 0O
N=(I-0Qr'=| 3¢ ¢ § 3 0].]
#2420
RS

16. Draw the graph of a three-person clique. Also that of a four-person
clique. Describe the graph of a clique containing »n persons (n > 3).

17. Verify that the cliques given in Example 3 satisfy the two properties
given in the definition of a clique.

18. Let C; and C: be any two distinct cliques of the same communication

network.
(a) Show by examples that C; (N C, may or may not be empty.

(b) Prove that the sets C; — C; and C; — C; are never empty.

3. STOCHASTIC PROCESSES IN GENETICS

The simplest type of inheritance of traits in animals occurs when a
trait is governed by a pair of genes, each of which may be of two types,
say G and g. An individual may have a GG combination or Gg (which
is genetically the same as gG) or gg. Very often the GG and Gg types
are indistinguishable in appearance, and then we say that the G gene
dominates the g gene. An individual is called dominant if he has GG
genes, recessive if he has gg, and hybrid with a Gg mixture.
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In the mating of two animals, the offspring inherits one gene of the
pair from each parent, and the basic assumption of genetics is that
these genes are selected at random, independently of each other. This
assumption determines the probability of every type of offspring. Thus
the offspring of two dominant parents must be dominant, of two re-
cessive parents must be recessive, and of one dominant and one recessive
parent must be hybrid. In the mating of a dominant and a hybrid
animal, the offspring must get a G gene from the former and has
probability } for getting G or g from the latter, hence the probabilities
are even for getting a dominant or a hybrid offspring. Again in the
mating of a recessive and a hybrid, there is an even chance of getting
either a recessive or a hybrid. In the mating of two hybrids, the off-
spring has probability } for getting a G or a g from each parent. Hence
the probabilities are ; for GG, % for Gg, and } for gg.

Example 1. Let us consider a process of continued crossings. We
start with an individual of unknown genetic character, and cross it with
a hybrid. The offspring is again crossed with a hybrid, etc. The result-
ing process is a Markov chain. The states are “dominant,” “hybrid,”
and “recessive.” The transition probabilities are

D H R
D /} % O
M - P=H ( } 1
R\O § 3

as can be seen from the previous paragraph. The matrix P? has all
entries positive (see Exercise 1), hence we know from Chapter V, Sec-
tion 7, that there is a unique fixed point probability vector, i.e., a vector
p such that pP = p. By solving three equations, we find the fixed vector
tobep = (4, 1, 1). Hence, no matter what type the original animal was,
after repeated crossing we have probability nearly 1 of having a domi-
nant,  of having a hybrid, and 1 of having a recessive offspring.

In Example 1 we may ask a more difficult question. Suppose that
we have a regular matrix P (as in Example 1), with states ay, . . ., @n.
The process keeps going through all the states. If we are in a;, how
long, on the average, will it take for the process to return to a;? We
can even ask the more general question of how long, on the average,
it takes to go from a; to a;.
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The average here is taken in the sense of an expected value. There is
a probability p; that we reach a; for the first time in one step, p that we
reach it first in two steps, etc. The expected valueisp;-1 + p2-2 4. ...
(See Chapter 1V, Section 12.) This, in general, requires a difficult com-
putation. However, there is a much simpler way of finding the expected
values. Let the expected number of steps required to go from state a;
to a; be mi;. How can we go from a; to a;7 We go from a; to a. with
probability pa in one step. If k = j, we are there. If k 5 j, it takes an
average of my; steps more to get to a;. Hence m;; is equal to 1 plus the
sum of pamy; for all k > j. To state this as a matrix equation we define
the matrix M to be the matrix M but with all the diagonal entries m;;
being replaced by 0; also let C be the square matrix having all entries
equal to 1. Then the equations for m;; can be written in matrix form as

) M = PM 4 C.

To see that this is so let us concentrate on the 7, jth entry of equation (2).
On the left-hand side it is m;;. On the right-hand side it is the /,jth entry
of PM which is the sum of all products p.my; for k 5 j (since the main
diagonal of M is zero) plus the 7,jth entry in C, which is 1. This is the
same as before. Let us now multiply (2) by p, the fixed vector of P.
Recalling that p is a probability vector we obtain

(3 pM=pM~+ (..., 1)
or
4) pM—M=(,...,1.

But all components of M — M except the diagonal ones are 0. Hence
our equation simply states that psm;; = 1 for each i This tells us that
mi; = 1/p.. The average time it takes to return from a; to a; is the
reciprocal of limiting probability of being in a;. In Example 1 this means
that if we have a dominant offspring we will have another dominant
in an average of four steps, after a hybrid we have another hybrid in
an average of two steps, and a recessive follows a recessive on the

average in four steps.

Example 2. A more interesting, and also more complex, process is
obtained by crossing a given population with itself, and then crossing
the offspring with offspring, etc. Let us suppose that our population
has a fraction d of dominants, 4 hybrids, and r recessives. Then
d+ h+ r = 1. If the population is very large and they are mated
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at random, then (by the law of large numbers) we can expect d® to be
the fraction of matings in which both parents are dominant,
fraction of mating a dominant with a hybrid, etc. The tree of logical
possibilities with branch probabilities marked on it is shown in Figure
18. We use it to compute the fraction of each type. To do this we

First Second Offspring Probability
parent parent
3 1
2 —D zdh
D h H=— :
1 2
R H dr
g S 3dn
D\ 1
d 1 - H ’a‘dh
: " op i
h h 3 )
H H\2 H in?
r TR 1n?
g H h
r R< znr
1 R %hl’
2
g D ! H dr
/ : _—H Thr
R h He— :
=hr

Figure 18

simply add together the path weights of the paths ending in D, in H,

and in R. The results are: :

D: d*+ 2-3dh + 1h* = & + dh + 1h?
H: 2-1dh+ 2dr + 3h* + 2-3hr = dh + rh + 2dr + 3R
R: n2 + 2-hr + r* = r* 4+ hr + 14

If we represent the fractions in a given generation by a row vector,
the process may be thought of as a transformation T which changes a

row vector into another row vector.

(5) @ k)T =(d+ dh+ 3k dh + rh+ 2dr + 3h2, r? + rh + 102).

The trouble is that (see Exercise 2) the transformation T is not linear.
Nevertheless, we know that after n crossings the distribution will be

2dh the
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(d, h, r)T", so that, if we can get a simple formula for 7™, we can describe
the results simply. And here luck is with us.

Let us compute T3, i.e., find what happens if we apply twice the
transformation specified above. The first generation of offspring is
distributed according to the formula (5). We now take the first com-
ponent on the right side as d, the second as A, and the third as r, and
compute d? + dh + 1A% etc. Here we find to our surprise that 72 = T.
Hence T* = T.

This means that (d, h, r)T = (d, h, r)T™, which in turn means that the
distribution after many generations is the same as in the first generation
of offspring. Hence we say that the process reaches an equilibrium in
one step. It must, however, be remembered that our fractions are only
approximate, and are a good approximation only for very large popu-
lations.

For the geneticist, this result is very interesting. It shows that, in a
population in which no mutations occur and selection does not take
place, “evolution” is all over in a single generation.

To the mathematician the process is interesting since it is an example
of a quadratic transformation, a transformation more complex than
the linear ones we have heretofore studied.

The next two examples give applications of absorbing Markov chains
to genetics.

Example 3. If we keep crossing the offspring with a dominant ani-
mal, the result is quite different. The transition matrix is easily found
to be

D H R
D /1 0 0
©) P=H [} 3 o)
R \0 1 0

This is an absorbing Markov chain with one absorbing state, D. Using
the results of Chapter V, Section 8, we have

o (3 -0
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, (20
¥=(59)

The absorption probabilities are

pene= (3 9) ()= (1)

as was to be expected, since there is only one absorbing state. This
means that if we keep crossing the population with dominants, then
after sufficiently many crossings we can expect only dominants. The
mean number of steps to absorption are found by

o= 9()-C)

Hence we expect the process to be absorbed in two steps starting from
state H, and three steps starting from state R.

Example 4. Let us construct a more complicated example of an
absorbing Markov chain. We start with two animals of opposite sex,
cross them, select two of their offspring of opposite sex and cross those,
etc. To simplify the example we will assume that the trait under con-
sideration is independent of sex.

Here a state is determined by a pair of animals. Hence the states of
our process will be: a; = (D, D), a; = (D, H), a3 = (D, R), as = (H, H),

"as = (H, R), and as = (R, R). Clearly, states a; and a¢ are absorbing,

since if we cross two dominants or two recessives we must get one of
the same type. The rest of the transition probabilities are easy to find.
We illustrate their calculation in terms of state a,. When the process is
in this state, one parent has GG genes, the other Gg. Hence the proba-
bility of a dominant offspring or a hybrid offspring is 3 for each. Then
the probability of transition to a; (selection of two dominants) is %, the
transition to a. is %, and to a4 is 2. The complete transition matrix is
(listing the absorbing states first)

ay as az a3 a4 as

a 1 0O 0 0 0 O

as 0 1 0 0 0 O

P’ = az % 0 % 0 '412 0
as O 0 0 O 1 O

a % & 1 % 1 %

as 0 %; 0 0 ‘} %
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Calculating the fundamental quantities for an absorbing chain, we
obtain

as Qa3 Ag Qp
as 1 0 1 O 0
g a3 0O 01 O R = 0 O
Q - i 1 1 1 p - 1 1
ay 1 8 4 4 ig 16
as 0 0 % % 0 i
and
1 0 -1 0
0 1 —1 0
o
I—Q"=1_,1 _1 3 _1p
4 8 4 4
0 0 -} 3
and

s 1 4 2

T 6 3T 3

” " + 5 8 %

N'=(I—-0")'=1|, 1 & 3

3 3 3 3

2 1 4 8

3 6 E) E:}

The absorption probabilities are found to be

BII —_ NIIRII -

B Bl Ol ajed
e Wl ol

The genetic interpretation of absorption is that after a large number of
inbreedings either the G or the g gene must disappear. It is also interest-
ing to note that the probability of ending up entirely with G genes, if
we start from a given state, is equal to the proportion of G genes in
this state.

The mean number of steps to absorption are

1 3
1) 2 [ 63
1 52
1 4%

Hence we see that, if we start in a state other than (D, D) or (R, R),
we can expect to reach one of these states in about five or six steps.
The exact expected times are given by the entries of r. The matrix N”/
provides more detailed information, namely how many times we can
expect to have offspring of the types (D, H), (D, R), (H, H), and (H, R),
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starting from a given nonabsorbing state. And the matrix B” gives the
probabilities of ending up in a; or as. These quantities jointly give us
an excellent description of what we can expect of our process.

EXERCISES

1. From (1) compute P?, P3, P4, and P5. Verify that P* > 0 and that the
powers approach the expected form (see Chapter V, Section 7).

2. Prove that T is not a linear transformation. [Hint: Check the condi-
tions on linearity given in Chapter V, Section 9, and show by means of an
example that T does not have one of these properties.]

3. Compute T? by taking the first component of (5) as d, the second as A,
the third as r, and substituting into the formula (5). Making use of the fact
thatd + A +r = 1, show that 7> = T.

4. A fixed point of T is a vector such that (d, h, NT = (d, h, r). Write the
conditions that such a vector must satisfy, and give three examples of such
fixed vectors. What is the genetic meaning of such a distribution?

[Ans. For example, (3, 4, $).]

5. In the matrix P the second row is equal to the fixed point vector. What
significance does this have?

6. For Example 1 write the matrix M with unknown entries m;;. Write

M by replacing muy, ms, and mg; by zeros. Then solve the nine simultaneous
equations given by (3), to find the m;;. Check that m;; = 1/p.

[AIIS. ny = 4, My = 2, mys = 8.]

7. From the definition of a stochastic matrix (Chapter V, Section 7), prove
that PC = C.

8. Prove that, if P is a regular n X n stochastic matrix having column
sums equal to 1, then it takes an average of n steps to return from any state
to itself. (Cf. Chapter V, Section 7, Exercise 8.)

9. Itis raining in the Land of Oz. In how many days can the Wizard of Oz
expect to go on a picnic? (Cf. Chapter V, Section 7, Exercise 13.) [Ans. 4.]

Exercises 10-15 develop a simpler method of treating the nonlinear trans-
formation T, in the text above.

10. Let p be the ratio of G genes in the population, andg = 1 — ptheratio

of g genes. Express p and g in terms of 4, 4, and r.
[dns. p = d+%ﬁ,q =r+ ih]
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11. Suppose that we take all the genes in the population, mix them thor-
oughly, and select a pair at random for each offspring. Show, using the result
of Exercise 10, that the resulting distribution of dominant, hybrid, and re-
cessive individuals is precisely that given in (5).

[Ans. d, h,r)- T = (p%, 2pg, q2)-]

12. If we write (d, A, r)-T = (d', ', r"), show, using the result of Exercise
11, that #’2 = 44'r’.

13. Show that for equilibrium it is necessary that A% = 4dr.

14. Show that if A2 = 4dr, then p? = d, q* = r, and 2pg = h. Hence show
that this condition is also sufficient for equilibrium.

15. Use the results of Exercises 12-14 to show that the population reaches
equilibrium in one generation.

16. Prove that in an absorbing Markov chain
(a) The probability of reaching a given absorbing state is independent
of the starting state if and only if there is only one absorbing state.
(b) The expected time for reaching an absorbing state is independent
of the starting state if and only if every state is absorbing.

17. Suppose that hybrids have a high mortality rate; say that half of the
hybrids die before maturity, while only a negligible number of dominants and
recessives die before maturity.

(a) In Example 4 above, modify the matrix P’ to apply to this situation.

(b) What are the absorbing states?

(c) Verify that it is an absorbing chain.

(d) Find the vectors d representing the probabilities of absorption in
the various absorbing states.

[Ans. For a,,d =

;‘"‘ub—-w;l” o

(e) Find N, and interpret.

85
26

17
() Find ¢, and interpret. [Ans. ¢t = 12;6: ]
76

865
26

The remaining problems concern the inheritance of color-blindness, which
is a sex-linked characteristic. There is a pair of genes, C and S, of which the
former tends to produce color-blindness, the latter normal vision. The §
gene is dominant. But a man has only one gene, and if this is C, he is color-
blind. A man inherits one of his mother’s two genes, while a woman inherits
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one gene from each parent. Thus a man may be of type C or S, while a
woman may be of type CC or CS or SS. We will study a process of inbreed-
ing similar to that of Example 4.

18. List the states of the chain. [Hint: There are six.]
19. Compute the transition probabilities.

20. Show that the chain is absorbing, and interpret the absorbihg states.
[A4ns. In one, the S gene disappears; in the other, the C gene is lost.]

21. Prove that the probability of absorption in the state having only C
genes, if we start in a given state, is equal to the proportion of C genes in that
state.

22. Find N, and interpret.
23. Find ¢, and interpret.

5
[Ans. (65 ; if we start with both C and S genes, we can expect one of
5 these to disappear in five or six crossings.]

4. THE ESTES LEARNING MODEL

In this section we shall discuss a mathematical model for learning
proposed by W. K. Estes. We shall not give the most general theory,
but only some special cases.

The theory was developed to explain certain kinds of learning which
can be illustrated by experiments of the following kind. Suppose for
example that a rat is put in a 7 maze and goes either right or left. The
experimenter places food on one side, and if the rat goes to the correct
side he is rewarded. This experiment is then repeated many times, using
some particular feeding schedule. The interest here lies in trying to
predict the behavior of the rat under the different feeding schedules.
For instance, if the food is always placed on the right side, will the rat
eventually learn this and always go right?

A similar experiment, performed with a human subject, is the follow-
ing. A subject is given a sequence of heads and tails and each time is
asked to guess what the next choice will be. He is to try to get as many
right as possible. Again there are various ways that the experimenter
can produce his sequences of H’s and T7s, and the interest lies in how
the subject will react to different choices.

In the Estes model it is assumed that there are a finite number of
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elements, called “stimulus elements.” At any given time each of these
elements is connected either to a response A4; or to a response A..
These connections are allowed to change from experiment to experi-

ment.
In a single experiment there is a certain probability § (0 < 6 < 1)

that any particular stimulus element will be sampled by the subject.
To say that an element is sampled is the same as to say that it has an
effect upon the subject on that experiment. It is assumed that elements
sampled and connected to 4; influence the subject in the direction of
producing an 4, response, and those sampled and connected to 4, tend
to produce an A4, response.

The samplings of the various elements are assumed to be an inde-
pendent trials process (see Chapter 1V, Section 8). Thus, for example,
if there are three stimulus elements a, b, and ¢, the probability that a
is sampled, & is not sampled, and c is sampled would be (1 — 6)6.

We also assume that the experimenter takes one of two possible
“reinforcing” actions, E; or E,. This action may be taken before or
after the subject’s choice, but we assume that the subject learns of the
choice of the experimenter only after he has made his own choice. The
subject would like to make A,, if the experimenter makes Ey, and A, if
the experimenter chooses E,. We shall say that the subject “guesses
correctly” if he matches the choice of the experimenter, i.e., does A4;
when the experimenter does Ej, or 4, when the experimenter does E..
In some experiments (e.g., the rat experiment above), he is rewarded if
he does guess correctly.

The following two basic assumptions are made.

Assumption A. The probability that the subject makes response Ay
is equal to the proportion of elements in the set sampled that are con-
nected to A;. If no elements are sampled, the responses are assumed to
be the same as if all elements are sampled.

Assumption B. If, in a given experiment, the experimenter chooses
E,, then all the elements that were sampled on this experiment, and
that were connected to A, have their connections changed to A4;. If
the experimenter chooses E,, then all the elements sampled and con-
nected to A4, have their connections changed to 4.

Note that in a single experiment only the set of elements that are
actually sampled play a role, and these are the only elements whose
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connections can be changed by this experiment. In general, however,
a different set will be sampled on each experiment, so that all the ele-
ments will at some time have an effect.

By assumptions 4 and B it is clear that the future choices of the
subject are going to depend upon the choice of the experimenter. There-
fore we must describe the method that the experimenter uses to deter-
mine his E’s. Typical schemes that have been used in actual experiments

are the following.

() Choose E; with probability p, independent of the choice of the
subject.
(ii) Make the same choice as the subject made (i.e., choose E if he
chose A4,, E, if he chose 4.).
(ili) Choose E; if the response of the subject on the previous experi-
ment was 4;. Choose E; and E; with equal probabilities if his
response was As.

We can describe a general class of schemes of the above kind as
follows: We assume that the experimenter chooses E; with probability
a, if the subject made response 4; on the previous experiment, and
chooses E; with probability b, if the subject made response A4, on the
last experiment. We can represent the choices of the experimenter for
each choice of the subject by the matrix

E, E,
Al (1 — da a
A b 1—-5)
Thus in the above examples, (i) is the case 1 — @ = b = p, (ii) is the
casea = 0,b = 0, and (iii) is the case a = 0, b = 1.
In Figure 19 we illustrate a typical sequence of actions that might
occur in a single trial for the case of six stimulus elements. An O,

Initial Subject . Final
connections samples connections
0. 0 Subject makes  Experimenter
01 02 response A, does E,
v (prob. 34) (prob. q)

A Typical Sequence on One Trial

*  Figure 19
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indicates a stimulus element which is connected to 4; and an Q; indi-
cates a stimulus element which is connected to A4,.

We note in this case that the subject sampled four of the six stimulus
elements. The probability that this particular set of four elements is
sampled is §4(1 — 6)%. Since three of the four elements in the set sampled
are connected to 4;, the subject makes response 4; with probability §.
We assume the subject made response A4;. Then the experimenter
chooses E; with probability a. We have assumed that the experimenter
did choose E,. All four of the stimulus elements in the set sampled
then become connected to response A,. The final connections for this
trial then become the initial connections for the next trial.

We shall now develop a method for studying the response process.
We do this by introducing a Markov chain. The states of the chain
will be the number of elements connected to response A;. If there are
six stimulus elements, then there are seven possible states: 0, 1, 2, 3, 4,
S, 6. We compute the transition probabilities from the above assump-
tions.

We shall consider throughout the rest of this section and the next the
case of two stimulus elements. The analysis for a larger number of ele-
ments is similar but more complicated. Many of the results do not
depend upon the number of stimulus elements assumed.

Our states are numbered 2, 1, and 0, indicating the number of stimu-
lus elements connected to an A, response. We will illustrate the com-
putation of transition probabilities. For example, let us compute py,;.
Since the chain is in state 0, both stimulus elements are connected to
response A,. To change to state 1, exactly one stimulus element must
be sampled. The probability for this is 26(1 — 6). If this stimulus ele-
ment is to change to A4,, the experimenter must do Ej;. The probability
of this is 5. Hence py1 = 26(1 — 6)b.

A more complicated computation is needed for p; . In state 1, one
stimulus element is connected to 4; and one to A4,. The former must
be sampled, the latter may also be sampled. The response of the experi-
menter must be E,, to effect a change to 4.. There are three cases.
(1) Only one element is sampled, with response A;. (2) Both are
sampled, with response A4;. (3) Both are sampled, with response As.
These yield the three terms

Pio = 9(1 - H)a -+ %020 + %02(1 - b).
Proceeding in this manner, we obtain the transition matrix
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2 1 0
2 1—-60+1—a 26(1 — Oa 0%
361 — a) 1—-62+6(1—6)1—a) 361 —10)
P=1 362 — 6)b + 6(1 — 61 — b) + 302 — O)a
6% 201 — 6)b 1 -0
0 + 1 —-9)

In the next section we shall study this Markov chain in more detail.

EXERCISES

1. Construct a tree to show the possibilities for the connections after an
experiment if the two stimulus elements are both connected to 4, at the
beginning of the experiment. Do the same for the case of no elements con-
nected to A4, at the beginning of the experiment.

2. Using the trees in Exercise 1, verify that the transition probabilities
Do,;i and p,,; given above are correct.

3. What is the probability that the subject will make response A4, if at
the beginning of the experiment one element is connected to each response?
What is this probability if at the beginning of the experiment both elements
are connected to response A, ? [Ans. 3, 1.]

In the following exercises, find the matrix of transition probabilities under
the special assumptions given in the problem. State whether the resulting
Markov chain is absorbing or regular. Give an interpretation for each of the
special cases in terms of the actual experiment. If the process is regular, find
the limiting probabilities. If the process is absorbing, find the expected num-
ber of steps before absorption for each possible starting state. (See Chapter V,
Section 8.)

4. a=1,b=1,0=4%. [4ns. Regular; (.3, .4, .3).]
5.a=1,b=0. [Ans. Absorbing; , = (3 — 26)/(20 — 6%); tp = 1/6.]
6.a=15b6=4%4,10
T.a=0,b=1%0=14.
8.a=1b=30=1%
9.a=0,b6=0.

10. Work out the transition matrix of the Markov chain for the model
having a single stimulus element.

|
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11. Assume that a > 0 and b > 0 for the one-element model. Show that
the chain is regular, and find the limiting probabilities.

[Ans. b/(a + b), a/(a + b).]

12. Assume that a > 0 and 4 = 0 for the one-element model. Find the

expected number of steps to absorption. [Ans. 1/6a.]

5. LIMITING PROBABILITIES IN THE ESTES MODEL

We wish now to study the limiting probabilities that the subject and
that the experimenter will choose each of the possible alternatives.

If our process is in state 0 on a given experiment, then the probability
that the subject will make response A4, is (by assumption 4) equal to 0.
If it is in state 1, then by symmetry this probability is 2. If it is in state
2, it is (by assumption A) equal to 1.

The matrix P will be regular if and only if the quantities @ and b are
not zero (see Exercise 1). If the matrix is regular, then there will be a
limiting probability for being in each of the states. These probabilities
can be represented by a vector p = (po, p1, p2) and found by solving the
equations

PP = p.
If these equations are solved, we obtain
bs 4 2b%(1 — 6)
P27 @+ 0)f + 2a + b1 — o)
4ab(1 — 6)

PL= @+ b)8 + 2@ + byl — 6)
ad + 2a¥(1 — 6)
Po= @ ¥ b+ 2(a + b)X1 — 6)

From these probabilities we can find that the l1m1t1ng probability
that the subject will make response A, is

b
1-p:+ 3p1+ 0-po = PRI

and that the limiting probability that the subject makes response A, is
a/(a + b).

To find the probability that the experimenter makes the choice Ei,
we must multiply the probabilities for each of the choices of the sub-
ject, by the probabilities that the experimenter does E; if the subject
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made the particular choice. Thus the limiting probability that the ex-
perimenter makes choice E; is

Ml—a), ab _ _b
at b a+b a+bd

Thus we see that the limiting probability that the subject will make
response A is equal to the limiting probability that the experimenter
will choose E,. From the limiting probabilities we can also find the
limiting probability that the subject will guess correctly (see Exercise 3).

If we assume that the experimenter makes response E; with proba-
bility p independent of the choice of the subject, the subject can maxi-
mize the expected number of correct responses by always making
response 4, if p > 3 and always making A, if p < }. (See Exercise 5.)
The model predicts a less rational choice on the part of the subject.
This would not seem disturbing in the case of the rat, but it would be
hoped humans would do better. Unfortunately, experiments have borne
out that the model’s predictions are approximately correct even with
human subjects.

The following interesting experiment was performed by W. K. Estes
and others with many types of subjects. If the subject does 4, he is
rewarded half the time; if he does A4, he is never rewarded. One might
expect that the subject will learn to do A,, but this is not the case.
What does the theory predict? If A; is chosen, reward follows half
the time. Hence a = 1. If A4, is chosen, reward never follows. Hence
] —b=0 or b= 1. The theory predicts a limiting probability of
b/(a + b) = % for the subject to choose A4;, which is in good agree-
ment with experimental results.

We next consider an absorbing case. Specifically, we consider the
case @ = 0 and b = 1. This means that the experimenter always does
E,. The matrix of transition probabilities here is

2 1 0

2 /1 0 0
P=11o 1-—90 o |}
0 \&* 26(1—8) (1—0)

We shall use the methods developed in Chapter V to study this
Markov chain. We have one absorbing state, namely, 2. Thus we know
that the process will eventually enter this state and remain there. Being
in this state means, by assumption A of the previous section, that the
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subject is sure to make response A4;. Thus being absorbed can be inter-
preted as the subject “learning” that the experimenter always does E;.

We have seen that in an absorbing Markov chain it is possible to
find the expected number of times that the process will be in each of
the states before being absorbed, assuming some given starting state.
Let n;; be the expected number of times the process will be in state j
if it starts in state 7. Before calculating »;; we consider what the knowl-
edge of these quantities would tell us about the experiment. We observe
that every time the process is in state 1, the subject chooses 4, with
probability 1 and hence makes a wrong response with probability 3.
Every time the process is in state 0, the subject is sure to make response
A,, that is, to make a wrong response. Thus the expected number of
wrong responses that the subject will make before learning is

(1) %nu + nip for i= O, 1

assuming that the process starts in state 7.

We find the n;; as in Chapter V. We first form the truncated matrix
Q obtained from P by omitting the column and the row corresponding
to the absorbing state.

1—9 0
Q= (26(1 —6 (1— 0)2)'
We then find (/ — Q)" to be

1 0
1 : 0
N=U-o7= \a-9 _1

62— 6) 62— 6)

Then from (1) we obtain 1/26 as the expected number of wrong re-
sponses if the process begins in state 1, and 1/6 as the expected number
of wrong responses if the process begins in state 2.

Of course it is true that in an actual experiment the starting state
would not be known. However, it is not unreasonable to assume that
on the first experiment the stimuli elements are connected at random.
This would mean that the'process starts at state 0 with probability %,
at state 1 with probability 1, and at state 2 with probability ;. Thus
under this assumption the expected number of wrong responses before
learning is

)

@ |-

_ 1,
26

-

1
2T

DI |t
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EXERCISES

1. Prove that the matrix P in Section 4 is regular if and only if @ and &
are different from zero. [Hint: Show that if either quantity is O the chain is
not regular.]

2. Verify that the probability that the subject makes r:esponse A, is
a/(a + b) by finding 1-po + %-p1 + 0-p2.

3. Show that the limiting probability that the subject’s choice agrees with
that of the experimenter is

a(l — b) + b(1 — a),
a-+ b
4. Assume that the experimenter always chooses E, with a fixed proba-

bility p, independent of the choice of the subject. What proportion would
the subject expect to guess correctly? [dns. 1 — 2p + 2p*.]

5. Suppose under the conditions of Exercise 4 that the subject were
always to make response A4i. Show that if p > 1, then on the average the
subject will do better by this method than by the method predicted by the
model.

6. Consider the casea = 3,5 = 0,and 0 = 1. For each possible starting
state find the expected number of times that the process will be in each of
the states before being absorbed. [Ans. nx = 3; An = 2: e = 3;nu=3.]

7. Do the same as in Exercise 6, for the case a = 0,and b = 0.

8. In Exercises 6 and 7 find the expected number of incorrect responses

that the subject will make, assuming each possible starting state.
[4ns. 0,2,4;0,0, 0.]

9. In Exercises 6 and 7 find the expected number of incorrect responses
that the subject will make assuming random connections for the stimuli ele-
ments on the first experiment, as in (2).

10. If the subject chooses Ai, he is rewarded with probability p. If he
chooses A, he is never rewarded. (See the example with p =  in the text
above.) Find a and 5. What is the limiting probability that the subject
chooses A4;? How often is he rewarded? How often would he be rewarded
if he always chose 4,? Compare these two values for p = %, 3, 1.

[dns. 1/Q2 — p); p/(2 — P); P.]

11. Compute po, p1, P2 for the cases given in Section 4, Exercises 4-9. For
the regular matrices verify that these are the limiting probabilities there ob-
tained. What do po, p1, p» mean for the absorbing chains?
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6. MARRIAGE RULES IN PRIMITIVE SOCIETIES

In some primitive societies there are rigid rules as to when marriages
are permissible. These rules are designed to prevent very close relatives
from marrying. The rules can be given precise mathematical formula-
tion in terms of permutation matrices. Our discussion is based, in part,
on the work of André Weil and Robert R. Bush.

The marriage rules found in these societies are characterized by the
following axioms.

Axiom 1. Each member of the society is assigned a marriage type.

Axiom 2. Two individuals are permitted to marry only if they are of
the same marriage type.

Axiom 3. The type of an individual is determined by the individual’s
sex and by the type of his parents.

Axiom 4. Two boys (or two girls) whose parents are of different types
will themselves be of different types.

Axiom 5. The rule as to whether a man is allowed to marry a female
relative of a given kind depends only on the kind of rela-
tionship.

Axiom 6. In particular, no man is allowed to marry his sister.

Axiom 7. For any two individuals it is permissible for some of their
descendants to intermarry.

Example. Let us suppose that there are three marriage types, #, f,
t;. Two parents in a given family must be of the same type, since only
then are they allowed to marry. Thus there are only three logical possi-
bilities for marriages. For each case we have to state what the type of
a son or a daughter will be.

Type of both Type of their Type of their

parents son daughter
51 I 13
1y £} h
13 h t2

We must verify that all the axioms are satisfied. Some of the axioms
are easy to check (see Exercise 1), others are harder to verify. We will
prove a general theorem which will show that this rule satisfies all the
axioms.

[{,]

=t NN As
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In order to give a complete treatment to this problem, we must have
a simple systematic method of representing relationships. For this we
use family trees, as drawn by anthropologists. The following symbols
are commonly used.
/\ Mdle

O Female

—— Marriage
l Descendant

1 Sibling

In Figure 20 we draw four family trees, representing the four kinds of
first-cousin relationships between a man and a woman.

AN=0 A=0 A=0 A=0

RIRTRIE

() (d)
Figure 20

Example (continued). Does our rule allow marriage between a man
and his father’s brother’s daughter? This is the relationship in Figure
20a. There are three possible types for the original couple (the grand-
parents) and in Figure 21 we work out the three cases. We find in each

® A0

A_O A
EEETE
A © A ©® A O

Figure 21
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case that the man and woman are of different type, hence such mar-
riages are never allowed. Can a man marry his mother’s brother’s
daughter? This is the relationship in Figure 20d. The three cases for
this relationship are found in Figure 22. We find that such marriages
are always allowed.

Figure 22

We are now ready to give the rules a mathematical formulation. The
society chooses a number, say n, of marriage types (Axiom 1). We call
these #;, t2, . . ., t,. Our rule has two parts, one concerning sons, one
concerning daughters. Let us consider the marriage type of sons. The
parents must be of the same marriage type (Axiom 2). We must assign
to a boy a type which depends only on the common type of his parents
(Axiom 3). If his parents are of type #;, he will be of type ¢;. Further-
more, if some other boy has parents of a type different from ¢, then
the boy will be of type different from 7; (Axiom 4). This defines a per-
mutation of the marriage types (see Chapter V, Section 10); the type of
a son is obtained from the type of his parents by a permutation specified
by the rule of the society. Hence we form the type vector t = (1, ..., t,)
and represent the permutation in question by the n X n permutation
matrix S. If the type of the parents is component i of ¢, the type of
their sons is component 7 of £S. By a similar argument we arrive at the
permutation matrix D giving the type of daughters.

We have shown that the mathematical form of the first four axioms
is to introduce the row vector ¢ and the two permutation matrices S
and D. The last three axioms restrict the choice of .S and D. This will
be considered in the next section.

We have repeatedly seen how the vector and matrix notation allows
us to replace a series of equations by a single one. In the present prob-
lem this notation allows us to work out a given kind of relationship for

O O -0 = =N D 'm
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all marriage types in a single diagram. As a matter of fact, this can be
done without knowing how many types there are in the given society,
or knowing what the rules are. Let us

illustrate this in terms of Figure 22. /\

The couple at the top of the tree is of a t J— @
given type, represented by our vector f.

Their son is of type ¢S, their daughter

of type tD. Then the son of a son is

of type ¢SS, the son’s daughter is of G[D Ai
type tSD, etc. We arrive at the single”
vector diagram of Figure 23. If in this

figure we take ¢ to have three compo- ZDE £SD
nents, then the diagram is a shorthand 105
for the three diagrams of Figure 22. Figure 23

Example (continued). Our # vector is (t, 2, #;) and |

010 0 0 1
1 00 010

We know from Figure 22 that a man is always allowed to marry his
mother’s brother’s daughter. Can we see this in Figure 23?7 The mar-
riage will always be permitted if DS always equals 15D, which is equiva-
lent to the matrix equation DS = SD. It so happens for our S and D
that this equation is correct. But we can see more from Figure 23. No
matter how many types there are, this kind of marriage will be per-
mitted if and only if SD = DS, i.e., if the two matrices commute.

~ We have now seen one example of how the nature of S and D deter-
mines which kinds of relatives are allowed to marry. This question will
be the subject of the next section.

EXERCISES

1. In the example above, verify that the rule satisfies Axioms 1, 3, and 4.

2. In the example above, verify that the matrices S and D given represent
the rule given.
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3. Construct a diagram for the brother-sister relationship.

4. Using the diagram of Exercise 3, show that, in the above example,
brother-sister marriages are never permitted.

5. Find the condition on S and D that would always allow brother-sister
marriages. [Ans. S = D.]

In the Kariera society there are four marriage types, assigned according to
the following rules:

Parent type Son type Daughter type

h I3 I
) 1y I3
I3 51 3
4 ¢} n

Exercises 6-11 refer to this society.
6. Find the ¢, S, and D of the Kariera society.

7. Show that brother-sister marriages are never allowed in the Kariera
society.

8. Show that S and D commute. What does this tell us about first-cousin
marriages in the Kariera society ?

9. Show that first cousins of the kinds in Figures 20(a) and (b) are never
allowed to marry in the Kariera society.

10. Show that first cousins of the kind in Figure 20(c) are always allowed
to marry in the Kariera society.

11. Find the group generated by S and D of the Kariera society. (See
Chapter V, Section 11.)

In the Tarau society there are also four marriage types. A son is of the
same type as his parents. A daughter’s type is given by:

Parent type Daughter type

n L
tz tl
£ L)
1y 13

Exercises 12-17 refer to this society.
12. Find the 7, S, and D of the Tarau society.

13. Show that brother-sister marriages are never allowed in the Tarau
society.

14. Show that S and D commute. What does this tell us about first-cousin
marriages in the Tarau society ?
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15. Show that first cousins of the kinds in Figures 20(a) and (b) are never
allowed to marry in the Tarau society.

16. Show that first cousins of the kind in Figure 20(c) are never allowed to
marry in the Tarau society.

17. Find the group generated by S and D of the Tarau society. (See Chap-
ter V, Section 11.)

7. THE CHOICE OF MARRIAGE RULES

In the last section we saw that the marriage rules of a primitive
society are determined by the vector ¢ and the matrices S and D. The
axioms make no mention of the number of types, and indeed, we will
find that we can have any number of types, as long as n > 1. But we
will find that the choice of S and D are severely limited. This shows
that the rules of existing primitive societies required considerable in-
genuity for their construction.

We must now consider the last three axioms. For Axiom 5 we need
a simple way of describing a kind of relationship. The family tree is
our basic tool, but we want to
replace the family tree by a suit-
able matrix.

Let us consider Figure 23. In-
stead of starting with the grand-
parents and finding the types of the
grandson and the granddaughter,
we could start with the grandson,
work up to the grandparents, and
then down to the granddaughter.
For this we must consider how we
work “up.” If a parent is of type
¢, the son is of type £S. Hence, if
the son is of type ¢, then the parent
is of type S~ (see Chapter V, Sec- Figure 24
tion 10). Similarly, if a daughter
has type ¢, her parents have type D!, In Figure 24 we find the new
version of Figure 23.

It is easily seen that we can follow this procedure for any relation-
ship. Given a kind of relationship, it determines a matrix M such that

0,10

> >
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if the male of the relationship is of type ¢, then the female is of type
tM. From Figure 24 we see that for “mother’s brother’s daughter”
M = S-1D-1SD. We will speak of M as the matrix of the relationship.
These matrices are all products of S, D, and their inverses, hence each
matrix is an element of the group generated by S and D.

Let us consider Axiom 5. Given any kind of relationship between a
man and a woman, we form the matrix of the relationship M. The man
will be permitted to marry this relation of his if and only if his type is
the same as hers, i.e., if a certain component of ¢ is th#same as the cor-
responding component of M. This means that this component is left
unchanged by the permutation M, which proves our first theorem. (See
Chapter V, Section 11.)

Theorem 1. A man is allowed to marry a female relative of a cer-
tain kind if and only if his marriage type does not belong to the effective
set of the matrix of the relationship.

A second result follows from this theorem easily.

Theorem 2. Marriage between relatives of a given kind is always
permitted if the matrix of the relationship has an empty effective set;
it is never permitted if the matrix has a universal effective set.

Theorem 3. Axiom 5 requires that in the group generated by S
and D every element except / is a complete permutation.

Proof. The axiom states that for a given relationship the marriage
must always be allowed or must never be allowed. Hence, by Theo-
rem 2, the matrix of the relationship must have an empty effective set
or a universal one. The former means that the matrix is /, the latter
that it is a complete permutation (see Chapter V, Section 11). Hence
the matrix of every relationship must either be 7 or a complete permu-
tation matrix. The matrices are elements of the group generated by S
and D. And given any element of this group, which can be written as
a product of S’s and D’s, we can draw a family tree having this matrix.
Hence the matrices of relationships are all the elements of the group.
This means that all the elements of the group, other than the identity,
must be complete permutations. This completes the proof.

Theorem 4. Axiom 6 requires that S—!D be a complete permuta-
tion.
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This theorem is an immediate consequence of the fact that the matrix
of the brother-sister relationship is S™D.

Theorem 5. Axiom 7 requires that for every i and j there be a per-
mutation in the group which carries #; into ;.

Proof. Let us choose two individuals, one of type t; and one of type
t;. There must be a descendant of the former who can marry a descend-
ant of the latter. Hence the two descendants must have the same type.
This means that we have permutations M, and M, such that #; is carried
by M, into the same type as 1; by M,. Then MiM 3! carries #; into Z;.
Hence the theorem follows.

We have now translated Axioms 5-7 into the following three condi-
tions on S and D: (1) The group generated by S and D consists of
and of complete permutations. (2) S-1D is a complete permutation.
(3) For every pair of types there is a permutation in the group that

carries one type into the other.

DEFINITION. A permutation group is called regular if (a) it is com-
plete, i.e., every element of the group other than Jis a complete permu-
tation and if (b) for every pair from among the n objects there is a
permutation in the group that carries one into the other.

Basic theorem. To satisfy the axioms we must choose two differ-
ent n X n permutation matrices S and D which generate a regular per-

mutation group.

Proof. Conditions (1) and (3) above state precisely that the group
generated by S and D be regular. In a regular group every element
other than I is a complete perputation; hence condition (2) requires

only that S~'D be different from . Since S—'D = I is equivalent to
D = S, we need only require that D 5 S. This completes the proof.

It is important to be able to recognize regular permutation groups.
Here we are helped by a very simple, well-known theorem: A subgroup
of the group of permutations of degree n is regular if and only if it has
n elements and is complete.

This leads to a relatively simple procedure. We choose 7. Then we
must pick a group of n X n permutation matrices which has n elements
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and is complete, and select two different elements which generate the
group. This is always possible if n > 1 (see Exercise 11). One of these
is chosen as S and one as D. Since there are not very many regular
permutation groups for any #, the choice is very limited.

Example. Let us find all possibilities for a society having four mar-
riage types. First of all we must find the regular subgroups of the sym-
metric group of degree 4, i.e., the groups of permutations on four

"objects that have four elements and are complete.

Among these we find cyclic groups. Any two of these groups have
the same structure and hence lead to equivalent rules. Let us suppose
that we choose the permutation group generated by

The group consists of P, P2, P3, and I. Either P or P? generates the
group, and they play analogous roles. We may therefore assume that
P is one of the two permutations chosen. This allows us (P, P?), (P, P3),
and (P, I) as possibilities. We must still ask which is S and which is D.
In the second case it makes no difference, since P and P? play analogous
roles in the group, but there is a difference in the first two cases. This

leads to five possibilities:

S = P, D = pP?
S = P2, D=P
S = P, D = p?
S = P, D=1
S =1 D = P. This is the Tarau society.

S e

There is only one noncyclic complete subgroup with four elements,
consisting of 7 and the three permutations which interchange two pairs
of elements. In this group we have essentially only one case, since all
three permutations play the same role.

6. The Kariera society. (See exercises after the last section.)

Two of these six possibilities are actually exemplified in known primi-
tive societies.
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EXERCISES

1. Figure 24 shows the matrix of one of the firstcousin relations. Find
the matrices of the other three first-cousin relationships.

2. Prove that marriage between relations of a certain kind is permitted
if and only if the matrix of the relation is I. '

3. Use the result of Exercise 2 to prove that no society allows the marriage

between cousins of the types in Figures 20(a) and (b).

4. Which of the six rules described above (in the example) allow marriage
between a man and his father’s sister’s daughter? [Ans. 3, 6.]

5. Show that all six rules given in the example above allow marriages
between a man and his mother’s brother’s daughter.

6. There are eight kinds of second-cousin relationships between a man

and a woman. Draw their family trees.
7. Find the matrices of the eight second-cousin relationships.

riage is for-

8. Are there any second-cousin relationships for which mar
[Ans. Yes.]

bidden by all possible rules?
9. Test the second-cousin relationships (other than those found in Exer-
cise 8) for each of the six rules given in the example above.

10. For n objects, consider the permutation that carries object number i
into position i + 1, except that the last object is put into first place. Show
that the cyclic group generated by this permutation is regular.

11. Use the result of Exercise 10 to show that a society can have any num-
ber of marriage types, as long as the number is greater than one.

12. In the Example of Section 6, prove that S and D generate a regular

permutation group.
13. Prove that the following matrices lead to a rule satisfying all axioms.

010000 000100
0o 01000 0 00001
S = 1 0000 O} D = 0 00010
000010 100000
0 00001 001000
0 00100 010000

14. Prove that the rule given in Exercise 13 allows no first-cousin marriages.
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8. MODEL OF AN EXPANDING ECONOMY

The following model is a modification of a model proposed by John
von Neumann. It is designed to study an economy which is expanding
at a fixed rate, but which is otherwise in equilibrium. The model makes
certain assumptions about how an economy behaves in equilibrium.
These assumptions are idealizations, and it is to be expected that the
model will eventually be replaced by a better model. For the present
many economists consider the von Neumann model to be a reasonable
approximation of reality. Our interest in the model is purely to illustrate
how finite mathematics is used in an economic problem.

The economy is described by n goods and m processes. A good may
be steel, coal, houses, shoes, etc. Goods are the materials of production
in the economy. Each good may be measured in any convenient units,
as long as the units are fixed once and for all. It is convenient to be able
to talk of arbitrary multiples of these units; e.g., we will consider not
only 2.75 tons of steel but also 2.75 houses. The latter may be inter-
preted as an average.

A manufacturing process needs certain goods as raw materials (the
inputs) and produces one or more of our goods (the outputs). As a
process we may, for example, consider the conversion of steel, wood,
glass, etc. into a house. Of course this process may be used to manu-
facture more than one house, and hence we have the concept of the
intensity with which a process is used. One of the basic assumptions
is one of linearity, i.e., that k houses will require k times as much of
each raw material. Thus we choose an arbitrary ‘““unit intensity” for
each process, and the process is completely described if we know the
inputs necessary for this unit operation and the outputs produced.

Process number i when operating at unit intensity will require a cer-
tain amount of good j as an input. This amount will be called a;;. (In
particular, if good j is not needed for process i, then a;; = 0.) We will
call b;; the amount of good j produced by process i. Here we allow a
process to produce several different goods (e.g., a principal output and
by-products). But, of course, we allow processes that produce only one
good. Then all the b,; for this i will be 0, except for one. The a;; and
b:; are nonnegative numbers.

We define the matrix 4 to be the m X n matrix having components
ai;, and B to be the m X n matrix with components b,;. Then the entire
economy is described by these two matrices.
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We must still consider the element of time. It is customary to think
of the economy as working in stages or cycles. In one such stage there
is just time enough for process i to convert the inputs a;; to outputs bi;.
Then, in the next stage, these outputs may in turn be used as inputs.
The length of this cycle may be any time interval convenient for the
study of the particular economy. It may be a month, a year, or 2 num-
ber of years.

Example. Let us take as our economy a chicken farm. Our goods
are chickens and eggs, with one chicken and one egg being the natural
units. Our two processes consist of laying eggs and hatching them.
Let us assume that in a given month a chicken lays an average of 12
eggs if we use it for laying eggs. If used for hatching, it will hatch an
average of four eggs per month. From this information we can con-
struct A and B.

Our cycle is of length one month. Good 1 is “chicken,” good 2 is
“egg,” process 1 is “laying,” and process 2 is “hatching.” The unit of
intensity of a process will be what one chicken can do on the average
in a month. The input of process 1 is one chicken, i.e., one unit of
good 1. The output will consist of a dozen eggs plus the original
chicken. (We must not forget this, since the original chicken can be
used again in the next cycle.) Hence the output is one unit of good 1
and 12 units of good 2. In process 2 the inputs are one chicken and
four eggs, while the output consists of five chickens (the original one
plus the four hatched). Hence our matrices are

Chicken Egg Chicken Egg
Laying eggs: 4 _'( 1 0 > B= ( 1 12
Hatching eggs: =\ 1 4 ) ~\ 5 0/

Suppose that our farmer starts with three chickens and eight eggs
ready for hatching. He will need two chickens for hatching the eight
eggs, and this leaves him one for laying eggs. Hence he uses process 1
with intensity 1, process 2 with intensity 2. We symbolize this by the
vector x = (1, 2). Note that his inputs are the components of xA. His
one laying chicken will lay 12 eggs. He will end up with his original
three chickens plus eight new ones. Hence he will have an output of 11
units of good 1 and 12 units of good 2. These are the components of
xB. Of his 11 chickens only three can be used for hatching, hence he
will employ intensities (8, 3). The outputs will be (8, 3)B = (23, 96), as
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can easily be checked (see Exercise 1). He now has 96 eggs and only 23
chickens, so that some eggs must go unhatched.

On the other hand, suppose that he starts with only two chickens and
four eggs. He will then use intensity (1, 1). His laying chicken lays 12
eggs, and with four newly hatched chickens he has a total of six chickens.
This result is also given by (1, 1)B = (6, 12). He now has tripled both
his chickens and his eggs. He can use intensity (3, 3) on the next cycle,
yielding (3, 3)B = (18, 36), which again triples both the chickens and
the eggs. Thus he can continue to use the same proportion of the proc-
esses, and will continue to triple his output on every cycle. This
economy operates in equilibrium.

As was seen in the example, the natural way to represent the intensi-
ties of our processes is by means of a row vector. Let x; be the intensity
with which process number i is operated, then the inrensity vector x is
(x1, - - .y Xm). Matrix multiplication is then an easy way of finding the
total amount of each good needed, and the totals produced. Compo-
nent j of xA4 is the sum xia1; + . . . + Xxman;; where x,a,; is the amount
of good j we are using in process 1, x.a,; the amount we use in process 2,
etc. Hence the jth component of x4 is the total amount of good j
needed in the inputs. Similarly, xB gives the total amounts of the vari-
ous goods in the outputs.

We must now introduce prices for the various goods. Let y; be the
price of a unit of good j; this must be nonnegative, but it may be zero.
(The latter represents a good that is so cheap as to be “practically free.”’)
It is assumed that k units of good j will cost ky,. The price vector y is
the column vector

N

)2

Let us consider the products 4y and By. In Ay the ith element is
aayi + . . . + aiys; the product aqy; is the amount of good 1 needed
for unit operation of process / multiplied by the per unit price of good 1,
hence this is the cost of good 1 used in the process, a;y» is the cost of
good 2 used, etc. Hence the ith component of Ay is the total cost of
inputs for a unit intensity operation of process i. Similarly, By gives
the cost (value) of the outputs.

O B E A Hh O e o
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Finally, we consider the products x4y and xBy. Since x is 1 X m,
the matrices m X n, and y is n X 1, each productis 1 X 1—or a num-
ber. An analysis similar to those above shows that xAy is the total cost
of inputs if the economy is operated at intensity x, with prices y, and
xBy is the total value of all goods produced. (See Exercise 2.)

Example (continued). Suppose that a chicken costs ten monetary

units, while an egg costs one unit; then y = <1(1)> Here

10 22
Ay = <14) and By = (50).

This means that process 1, laying eggs, multiplies our investment by a
factor of 2.2; while process 2, hatching, brings in over $3.50 for every
$1.00 invested. There will be pressure to use the hens just for hatch-
ing—which will create a shortage of eggs, bringing about a drastic
change in prices. Suppose now that a chicken costs only six times as

much as an egg, i.e., y = (?) Then

6 18
Ay = <10) and By = (30).

In this case each process triples our investment, and there will be no
undue monetary pressure. Hence the farmer can set up his processes
so as to be in equilibrium, and the price structure will be stable.

The remaining factor to be considered is the expansion of the econ-
omy. We assume that everything expands at a constant rate, i.e., that
there is a fixed expansion factor a such that if the processes operate at
intensity x in this cycle, they operate at intensity ax during the next
cycle, a2x after that, etc. There is also something similar to expansion
for the money of the economy, namely, that through bearing interest,
y units of money in this cycle will be worth By units after the cycle. We
again assume that the interest factor 8 is fixed once and for all in equi-
librium. Usually these factors will be greater than 1, but this does not
have to be the case. Thus a = 1 represents a stationary economy, and
a < 1 represents a contracting economy.

This completes the survey of the basic concepts. We must now lay
down our assumptions concerning the behavior of an economy which
is in equilibrium. These assumptions serve as axioms for the system.
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First of all, we must assure that we produce enough of each good in
each cycle to furnish the inputs of the next cycle. If in a given cycle
the economy functions at intensity x, it will function at ax next time.
The outputs this time will be xB, while the inputs next time will be ax4;
hence we must require:

Axiom 1. xB > axA.

(When we write a vector inequality, we mean that the inequality holds
for every component.) We will of course have to require similar con-
ditions for the future. For example, in the second cycle the outputs are
axB, and the inputs needed for the third cycle are a?2xA4. But when we
write the condition that the former be greater than the latter, an a
cancels, and we have again the same condition as in Axiom 1. Hence
this axiom serves for all cycles.

The first condition assures that it is possible for the economy to
expand at the constant rate . We must also assure that the economy
is financially in equilibrium. Suppose that the output of some process
was worth more than 3 times the input. Then we would be prepared
to pay interest at a larger rate to someone willing to invest in our
process. Hence 8 would increase. Thus, in equilibrium this must not
be possible; no process can produce profits at a rate greater than that
given by investment. If we operate processes at a unit intensity, then
Ay gives the costs of inputs, while By gives the cost of outputs. The
latter cannot exceed the former by more than a factor 8 for any process.

Axiom 2. By < BAy.

The next assumption concerns surplus production. If we produce
more of a given good than can be used by the total economy, the price
drops sharply as merchants try to get rid of their produce. Itis custom-
ary to assume, for the sake of simplicity, that such goods are free, i.e.,
to give them price zero. The vector difference xB — ax4 = x(B — aA)
gives the amounts of overproduction, i.e., the jth component is positive
if and only if good j is overproduced. If we assign price zero to these
goods, then in the product of the above vector with y every nonzero
factor of the former is multiplied by zero; hence the product of the two
vectors will be 0.

Axiom 3. x(B— ad)y = 0.

Now we turn to the question of whether a given process is worth
undertaking. From Axiom 2 we know that no process can yield more
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profit than investment can. But if it yields any less, it is better not to
use it, but rather to invest our money. Hence in Axiom 2 we form the
difference By — BAy; if the ith component of this is negative, process i
should not be used; it must be assigned intensity 0. Similar to the argu-
ment used for Axiom 3, this shows that multiplying this vector differ-
ence by x must yield zero.

Axiom 4. x(B — BA)y = 0.
Our final assumption is that something worth while is produced in

the economy, i.c., that the value of all goods produced is a positive
amount.

Axiom 5. xBy > 0.

If for a given economy (given 4 and B) we find vectors x and y and
numbers « and 8 which satisfy these five axioms, we say that we have
found a possible equilibrium solution for the economy.

Example (continued). We have already seen that if x = (1, 1), the
economy expands at the fixed rate « = 3. We can now check that
Axiom 1 is satisfied. Actually, xB turns out to equal axA4. Similarly,

we have noted a monetary equilibrium if y = (?), and each process

multiplies the money put into it by a factor of g = 3. We can check
that Axiom 2 holds. Actually By is equal to fAy in this case. From
these two equations we also know that x(B — ad) and (B — BA)y are
identically 0; hence Axioms 3 and 4 hold. Finally, xBy = 48; the total
value of goods produced is positive, so that Axiom 5 holds. Therefore
these values of x, y, «, and 8 represent an equilibrium for the economy.
It can also be shown that these are the only possible values of « and 3,
and that x and y must be proportional to those shown here (which may
be thought of simply as a change in the units).

In our example we found one and only one equilibrium for the econ-
omy, and we found that « = B. This raises several very natural ques-
tions: (1) Is there a possible equilibrium for every economy? (2) If yes,
then is there only one? (3) Must the expansion factor always be the
same as the interest factor? In the next section we will establish the
following answers: (1) For every economy satisfying a certain restriction
(which is certainly satisfied for all real economies) there is a possible
equilibrium. (2) There may be more than one equilibrium, though the
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number of different possible expansion factors is finite. (In the example
there is essentially only one possibility for x and y; however this is not
true in general.) (3) The interest and expansion factors are always equal
in equilibrium.

EXERCISES

1. In the example, for x = (1, 2), verify for three cycles that x4 and xB
give the correct inputs and outputs.

2. Give an interpretation of x4y and xBy,
(a) Using the interpretations of x4 and xB given above.
(b) Using the interpretations of Ay and By given above.
(c) And show that the results in (a) and (b) are the same.

3. In the example suppose that two chickens lay eggs and three hatch
eggs. Find x, x4, and xB. Substitute these quantities into Axiom 1, and find
the largest possible expansion factor. [Ans. a = 2.]

4. In the example, suppose that chickens cost 80 cents and eggs cost five
cents. Find y, Ay, and By. Substitute these quantities into Axiom 2, and
find the smallest possible interest factor. [Ans. B = 4.]

5. Show that the x, y, «, and 3 found in two previous Exercises do not
lead to equilibrium, by showing that Axioms 3 and 4 fail to hold.

6. Show that if « = 8 = 3, then the only possible x’s and y’s are pro-
portional to those given in the example. [Hint: Show that the axioms force
us to choose x; = x; and y1 = 6y..]

The remaining problems refer to the following economy: On a chicken

farm there is a breed of chicken that lays an average of 16 eggs a month, and
such that they can hatch an average of 3} = 3 eggs.

7. Set up the matrices 4 and B.

8. Suppose that three chickens lay and five chickens hatch. Find x, x4,
and xB. Whatis a? [Adns. x = (3,5); xA = (§,16); xB = (24,48); a = 3.]

9. Suppose that chickens cost 40 cents and eggs five cents. Find y, Ay,
and By. What is 8?

10. Verify that the x, y, , and 8 found in the previous exercises represent
an equilibrium for the economy, by substituting these into the five axioms.

11. Suppose that we start with 16 chickens and 32 eggs. Choose the in-
tensities so that the economy will be in equilibrium, and find what happens in
the first three months. " [Ans. x = (6, 10); 432 chickens, and 864 eggs.]

&3
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12. Suppose that with 16 chickens and 32 eggs (see Exercise 11) we start
out by having only five hatching, the others laying. Show that we cannot
have as many chickens after three months as we would have in the equi-

librium solution.

9. EXISTENCE OF AN ECONOMIC EQUILIBRIUM

We must ask whether the axioms can always be satisfied, i.e., whether
the model of the economy allows such an equilibrium.

Of course we are interested only in an economy that could really
occur. That means that these goods must be goods that are somehow
produced, and that they cannot be produced out of nothing. Hence
every process must require at least one raw material and every good
has at least one process that produces it. We summarize this:

Restriction. Every row of A and every column of B has at least one
positive component.

Theorem. If A and B satisfy the restriction, then an equilibrium is
possible.

We will sketch the proof of this theorem. From Axiom 3 we have
that xBy = axAy, while from Axiom 4, xBy = xAy. Hence axAy =
BxAy. Furthermore, from Axiom 5 we know that xBy is not zero,
hence xAy is not zero. Then « = 8. Hence in equilibrium the rate of
expansion equals the interest rate.

If @« = B, then Axioms 3 and 4 are equivalent. We can also rewrite
the first two axioms (using our result).

Axiom I, x(B — ad) 2 0.
Axiom 2'. (B— ad)y < 0.

If we multiply the first inequality by y on the right, and the second by x
on the left, we see that Axiom 3 (and hence 4) follows from these two
axioms. Hence we need only worry about Axioms 1/, 2/, and 5.

The key to the proofis to reinterpret the problem as a game-theoretic
one. This is done in spite of the fact that no game is involved in the
model. We simply use the mathematical results of the theory of games
as tools. |

Axioms 1’ and 2’ suggest that we think of the matrix B — a4 as a
matrix game. We would then like to think of the vectors x and y as
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mixed strategies for the two players. The vectors are nonnegative, but
the sum of their components need not be 1. However, we know that
multiplying x by a constant can be thought of as a change in the units
of intensities, and multiplying y by a constant is equivalent to a change
in the units of the various goods. Hence, without loss of generality, we
may assume that x and y have component sum 1, and think of them as
mixed strategies. If we do this, the two axioms state precisely that the
game has value zero, and that x and y form a pair of optimal strategies
for the two players. Thus our first problem is to choose « so that the
“game” B — aA has value zero.

Example 1. Let us set up the example of the last section as a game.

l—a 12
M“B"“A"<5—a —4a)

If we choose x = (3, 3) as a mixed strategy for the row player, then
XM = [3 — o, 2(3 — a)]. If a < 3, the components are both positive;

8
hence the game has value greater than zero. If we choose y = (1) asa
7

mixed strategy for the column player, then .

73 — @)
M=o o)
If o > 3, both components are negative, and hence the game has nega-
tive value. We thus see that the only value of « that could possibly give
us a zero value of the game is « = 3, and we see from the above that
in this case the value really is zero, and x and y are optimal strategies.
(See Exercise 1.)

We must now show that the above example is typical in that we can
always find an o making the value of B — a4 equal to zero. We may
write this matrix as the sum B + a(— A), and think of our game as a
combination of game B and game — 4.

By our restriction, every column of B has a positive entry. The
strategy vector y for the column player must have at least one positive
component. Hence in the product By, one of the components at least
must be positive. Hence the value of the game B is positive. Since
every row of 4 has a positive entry, every row of the game — A4 must
have a negative entry. Hence at least one component of x(— A4) must be
negative, and hence — A has a negative value,
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In the combination B + o(— A) the second term is negligible for very
small «; hence for these the game has positive value. As o increases,
we keep adding larger negative quantities to some of the entries of the
game, i.e., we keep decreasing some of these entries. Hence the value
of the game decreases steadily. For very large « the first term is negli-
gible, and hence the combined game has negative value. For some
intermediate value of « the game must have value zero.

Example 1 (continued). The value of the combined game M is
plotted for various « in Figure 25. Since B has value 42 and — 4 has
value —1 (see Exercise 2), at the beginning the game M has value
nearly 13, and near the end it has value pearly 2 — o, which is less
than zero (see Exercise 3).

We know that there is at least one « for which the game B — a4 has
value zero. By choosing such an « together with a pair x, y of optimal
strategies, we arrive at a set of quantities satisfying Axioms 1’ and 2'.
This still leaves the question of Axiom 5.

Value of M
Value of M in Example 3
N
o
I
()]
o
R

Figure 25 Figure 26

If there are two values of a, say p < g, for which the game has value
zero, every value between p and ¢ also has this property. This is because
the value of the game cannot increase as « increases, as we saw above.
Hence we must have a situation such as that shown in Figure 26. It
can be shown, however, that most of these values represent methods
of procedure where nothing worthwhile is produced, i.e., where Axiom
5 fails. For Axiom 5 to hold, different values of « can be achieved only
by using at least one new process. Since there are only a finite number
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of processes, we can have only a finite number of different possible a’s
on the interval between p and ¢g. If p is the smallest possible expansion
rate and g the largest, then p and ¢ are such that Axiom 5 can be satis-
fied, and there may be a limited number of additional ones in between.

Example 2. In the chemical industry we are interested in manufac-
turing compounds P, Q, and R. We assume that the basic chemicals
are available in plentiful supply, and that their cost can be neglected
for this analysis. But to manufacture compound P we must have a unit
of both P and Q available, while to manufacture Q we must have P
and R available. Compound R is a by-product of both manufacturing
processes. The exact quantities are given by

P O R P O R
Manufacture of P: A= (1 1 0 B = 6 0 1
Manufacture of Q: ~\1 0 1/ —\0 )
Then .
M=B—ad = (6 —a —a 1 )
' —a 3

N
|
Q

Let us choose

Ol ol bt
\:_/

x=(1 and y=<

Then

XM=[— 0,30 —a),33— )] and My= Eg - Zg]

From this we see that if @ < 3, then the row player has a guaranteed
profit, while if « > 3, the column player does. Thus a = 3 is the only
possibility, and for this case the value of the game is zero, and the
vectors x and y are optimal strategies, as can be seen from the fact
that xM and My have all components zero. Thus there is a unique
equilibrium, with o = 8 = 3.

We also find that the mixed strategy x is unique, which means that
the two processes must be used with the same intensity. However, the
strategy y is not unique. We may instead use
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or any mixture #y’ + (1 — y”, 0 < ¢t < 1. Our y is the case t = 3.
Hence we see that different price structures are possible, each leading
to the same expansion rate.

Example 3. This “economy” is a schematic representation of the
production of essentials and inessentials in a society. Goods are lumped
together into two types, E (essential goods) and [ (inessential goods or
luxury items). For the manufacture of E we need only essential goods
(since anything so needed is essential). For the manufacture of I we
may need both types of raw materials. Let us suppose that our economy
functions as follows.

E I E I

Manufacture of essentials: (l 0 B 4 0
Manufacture of luxuries: A\l 1) ~\0 2/

Then
M=B—aA=<4—a 0 )

—a 2—a

With a little patience we can determine the values of M for various
values of a, and we arrive at the curve in Figure 26. (See Exercise 4.)
Hence « must be between 2 and 4. For a = 4, we have the optimal

strategies x = (1,0) and y = (é), which satisfy all our axioms; while

for « = 2 we have
x=@ ad y=())

For in-between values of & we cannot satisfy Axiom 5. (See Exercises
5-7.) Hence there are two possible equilibria: (1) The society can
decide to manufacture only essentials, in which case the production
of these will increase rapidly. (2) By putting a high enough value on
inessentials, it will arrive at an equilibrium in which both essentials
and inessentials are produced, but then the rate of expansion is con-
siderably decreased.

We have now provided complete answers for the three questions
raised at the end of the last section, providing a mathematical solution
to a series of economic problems.
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EXERCISES

1. In Example 1 verify that for « = 3 the game M has value 0, and that
the x and y given are optimal strategies.

2. In Example 1 solve the 2 X 2 games B and — 4, finding their values
and pairs of optimal strategies.

3. In Example 1
(a) Show that the game M is nonstrictly determined for every a.
(b) Find the value of M for any a. [Ans. (5 + )3 — )/(4 4 «).]
(c) Show that the value for @ = .01 is very near 42.
(d) Show that the value for « = 100 is very near —98.
(e) Show that the value is 0 if and only if a = 3.

4. Find the value of M in Example 3 fora = 0, 1, 2, 3, 4, 5, and 6. [Hint:
Some of these games are strictly determined. ]
[4ns. 1.33, .60, 0, 0, 0,—1.00, —2.00.]
5. In Example 3, for a = 4, verify that the strategies given are optimal,
and that Axiom 5 is satisfied.

6. In Example 3, for a = 2, verify that the strategles given are optimal,
and that Axiom 5 is satisfied.

7. In Example 3, for & = 3, find the unique optimal x and y, and show
"that Axiom 5 is not satisfied. Prove that the same happens for every a if
2<a<4.

The remaining problems refer to the following economy: There are four
goods and five processes, and the economy is given by

0 011 0 0 4 2
0 0 2 2 0O 0 5 7
A= 0 4 0 21}, B = 6 5 4 0
2110 0 4 0 3
01 0 2 306 0
Also let X = ('%, ’%’, Og 0, 0), x' = (O, 0, %’ %a 0)9
y =

O O wiw =
<
-
Il

8. Verify that 4 and B satisfy the restriction.
9. Compute M = B — aA.
10. Compute xM, x’M, My, and My',
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11. When will x’M have all positive entries? When will My’ have all nega-
tive entries? What possibilities does this leave for a?
[Ans. 0 < 2; > 3;2 <a <3.]
12. Show that for the remaining possible values of « the game M has
value zero, and x and y are optimal strategies.

13. Show that for the largest possible « the vectors x and y’ provide optimal
strategies which satisfy Axiom 5.

14. Show that for the smallest possible o« the vectors x’ and y provide
optimal strategies which satisfy Axiom 5.

15. If « is in between its two extreme values, show that
(a) xM is positive in its last two components, and hence the second
player can use only his first two strategies.
(b) My is negative in its last three components, and hence the first
player can use only his first two strategies.
(c) For these cases it is impossible to satisfy Axiom 3.

16. Process number five is in a special position. Why? [Ans. Never used.]

17. Use the results of Exercises 8-16 to show that there are exactly two
possible equilibriums for this economy. Interpret each equilibrium, and point
out the differences between the two methods of operating the economy.

[Ans. At the price of reducing the expansion rate, the economy can
produce a larger variety of goods. To achieve this, the additional
types of goods must be valued (relatively) very high.]

10. COMPUTER SIMULATION

Probabilistic models prevail in the social sciences. While many of
them can, in principle, be treated by the methods studied in this book,
in practice they frequently are much too complicated to obtain precise
theoretical results. In such cases, simulation by a high-speed computer
may be a powerful tool.

Simulation is a process during which the computer acts out a situa-
tion from real life. Typically, the relevant facts about an experiment
are supplied to the computer, and it is instructed to run through a large
series of experiments, perhaps under varying conditions. This enables
the scientist to carry out in an hour a series of experiments that would
otherwise take years, and at the same time all the important information
is automatically tabulated by the computer.

Of course, the computer cannot duplicate the exact circumstances of
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an experiment. The facts fed to it are based on a model (or theory)
formed by the scientist, and the value of the simulation depends on the
accuracy of the model. Thus the main significance of simulation is that
it enables a scientist to study the kind of behavior predicted by his
model. For very complicated models this may be the only procedure
open to him.

In addition to the use of simulation for theoretical studies, there are
two very important types of pragmatic uses of simulation: (1) It can be
used as a planning device. If there are various alternative courses of
action open, the computer is asked to try out the various alternatives
under different conditions, and report the advantages and disadvantages
of each course. (2) Simulation may be used as a training device. For
example, business schools make increasing use of “business games” in
which fledgling executives may try their skill at decision-making under
realistic circumstances. Similarly, simulated “war-games” are used to
train military leaders.

We will first discuss how machines simulate stochastic processes, and
then illustrate the procedure in four examples. To avoid the necessity
of lengthy introduction of new models, we shall use three of the games
previously discussed, and a Markov chain model. Also, we will describe
the simulation so that no previous knowledge of computers is necessary.

How does one introduce a probabilistic element into a high-speed
computer? This is achieved by the generation of so-called random
numbers. In a typical set-up, when an instruction contains the letters
“RND,” a real number between 0 and 1 is computed that gives rise to
fairly good random results.

Actually, the computer is forced to cheat, in that it has only a finite
capacity for expressing numbers. So that it may in reality divide the
unit interval into a million (or more) numbers, and give them in a pretty
random order. When its supply is exhausted, it will start giving the
same numbers in the same order. However, if one needs only 100,000

numbers, or even a million numbers, the results are highly satisfactory.
One use of the RND device is to generate an independent trials

process with two outcomes. For example, suppose that we wish to
have probability .3 for success. Then on each trial we generate an
RND, and ask:

Is RND < .37

If yes, we mark it as success; if no, then it is a failure. Since a number
picked at random from the unit interval has a .3 probability of being

e et e
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less than .3, we obtain an excellent approximation to the independent
trials experiment.

In Figure 27 we show 30 RND’s generated by the Dartmouth Com-
puter. If we used these for the above mentioned simulation, we would
have success in 8 of 30 trials, only one below the expected number of 9.

Suppose that we wish to simulate an independent trials experiment
with more than two outcomes. If the outcomes are equally likely, then
the generation of random integers is a very convenient device. In this
we generate RND’s as usual, but reinterpret them as integers.

For example, in Figure 28 we show the result of multiplying the
RND’s of Figure 27 by 6, and adding 1 to each. Now we have numbers
picked at random between 1 and 7. Since such a number is just as
likely to lie between 3 and 4 as between 4 and 5, saving the integer
part of the number will result in equally likely random integers 1, 2, 3,
4, 5, and 6. This is shown in Figure 29.

746489 .196691 053368 323690 244322
625169 193130 935845 445447 262310
.218802 783032 402600 .848350 558119
980484 918514 873523 .388814 .393435
.545924 .578063 .638623 637121 .587565
952204 985279 076776 096170 736181
Figure 27
5.47893 2.18015 1.32021 2.94214 2.46593
4.75101 2.15878 6.61507 3.67268 2.57386
2.31281 5.69819 3.41560 6.09010 4.34871
6.88290 6.51108 6.24114 3.33289 3.36061
4.27555 4.46838 4.83174 4.82273 4.52539
6.71322 6.91168 1.46066 1.57702 5.41708
Figure 28
5 2 1 2 2 4 2 6 3 2
2 S 3 6 4 6 6 6 3 3
4 4 4 4 4 6 6 1 1 5
Figure 29

Example 1. Craps. Let us simulate the game of craps on the com-
puter. First of all, we must imitate the roll of a pair of dice. We may
do this by choosing a pair of numbers from Figure 29, each number
representing one die, and letting the sum represent the sum of the two
dice. Then we proceed according to the rules of craps.
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A flow-diagram for this simulation is shown in Figure 30. If we
carry this out for three games, using the numbers in Figure 29 (reading
from left to right in successive rows), we obtain the following results:
(1) The player rolls 7, and wins. (2) The player rolls 3, and loses.

Let d, and d, be
random integers between
1and 6.

Y

Let d=d,+d,.

\ 4
(Isd=2, @ Tes > Player loses.

No | Stop 1

, S
@M Player wins.

A
No

Y

Let x =d.

Y

Let d, and d, be
random integers between
1and 6. Yes Yes

y

Let d =d, +d,.

Figure 30

(3) The “point” is 6, but a 7 turns up before a 6, and the player loses
again.

Let us use this simulation model to estimate the player’s expected
value. (In Chapter 1V, Section 12, this was found to be —.0141.) After
10,000 simulated games the player was behind by $312, yielding the
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rather poor estimate of —.0312. However, after 250,000 games the
estimate was —.0154, in good agreement with theory. The total com-

~ puting time required for 250,000 games of craps was 8 minutes, indicat-

cating that this is a practical procedure.

The difficult question to answer, in general, is: “When have we run
enough simulated games?” However, in the simple case of craps this
is not hard to determine. Since the probability of winning is nearly 3,

the standard deviation for n games is roughly Vn-3-% or Vn/2. Sup-
pose that the player wins that many more games than expected. This

increases his winnings by v/ ;z—/ 2 dollars, and decreases his losses by the
same amount. Thus there is a net gain of V/n dollars. This changes our

estimated expected value by V'n/n, or by 1/Vn.

Thus, running the game 10,000 times will typically result in an error
of about .01, which is quite significant compared to the correct answer
of —.0141. In our simulation we were off by about .017, which is
within two standard deviations (which is .020). However, an error of
the same size in the opposite direction would actually have yielded a
positive expected value. So we can have little confidence in 10,000
simulated games in estimating a number so near to 0.

However, after 250,000 games the typical error is only about .002.
Thus from our computed estimate of —.0154 we can have considerable
confidence that the game is not favorable to the player; and we would

estimate that the correct expected value lies somewhere between —.012
and —.019.

Example 2. Poker. In the exercises of Chapter IV, Section 3, we
computed the probabilities for various poker hands. Let us obtain
estimates for the same by simulation.

Our problem here amounts to selecting 5 cards at random from a deck
of 52 cards. We first of all number the cards from 1 to 52, in any con-
venient manner. Then we select one card by generating a random
integer from the set 1 through 52. (This can be achieved by computing
52-RND + 1.) Next we select one of the 51 remaining cards at ran-
dom, etc. When we have five cards, we determine how good a hand we
drew.

This simulation was carried out for 10,000 poker hands on the
Dartmouth Computer, requiring about one hour of computing time.
The results were as in Figure 31.
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Number
Type of hand. of times.
Bust 5046
One pair 4169
Two pairs 508
Three of a kind 191
Straight 43
Flush 11
Full house 25
Four of a kind 6
Straight flush 1

Figure 31

You will be asked, in the exercises, to compare these figures with the
expected values.

Example 3. Land of Os. Models in the social sciences often de-
pend on Markov chain processes. While there are powerful theoretical
tools for treating Markov chains, sufficiently complex models may have
to be simulated. We will illustrate this for a simple Markov chain,
which we have already treated theoretically.

Consider the Land of Oz (Chapter V, Section 7, Exercise 13). Sup-
pose that we wished to find the fraction of times that the weather is
“nice,” “rain,” or ‘“‘snow,’” by simulation. We would first pick a starting
state, say “‘rain.”” We then know that the probability of “rain’ is %, of
“nice” %, and of ““‘snow’ . We can achieve this by generating an RND;
if it is less than $ we decide on “‘rain,” if it is between % and 2 then *““nice”
is next, while if RND > 2 then “snow” is next.

If we use the RND’s in Figure 27, we obtain “nice” for the second
day. From here we go to “rain” or “snow,” with probability 1 each.
Since the next RND is less than , we choose “rain.” Proceeding in
this manner, after the original “rain” we obtain

(13 : 9’

“nice,” “rain,” “rain,” “rain,” ‘‘rain,” ‘“nice,” ‘“rain,” “snow.”

We carried out this simulation for 10,000 times for each starting state,
with the results shown in Figure 32. We note that the results are in
excellent agreement with the .4, .2, and .4 long-run distribution pre-
dicted by theory, and that the results are pretty much independent of
the starting state.
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Starting Number Number Number
state of “rain” of “nice” of “snow”
“Rain” 4080 2002 3918
! “Nice” 3976 1986 4038
i “Snow” 3975 1984 4041
’j* Figure 32

Example 4. Baseball. The game of baseball is a good example of
a game having a model for which a complete theoretical treatment is
not practical, and hence much can be gained from simulation.
; How would we build a simulation model for a given team, in order
; to study the way they produce runs? Fortunately, some very detailed
statistics are kept, over long periods, which are ideal for building such
\ a model. Let us suppose that a given batter comes to bat. We know
‘ from past experience what the probabilities are for his making an out,
getting a walk, or getting a hit of various kinds. We simply generate an
RND, and use it to decide what the batter did.

For example, if he has probabilities .1 for a walk, .64 for an out, .2
for a single, .03 for a double, .01 for a triple, and .02 for a home-run,
we can generate a random integer from 1 through 100, and interpret it

as in Figure 33.

! We can then bring the next batter to bat, and arrive at a result based
& on his past performance. The running on the bases may be simulated
similarly. For example, we can feed into the machine the probability
that a man on first reaches third on a single. Just how realistic we wish
to make the model depends entirely on how much work we are willing

to do.
Range Result Probability
1-10 Walk 1
11-74 Out 64
75-94 Single 2
95-97 Double .03
98 Triple 01
99-100 Home-run 02

Figure 33
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It should be noted that we are simulating only the batting of one
team. We do not here consider the batting of the other team, or ques-
tions of defensive play.

Such a model would be most useful in training young managers.
The computer could make all decisions (many of them stochastic) hav-
ing to do with the performance of the players, while the manager could
make all decisions normally open to managers. For example, he could
call for a hit-and-run play, and the machine would simulate the results.
He could call for a steal, or send in a pinch-hitter, or tell a batter to try
to hit a long fly ball.

By the use of a computer a new manager could gain an entire season’s
experience in a few days—and he would not be learning at the expense
of his team.

The model is also useful for planning purposes, as we will illustrate
here. One important task of the manager is to decide on his batting
order. He could feed a variety of batting orders to the computer, have
it try each for a season’s games (or more), and report back the results.

This was actually done on the Dartmouth Computer.

The team used in the simulation was the starting line-up of the 1963
world champion Los Angeles Dodgers. The line-up of Figure 34 was
used throughout. '

Line-up Batting average Slugging average
1. Wills 302 .349
2. Gilliam 282 .383
3. W. Davis 245 365
4, T. Davis 326 457
5. Howard 273 S18
6. Fairly 271 .388
7. McMullen 236 339
8. Roseboro 236 351
9. Pitcher (average) 17 152
Figure 34

An entire season of 162 games was simulated, keeping detailed rec-
ords for each player. Of course, this simulation differed from the nor-
mal year in a few respects. For instance, the first eight players played -
every inning of every game. Since only the batting was simulated, no
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allowance was made for defensive play, nor did the game stop after
eight innings if the home team was ahead. Games were not called on
account of rain, and there were no extra-inning games. But, many im-
portant features concerning batting were recreated quite realistically.
We will cite a few of the more interesting results.

Seven of the batters ended up with batting averages close to their
actual ones, but two did not. Tommy Davis, the league’s leading hitter,
had an even more spectacular year during simulation: He batted an
even 350 (compared with 326 in 1963). On the other hand, Fairly who
batted 271 in actuality, bad a bad simulated year, batting only 250.
This shows how much a batting average can change due to purely
random factors.

Howard was far ahead in home runs, with 54. This is much higher
than the 28 he had in actuality, but he was only used part time in 1963,
while in the simulated year he played all the time. Two of the home
runs were hit by pitchers—just as in real life. In one game Howard hit
three home runs. But mostly it was the balance of the Dodger team
that showed up; there were ten games in which three different players
hit home runs.

There were no really spectacular slumps, though Gilliam once went
15 consecutive at-bats without getting a hit. The total number of runs
scored was 652, in excellent agreement with the actual 640. On the
other hand, the 1352 men left on base compared very poorly with the
Dodgers’ league-leading performance of leaving only 1034 men on base.
Two factors in this were the absence of double-plays and pinch-hitters
in the simulation model. But there is probably some other relevant
attribute of the team that was missed in the model.

Perhaps the most interesting result is the number of shut-outs. There
were 11 in the simulation, as compared to the league-leading perform-
ance of only eight shut-outs. In the simulation, two of the shut-outs
occurred in the final two games. Thus, if the season ended in 160 games,
the simulation would have been off by only one shut-out. This shows
how hard it is to get an accurate estimate for a small probability through
simulation! And there were four games late in the season, three of
which ended in shut-outs. If this had happened in real life, all the Los
Angeles papers would have carried headlines about a Dodger batting
slump.

To compare various possible batting orders, several line-ups were
simulated for ten entire seasons. The seven line-ups are shown in the
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first column of Figure 35, and the results in the second column. The
standard deviation of the average number of runs per game was about
.07. Since the difference between the best and the worst line-up is over
three standard deviations, one is tempted to conclude that the batting
order really makes a difference—though not very much of a difference.

Average number of runs per game

Line-up 10 seasons 7 X 10 seasons Range
1,2,3,4,56,7,8,9 4.06 4.00 3.91-4.06
1,4,2,5,6,3,8,7,9 4.07 4.02 3.92-4.07
4,5,6,1,2,3,7,8,9 4.00 3.98 3.90-4.04
2,1,3,54,6,8,7,9 3.98 4.01 3.95-4.08
1,4,7,2,5,8,3,6,9 3.90 3.98 3.90-4.05
9,876,54,3,2,1 3.89 3.82 3.72-3.89
9,6,3,8,52,7,4,1 3.83 3.83 3.76-3.92

Figur:e 35

However, this simulation—though time-consuming—is not conclu-
sive. We may still entertain the hypothesis that any 1 ne-up averages
about 3.95 runs per game, and all seven outcomes are with.n two
standard deviations of this. We are forced into an even more substantial
simulation run.

The simulation was repeated; this time every line-up had seven sets
of ten entire seasons simulated. The newly computed averages are
shown in column three of Figure 35, while the maximum and m:n mum
values obtained for a set of ten seasons are shown in the last column.
Since we have simulated seven times as many games for each 1 ne-up,

the standard deviation is reduced by a factor of V/7, to less than .03.
The differences in the averages now look more significant. Also we
note that the ranges obtained for the first five line-ups don’t overlap
(or hardly overlap) the ranges for the last wo 1ne-ups. We may
therefore conclude that we have five “good” and two “poor” line-ups.
And this hypothesis stands up under more sophisticated tests.

What character zes the poor line-ups? Most noticeably, the pitcher
is first, rather than being last. But also we note that the Dodgers had
three weak hitters (numbers 3, 7, and 8), and two of these are near the
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top of the bad line-ups. We therefore conclude that poor hitters should
be near the end of the line-up. But little else can be concluded.

We should also note that the difference between best and worst is
surprisingly little, and drastic changes in the *“best” have practically no
effect. Thus we conclude that the importance of the batting order has
been greatly exaggerated.

One additional remark may be of interest: The first line-up in Figure
35 is, of course, the one chosen by the coach. The last five are simply
permutations chosen according to simple patterns. However, the sec-
ond line-up was chosen by one of the authors, a Dodger fan, as his
attempt to “coach” the team. He was most pleased that it turned out
best! Of course, .02 is only % of a standard deviation, which represents
about three runs per year, and is not significant.

EXERCISES

1. Use the RND in Figure 27 to simulate an independent trials process
with probability .4 of success, for 30 trials. How many successes do you
obtain? . (Ans. 11.]

2. In Example 1 three games of craps were simulated, using Figure 29.
Check these, and then simulate one more game.

3. From Chapter IV, Section 3, Exercises 18, 19 compute the expected
number of bust, one pair, two pairs, and three-of-a-kind hands in 10,000
poker hands. Also compute the standard deviation for each. Do the figures
given in Example 2 for the simulation look reasonable?

[Partial Ans. Bust: expect 5012; off by less than one standard devia-
tion.] ‘

4, Consider an independent trials process with probability p for success.
Show that if p is very small then the standard deviation \/n_p—q is very close
to the square root of the expected number of successes.

5. Use the results of Chapter IV, Section 3, Exercise 11, together with
the result of Exercise 4 (above), to check the simulated values for the rarer
poker hands in Example 2.

6. Use the results of Exercises 3 and 5 to discuss how far one can rely on
the simulated probabilities obtained from 10,000 poker hands.

7. Use the RND in Figure 27 to simulate 30 days’ weather in the Land
of Oz, following a rainy day. [Ans. “Rain” 10, “Nice” 7, “Snow” 13.]
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8. Change the RND in Figure i7 to random integers from 1 through 100,

9. Suppose that we have a team each of whose batters performs according
to the simulation scheme in Figure 33. Use the random integers obtained in
Exercise 8 to simulate the performance of the first 30 batters on one team.
How does the team stand after 30 men have come to bat?

[Ans. End of six innings, four runs scored.]

10. In 1951, Gil Hodges of the Brooklyn Dodgers was officially at bat
582 times, and hit 40 home runs. Estimate his probability of hitting a home
run each time he was at bat. How large a fluctuation in his annual home-run
output is attributable to pure chance?

11. From 1949 through 1959, Gil Hodges had the following number of
home runs: 23, 32, 40, 32, 31, 42, 27, 32, 27, 22, 25. Is there a case for his
having had “good” and “bad” years, or may we assign the differences en-
tirely to chance fluctuations? [Hint: Estimate the expected value from the
data, and use Exercise 10.] [Ans. Explainable as chance fluctuations.]
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Coalitions (cont.):
winning, 80
Column vector, 217
addition of two, 219
multiplication by a matrix, 234
multiplication by a number, 219
Communication:
canonical form of matrices, 399
cliques in networks, 403
matrices, 384
networks, 384
one and two stage paths, 387
Commutative group, 300
cyclic, 303
Commutative law of addition:
for matrices, 249
for vectors, 219
Complement of a set, 64
Complete permutation, 305
Compound statements, 1
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Computer simulation, 447
Conclusion, 44
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contrapositive of, 41
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variants of, 41
Conditional probability, 144
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Contradictories, 37
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Contraries, 36
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Convex combination of strategies, 362
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bounded, 32
bounding plane of, 318
extreme point of, 318
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general principle for, 95
inclusion-exclusion formula, 119
number of elements in a set, 89
number of ordered partitions, 100
number of permutations, 94
reflection principle, 124
techniques for, 116

Craps, 191
simulation of, 449

Cross-partition, 85

Cyclic group, 303
order of, 303

D

Decision problem, 170, 237
Degree of a permutation matrix, 297
Deviation, standard, 179
Difference of two sets, 64
Diffusion model for gases, 197
Directed graph, 384
Disjoint subsets, 64
Disjunction, 5

exclusive, 6

inclusive, 6
Distributive law:

for matrices, 250

for numbers and matrices, 249
Dominance:

matrices, 386

relation, 385
Dominant gene, 406
Domination of strategies, 369, 370

Effective set of a permutation, 305
Empty set, 59 "
Equation, linear, 251
Equilibrium:

of an expanding economy, 436

in genetics, 410

of a Markov chain process, 274
Equiprobable measure, 135
Equivalence:
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of statements, 8, 34, 69

vl e bl e

Pt et

as! 1 laallaalie sl alle o lle s

O N



AR AAPY YL S A e e

TR

LA

R

INDEX 461

Ergodic:
sets, 400
states, 400
Estes learning model, 415
Estes, W. K., 415
Exclusive disjunction, 6
Expanding economy model, 434
equilibrium in, 436
Expansion factor, 437
Expected value, 189
of a game, 338, 354
Exponential payoff game, 360, 377

Factor:
expansion, 437
interest, 437
Factorial, 94
Fair game, 338, 347
Fallacy, 46
Family tree, 425
Fixed point, 273
Flow diagram for solving linear equa-
tions, 256
Fundamental matrix of a Markov chain,
284
Fundamental theorem of matrix games,
357

G

Gambler’s ruin, 209

Games:
domination in, 369
exponential payoff, 360, 377
fair, 338, 347
fundamental theorem of, 357
matrix, 337, 353
mixed strategy of, 345
nonstrictly determined, 343
nonzero-sum, 336
optimal strategies in, 338, 346, 354
poker, simplified, 378
product payoff, 352, 367
strategy in, 338, 345
strictly determined, 335, 338, 361
symmetric, 359
value (expected) of, 338, 346, 354

Games (cont.):

where one player has two strategies,

368

zero-sum, 336 :
Generators of a group, 303, 3
Genes, dominant and recessive, 406
Genetics, 406
Graph:

directed, 384

of a weak ordering relation, 399
Group, 399

commutative, 300

cyclic, 303

order of, 303

permutation, 300

regular, 431

subgroup, 302

symmetric, 300
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Half plane:
bounding line of, 318
open, 310
closed, 310

Half space:
bounding plane of, 318
closed, 312
open, 312

Hat-check problem, 140

Implication, 32
Inclusion-exclusion formula, 119
Inclusive disjunction, 6
Inconsistent statements, 34, 36
Independent trials processes:
with more than two outcomes, 185
with two outcomes, 165, 175
Indirect method of proof, 49
Inequality, 309
superfluous, 318
Intensity vector, 435
Interest factor, 437
Intersection of two sets, 63
Inverse of a square matrix, 264
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Land of Oz, 280
simulation, 452
Law of large numbers, 175, 178
Limiting probabilities:
Estes learning model, 420
genetics, 410
in Markov chains, 274
Linear equations:
detached coefficient tableau, 257
flow diagram for, 256
logically false, 254
solution of, 251
Linear functions, 291
maxima and minima of, 317, 321
Linear programming problems, 327
maximum problem, 328
minimum problem, 330
Linear transformations, 291
Locus:
of a linear equation, 309
of a linear inequality, 310
Logically false:
linear equation, 254
statements, 22, 69
Logically true statements, 22, 69
Logical possibilities, 19
requirements for, 22
set of, 59
Logical relations, 32, 36
Losing coalition, 80
maximal, 82

Markov chains:
absorbing, 282
absorbing state in, 282
classification of states in, 400
diffusion model, 197
fundamental matrix of, 284
processes, 194
random walk, 283
regular, 274
transition diagram for, 195
transition matrix of, 195
Marriage rules:
axioms for, 424
choice of, 429
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Matrices:
addition of two, 243
block triangular, 399
canonical form of, 284, 399
communication, 384

commutative law for addition of two,

249

decomposable, 406

diagonal, 250

distributive laws for, 249, 2350

dominance, 386

fundamental, 284

identity, 246

inverse of, 264

lower triangular, 270

of a marriage relationship, 430

multiplication by a number, 243

multiplication by vectors, 234

multiplication of two, 244

permutation, 296

powers of, 247

reducible, 406

sociometric, 384

square, 232

transition, 195, 272

transpose of, 298

zero, 246
Maximum, of a linear function, 317, 321
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equiprobable, 135

properties of, 131

tree, 151
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Minimum, of a linear function, 317, 321
Mixed strategy, 345
Morgenstern, O., 378
Morra, 350, 358, 375, 376
Multinomial theorem, 109, 111
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Negation, 6
Network:
communication, 384
equivalence classes in, 394
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Nonstrictly determined game, 343
Nonzero-sum game, 336
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Normal curve, 203
Number of elements in a set, 90
inclusion-exclusion formula for, 119
Number systems:
binary, 75, 77
ternary, 79
two-digit, 75

Odds, 132, 133
Open half plane, 310
Open statement, 251, 308

truth set of, 308
Optimal strategy, 338, 346, 354
Order of a cyclic group, 303
Ordered partitions:

number of, 100

with r cells, 99

P

Parity, of numbers, 76
Partitions:
cells of, 84
counting, 99
cross, 85
ordered, 99
Pascal triangle, 104
Permutation:
complete, 305
degree of a matrix, 297
effective set of, 305
group of degree n, 300
group, regular, 431
matrices, 296
number of, 94
Pivot, 113
Poker:
bluffing strategy, 380
conservative strategy, 380
simplified, 378
simulation, 451
Polyhedral convex set, 312
Possibilities, logical, 19
Power:
in a dominance situation, 390, 393
voting, 113, 114
Powerless member, 81, 115
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Premise, 44

Presidents’ birthdays, 142

Price vector, 436

Primary elections, 59

Probability:
Bayes, 158
central limit theorem, 201, 204
conditional, 144
decision problem, 170
equiprobable measure, 135
expected value, 189
fundamental assumption of, 127
gambler’s ruin, 209

independent trials process, 165, 175,

185
interpretation of, 132
law of large numbers, 175, 178
measure, 128
nonintuitive examples, 139
odds, 132, 133
properties of, 131
of a statement, 128
transition, 194, 272
vector, 272
Processes:
economic, 434

independent trials with two outcomes,

165, 175

independent trials with more than two

outcomes, 185

Markov chains, 194, 271, 282

stochastic, 150
Product payoff game, 352, 367
Proof:

indirect method, 49, 50

reductio ad absurdum, 51
Proper:

set, 59

subgroup, 302
Pure strategy, 338, 353

R
Random:
integers, 449
numbers, 448
walk, 283
Ray, 320
Recessive gene, 406

Rectangular coordinate system, 226
Reductio ad absurdum, 51
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Reflection principle, 124
Regular:
permutation group, 431
transition matrix, 274
Relations:
containing, 69
equivalence, 8, 34, 395
graph of, 399
implication, 32
logical, 32
onefold, 36
systematic analysis of, 36
weak ordering, 395
Roulette, 189
Row vector, 218
addition of two, 219
multiplication by a matrix, 234
multiplication by a number, 219
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Set, convex, 308, 312
bounded, 320
extreme point of, 318
polyhedral convex, 312
unbounded, 319

Sets:
abstract laws of, 73
containing relation, 69
cross-partition of, 85
description of, 58
difference of two, 64
empty, 59
ergodic, 400
finite, 58
listing of, 58
of logical possibilities, 59
measure of, 128
number of elements in, 89
partition of, 84
proper, 59
relation to statements, 67
subsets, 59
transient, 400
truth, 68
unit, 59
universal, 59

Shapley, L. S., 113

Shubik, M., 113

Simple statement, 1
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Simulation, 447
baseball, 453
craps, 449
Land of Oz, 452
poker, 451
Sociometric matrices, 384
Square matrix, 232
inverse of, 264
powers of, 247
transpose of, 299
Standard deviation, 179
Statements:
compound, 1
contradictories, 37
contrapositive, 41
contraries, 36
converse, 41
inconsistent, 34, 36, 37
independent, 146
logically false, 22
logically true, 22
probability of, 128
related, 36
relation to sets, 67
relative to a set of possibilities, 20
self-contradiction, 22
simple, 1
subcontraries, 36
truth set of, 68
unrelated, 36
States of a Markov chain:
absorbing, 282, 400
ergodic, 400
transient, 400
Stochastic process, 150
in genetics, 406
independent trials with more than two
outcomes, 185
independent trials with two outcomes,
165
Markov chains, 194
Strategy:
convex combination of two, 362
in a decision problem, 237
domination of, 369
in a matrix game, 338, 353
mixed, 345
optimal, 338, 354
pure, 338, 353
Strictly determined games, 335, 338
Subcontraries, 36
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Subgroup, 302
cyclic, 303
proper, 302
Subsets:
abstract laws of, 73
complement. 64
containing relation, 69
difference of two, 64
disjoint, 64
empty, 59
intersection of two, 63
number of elements in, 89
proper. 59
relation to compound statements, 67
truth, 68
union of two, 63
unit, 59
universal, 59
Venn diagram of, 63
Superfluous inequality, 318
Switching circuits, 52
Symmetric:
game. 359
group, 300

Tarau Society, 428
Ternary number system, 79
Three-space, 311
Transformation:

linear, 291

quadratic, 410
Transient:

sets, 400

states, 400
Transition:

diagram, 195

matrix, 195

probability, 194
Transition matrix, 195, 272

canonical form of, 284, 399

regular, 272
Transpose of a matrix, 298
Tree:

diagrams, 27

family, 425

measure. 151
Truth set, 68

of an open statement, 308
Truth tables, §, 15

Tucker, A. W., 352, 367, 378
Two-digit number systems, 75
Two-space, 311

U
Union of two sets, 63
Unit set, 59
Universal set, 59
Utility, 237

v

Valid arguments, 44
Value:
of a nonstrictly determined game, 346,
354
of a strictly determined game, 338
Variables, 2
Vector:
addition of two, 219
column, 217
commutative law of, 219
components of, 217
difference of two, 220
equality of two, 218
fixed point, 273
intensity, 435
mixed strategy, 354
multiplication by a matrix. 234
multiplication by a number, 219
negative of, 219
price, 436
probability, 272
product, 223
row, 218
zero vector, 220
Venn diagram, 63
Veto power, 81
Voting coalitions, 79
Voting power, 113, 114
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Weak ordering, 395
graph of, 399
Weight, of an element in a set, 128
Weil. André, 424
Winning coalition, 80, 113
minimal, 80



