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CONTINUOUS TRACE GROUPOID C*-ALGEBRAS

PAUL S. MUHLY'Y and DANA P. WILLIAMS

§1. Introduction.

A groupoid is a small category in which every morphism is invertible. If there is
at most one morphism from any given object to another, then the groupoid is
called a principal groupoid. Thus a principal groupoid is essentially an equival-
ence relation on its set of objects: two objects are equivalent if, and only if, there is
amorphism from one to the other. If one is given a finite principal groupoid, then,
thinking of it as an equivalence relation on the finite set {1,2,...,n}, say, it
indexes the matrix units of a finite dimensional C*-subalgebra A4 of the n x n
matrices. The algebra A is the direct sum of full matrix algebras, the number of
summands equaling the number of equivalence classes and the sizes of the
summands equaling the sizes of the equivalence classes. Our objective in this note
is to investigate an infinite dimensional generalization of this observation.

We follow the notation and terminology of Renault [9] except that we write
s for the map he denotes by d. Throughout this paper, ® will denote a locally
compact groupoid that admits a Haar system, which will be fixed and denoted by
{A"},c@0- Unless otherwise indicated, we shall assume that  is principal and we
shall also assume that ® is second countable. While a number of our arguments
work without this second assumption, the main results appear to use it in
essential ways. Consequently, we have made no systematic effort to achieve the
greatest possible generality in our ancillary lemmas and propositions. The space
of objects in ®, ®°, is called the unit space of ®. The groupoid is principal
precisely when the map = from ® to G° x G° defined by the formula n(y) =
(r(y), s(y)), y € ®, where r(y) = yy ! and s(y) = y 'y, is one to one. The image of
T is an equivalence relation on G° x °, denoted by R. While = is always
continuous, it need not be a homeomorphism onto its range. However, we shall
also want to require that R be closed in ° x 6° — we call such an equivalence
relation proper. When 7 is a homomorphism onto a proper equivalence relation,
then ® is called a proper principal groupoid.
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If Ris transitive, i.e.,if R = ®° x 6°, thenasis proved in [9], the C*-algebra of
the groupoid (and Haar system), C*(®, 1), is (isomorphic to) the algebra of all
compact operators on a separable Hilbert space, i.e., C*(®, 1) is an elementary
C*-algebra. On the other hand, by [6], if R is proper, then C*(®, 1) is isomorphic
to the C*-algebra of a continuous field of elementary C*-algebras defined by
a continuous field of Hilbert spaces over °/R (See Proposition 2.2, below.) So, if
® is a proper principal groupoid, then an exact analogy exists between this
setting and what happens when the groupoid is finite. Our primary goal here is
prove the converse, i.e., we prove that if C*(®, 1) is the C*-algebra associated
with such a continuous field of C*-algebras, then ® is proper. Actually we prove
a slightly stronger statement than this in Theorem 2.3, which is our main
theorem. It asserts: If ® is second countable, locally compact, principal groupoid
with Haar system {1"},.go, then C*(®, 1) has continuous trace if and only if ® is
proper. Thus, while a priori C*(®, 1) might have non-trivial Dixmier-Douady
invariant, our theorem (and Proposition 2.2) shows that it can’t.

Part of our motivation for the present investigation comes from Green’s paper
[4] in which he proved that if G is a second countable, locally compact group
acting freely on a second countable, locally compact, Hausdorff space, then the
transformation group C*-algebra C*(G, X) has continuous trace if, and only if,
G acts properly on X. Our result contains his because under his hypotheses
X x G has the structure of a principal groupoid which is proper in our sense if,
and only if, G acts properly on X. While portions of our line of reasoning follow
his arguments, we feel that groupoid methods put more clearly into evidence the
roles played by the various hypotheses. In addition to yielding more general
results, groupoid arguments appear cleaner and more natural than arguments
tied to transformation groups.

§2 Equivalence Relations.
Recall that G acts on ®° on the right: let
6G°*6 = {(4,79)e6° x G:r(y) = u},

and for each (u,7)e®°*®, let u-y = s(y). We say that G° is a proper right
®-space when the map @: 6°* 6 —» 6° x 6°, defined by ®(u,y) = (u, s(»)), is
proper. Notice that @(u,y) = n(y). The next lemma is almost an immediate
consequence of the definitions.

LemMA 2.1. If © is a principal groupoid, then the following are equivalent.
(i) misa closed map.
(ii) mis a homeomorphism onto aclosed subset of ° x ®°. (i.e., ® is a proper
principal groupoid).
(ili) = is a proper map.
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(iv) @ is a closed map.

(v) @ is a homeomorphism onto a closed subset of 6° x 6°.
(vi) @ is a proper map (i.e., 6° is a proper right ®-space).
(vii) Given K < 6° compact,

6(K) = {ye®:K-ynK + 0}

is compact in ®.
(vii) Given K < 6° compact, ®(K) is relatively compact in G.

Proor. It follows from [1;1.10.1 Proposition 2] that (i), (i), and (iii) are
equivalent, as are (iv), (v), and (vi). Since = and @ have identical ranges, (i)—(vi) are
equivalent.

On the other hand, if K = 6° is compact, and if & is a proper map, then
&~ 1K x K)is compact in ° * ®. Since the projection pr, of ° * & onto G is
continuous, it follows that G(K) = pry(® (K x K)) is compact. Thus, (vi)
implies (vii).

Of course, (vii) implies (viii). Notice that if ®(K) is relatively compact, then
since ™YK x K) = K*®(K), d~ (K x K) is relatively compact and closed.
Therefore, the latter is compact and @ is a proper map. In short, (viii) implies (vi).

If ® is a proper principal groupoid, then it is easy to see that the orbit space
6°/® is Hausdorff.

PROPOSITION 2.2. If ® is a second countable proper principal gropoid with left
Haar system {*}, g0, then C*(®, 4) is strongly Morita equivalent to Co(®o/®). In
particular, C*(®, 1) has continuous trace with trivial Dismier-Douady invariant.

PrOOF. LetZ = 6°. Then Zisa(®, 6°/ )-equivalence ([6; Definition 2.1 and
Example 2.5]). The proposition now follows from [6; Theorem 2.8] and [8;
Proposition C1].

Our object in this article is to prove the following theorem which is
a strengthened converse of Proposition 2.2.

THEOREM 2.3. Suppose that B is a second countable locally compact principal
groupoid with left Haar system {1*}, .go. Then C*(®, 1) has continuous trace if and
only if ® is a proper principal groupoid.

Our proof of Theorem 2.3 will parallel Green’s proof of Theorem 17 in [4]. In
fact, the example at the end of [4] shows that even when ® is the groupoid of
a locally compact transformation group, C*(®, 1) need not have continuous
trace when one merely assmes that 6°/® is HausdorfT. This contrasts with the
foliation case: it follows from [3; Théoréme 3.2] that if (V, F) is a smooth foliation
without holonomy, then C*(V, F) has continuous trace if and only if V/F is
Hausdorff.
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We begin by recalling the definition of the representation I induced from the
point mass 6, at ue G° (see [9] pages 81-82). In the case of a principal groupoid,
I acts on I?(®, 4,) where

AE) = 2(E™Y),

and E~! = {y " !':yeE}. Recall that supp(4,) = ®, = s~ '(u). Then, if f e C(6)
and {e }(6, 4,),

E(f)E) = Lf (ya)&(a™ ) dA*(@).

Our next lemma is certainly well known, but we know of no proof in the
literature. We give a brief sketch of the proof for the reader’s convenience.

LeMMA 2.4. If ® is a second countable locally compact principal groupoid with
left Haar system {A*},.qo, then the representation L' is irreducible for each u € 6°.
Furthermore, if [u] = [v], then L is unitarily equivalent to L.

ProoF. The last statement is straightforward to check. For the first assertion,
we first observe that I' is equivalent to the representation R* on I*([u], )
defined by

R(f)E(y-u) = Lf (o)é(@™" u)dA*(w),
where y-u = r(y) and py, is the measure on [u] defined by

Id’(v) dpyy(v) = L P(s(v)) dA*(y),

for ¢ € C.(6°) (i.e., ppy = 5,(A").

On the other hand, any projection commuting with R*(C*(®, 1)) must also
commute with N,(Co(6°)” where N, is the representation of Co(6G°) on
I?([u], uyy) defined by

(Nu(9)S)(v) = p(v)&(v)

for ve [u], ¢ € Co(6°), and ¢e I?([u]). Since C(®°)|,, separates points of [u],
N,(Co(®))” is a maximal abelian subalgebra of operators on I?([u]). Hence any
projection commuting with R,(C*(®, 1)) must be of the form N,(¢) for ¢ = xe
with E < [u]. Notice that since N,(¢) commutes with every R*(f) we have

o) J;f @%@ v)dA°(a) = Lf @™ v)é(a" v)dA’(a)
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for py,-almost every v, all e I?, and all f € C(®). Therefore, for some ve [u],

o) = 2" )
for A’-almost every a. It follows that ¢ is constant (a.e.) on [u]; this suffices.
PROPOSITION 2.5. Suppose that ® is a second countable locally compact principal
groupoid with left Haar system {A"},.qo, and that C*(®, A) has continuous trace.

Thenu — [I*] defines a continuous open surjection of C*(®, 2)" which is constant
on G-orbits. In particular, °/® is homeomrphic to C*(®, )" .

ProOF. Now if f, g, and h are in C,(6), the continuity of the Haar system
implies that

u > CE(f)g, h)12e.2,)

is continuous. It follows from this and the preceding lemma that u — L induces
a continuous map ¥ of °/G into C*(®, 1)".
On the other hand, following [9; 2.1.4], there is a homomorphism

V: Co(6°) —» A(C*(®, )
so that, given ¢ € Co(®°) and f e C,(6) we have

V(@) f)) = o(r())f(7), and
(SN = ¢GOS ().

In particular, fixing u e ®°, there is a representation M, of Co(®°) on I*(6, 4,)
such that

L(V(¢)f) = M($)L(S)

([9;2.1.13]). Of course, ker(M,) is an ideal Jg_ in Co(®°) of functions which
vanish on a closed set F, = ®°. Using the fact that ¥ factors through 6°/®, it
follows that F, is ®-invariant (i.e., saturated with respect to the ®-action). Since
each I is irreducible, it follows that F, can’t be the union of two closed G-invari-
ant sets. Since the map 8: ° — 6°/® is continuous and open, [5; Lemma on
page 2227 implies that F, is an orbit closure.

The point here is that if I =~ I°, then M, = M,. But M, and M, are equivalent to
representations N, and N, on I*([u], u,), respectively, defined by

Ny (#)¢(r) = ¢()¢(®), and

N,(@)n() = o(e)n(®),

where ¢ € Co(6°), £ eI?([u]), and ne I*([v]). In particular, N, = N,. If [u] N
[v] = @, then we can apply [10; Lemma 4.15] to conclude that N, % N,. (Here
the i and j of the lemma are the inclusion maps of the orbits into G°). It follows
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that ¥ is an injection on °/®. Since C*(®, )" is HausdorfT, it follows that
6°/® is Hausdorff; and in particular, it follows that orbits are closed.

Now it is clear from the definition of I* that, if ¢ € Co(6°) and ¢(v) = O for all
ve[u], then M,(¢) = 0. Thus, F, < [u] = [u]. Therefore, F, = [u].

On the other hand, if L is any irreducible representation of C*(®, 1) and M is
the associated representation of Co(6°), then ker (M) = Jj,, for some ue®°.
Thus, L factors through C*(®|,;, 4). Now G|, is also a transitive groupoid; it
follows from [6; Theorem 3.1] that L is equivalent to . Therefore YV is surjective.

Finally, if I —» I* in C*(®,4)", then M, — M, as representations of Co(6°).
By [10; Lemma 2.4], we may, passing to a subsequence and relabeling if necess-
ary, assume that there are v,€ 6° and y, e ® such that r(y,) = u, and s(y,) = v,
(i.e., v, ~ u,)and v, — u. Thus, v, = u, converges to u in °/®. In sum, ¥ is open
and defines a homeomorphism of °/G onto C*(®, )" as desired.

LEMMA 2.6. Suppose that ® is a second countable principal groupoid which is not
proper. Then there is a ze ®° and a sequence {y,} < ® such that
@) r(ya) =z,
(i) s(y,) — z, and
(ili) given C = ® compact, there is an integer N¢ such that n 2 N¢ implies that
TnéC.

PrROOF. In view of Lemma 2.1, we may assume that there is a compact set
K € ®° such that

6(K)={ye6:K-ynK + 0}

fails to have compact closure. Now let {C,} be a sequence of compact sets such
that ® = U:‘; :C, and C, < Int(C,,,). By assumption, we can choose
7.€ B\ C, such that both r(y,) and s(y,) are in K. We can then pass to a subsequ-
ence (which we still denote by {y,}), and assume that r(y,) — zand s(y,) — y. Since
®°/® is Hausdorff, we have [z] = [y], and hence, y = z 7 for some y e B. But s:
® — G° is an open map ([9; 1.2.4]), and passing to yet another sequence (and
relabeling again), we can find §, — y such that s(8,) = s(y,). Puty, = 7.8, !. Then
(i) and (ii) are satisfied by construction. Suppose that C < ® is compact and that
N is a compact set containing the §,’s. If y, € C, then y, € CN. However, there is
a N¢ such that if k > N, then CN < C,. Hence, if n = N, then y, ¢ C.

For theremainder of this article, we assume that ® is a second countable principal
groupoid which is not proper. We will show that C*(®, A) cannot have continuous
trace; this will complete the proof of Theorem 2.3. The strategy is to assume that
C*(®, 4) has continuous trace, and derive a contradiction by producing an
element ce C*(®, 1) in the Pedersen ideal ([7]) which is not in the ideal of
continuous trace elements ([2]). Specifically, if {y,} =€ ® and ze®° are as
specified in Lemma 2.6, we will show that u — Tr(L(c)) fails to be continuous at
z.
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To this end we fix once and for all a function g € C,(6°) which is identically one
on a neighborhood U of z. Let N = supp(g). Put

F,=6,\r ([z]n N),and
F* = 6 ()s~'[z] A N).

Since each orbit [z] is closed, ®|; is a locally compact transitive groupoid in
the relative topology. Furthermore, topologically ®, and &* may be viewed as
subsets of ®|,;. The point is that we may apply [6; Theorem 2.2A and Theorem
2.2B] to conclude that the natural maps of ®, and ®* onto [z] are homeomor-
phisms, and that the map («, f) — «f is a homeomorphism of &, x &~ onto G|
Thus, F, and F* are compact, and if ye®|, and either g(r(y)) £0 or
g(s(y)) #+ 0, then ye F,F~.

Recall that a neighborhood W of ®° in ® is called conditionally compact if VW
and WV are relatively compact in ® whenever V is relatively compact in ®.

LEmMA 2.7. If ® is a second countable groupoid then ®° has a fundamental
system of symmetric open conditionally compact neighborhoods. In fact, if W, is
any neighborhood of ®°, then there is an open symmetric conditionally compact set
W, such that

G W,c W, < W,.

PROOF. As in the proof of [9; 2.1.9], we see that G° has a fundamental system
of open s-relatively compact neighborhoods. That is, a fundamental system of
neighborhoods U such that U n s~ }(K) is relatively compact set K < &°. (Thus,
UL is relatively compact if L is.) Of course, U ™! is r-relatively compact, and
W = U n U !is conditionally compact. The final assertion follows from the fact
that ® is a normal topological space.

Using the above lemma, we can choose symmetric conditionally compact
neighborhoods W, and W, such that W, is conditionally compact and such that
W, = W,. Furthermore, since the union of a conditionally compact set with
a relatively compact set is still conditionally compact, we may assume that
F,F?* < WyzW,. By construction,

W]z\ Woz = r Y (G°\ N).

Using a straightforward compactness argument, we can find symmetric neigh-
borhood ¥V, and V, of z in ® such that ¥, < V; and

WIVi\WoV, =1~ '(G°\ N).
Of course, we may assume that V, = W,. Now we have a fortiori that

WIVWI\ WoVoW, < r~(GO\N).
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We define

400) = gr(y) if ye WiV, W],
0 if y& WoVoWe.

The point of all this is that, because of our choices of W}, V;, etc., ¢! is continuous
with compact support on 6.
Furthermore, by construction,

WoVoW2VoW, < WaVoWh = WiV, We < WiV, wi.

In particular, there is a function be C;}'(®) such that 0 < b < 1; b is identically
one on W,V,W2V,W,, and b vanishes off of W4V, W%. By replacing b with
(b + b*)/2 we can assume that b = b*.

LEMMA 2.8. With our choices above,

gr»)gr@)bya™)gM (@) = g1 )gr(@)gV (),
forall y, ae®.

ProoF. If o ¢ W, V,W,, then both sides are zero; so we assume throughout that
ae WyVoW,.

If ye WyVoW,, then g'*)(y) = g(r(y)). Furthermore, ya ™' e WoVo WiV, W,, so
that b(ya~!) = 1, and both sides agree.

If ye W]V, W]\ W,V,W,, then both sides are zero again.

Finally, if y¢ W]V, W], then the right hand side is zero. On the other hand, if
ya~ e W4V, W4, then ye WiV, W]. Hence, y¢ W]V, W] implies that the left
hand side equals zero as well.

Recall that g is identically one on the neighborhood U.

LEMMA 2.9. With the choices made above, there is a neighborhood V, < V, and
a conditionally compact neighborhood Y of ®° such that if ve V,, then r(Yv) < U.

PROOF. Let {V,} be a neighborhood basis of z in G° consisting of relatively
compact sets. Also let {Y,} be a fundamental system of conditionally compact
open neighborhoods of ®°, satisfying Y, , ; < Y, for all n. Suppose that for eachn,
there is a z,€ V, and a y, € Y, such that r(y,z,)¢é U. Now z, — z and the z,y, are
contained in the relatively compact set V¥, Y;. Thus, we may assume thaty, — y. If
y¢®°, then eventually we have y¢ Yy for some NeZ. Since ® is a normal
topological space, there is a neighborhood Q of y disjoint from Yy. Hence the 7,
are eventually in Q and disjoint from Y. This is nonsense. But if y e 6°, then
YaZn — 7z = z € U, again, this is silly, and the result follows.

We begin our search for the appropriate element of the Pedersen ideal by
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introducing

&) = grG)gGG)bG).
Notice that f is self adjoint. Of course f € C (®), and

() L(f)ek) = Lf (a)&@™")di (@)
= L gr()g(s@)bya)é(a™")dA* (o)

=g(r(?)) L gr(e)b(ya ™) E(@)dAu(@).

Now ifu = z, then we may assume thaty € ®, and a € ®,. In particular, the choice
of b implies L(f)&(y) is equal to

g(r(») L 9r(@)&(@dA(@).

Thus, IZ(f) is a positive rank one operator with eigenvalue

by = f g(r(2))* di,().
®

On the other hand,

L(NgVx) = g(r(y) L g(r(@)bya™)gM(@) dA,(2),

which by Lemma 2.8 is equal to

g0) f . 9(r(@)g V(o) dAu().

It follows that g‘* is an eigenvector for I*(f) with eigenvalue

My = J . g(r(@)g" (o) da,(@).

Since gV is continuous with compact support, u} converges to u! as u converges
to z,

Now we can choose Y and V, as in Lemma 2.9. We can also assume that
Y = W, and that ¥, < V,. Thus, if {y,} is the sequence from Lemma 2.6 and if
K is the compact set W2V, W?2, then we can find an N such that n > N = N
guarantees that whenever y is in the compact set Yy, then, y¢ Wy VoW, and
r(y), s(y)e U. Note that the characteristic function &, = xy,, is in the 2-orthog-
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onal complement of g'*) viewed as an element of I*(®, Ay,,). Also, when a € Yy,,
we have ya~le Yy, 'Y < YV, Y < WoV,W,. Therefore, b(ya~!) =1 in this
case. Thus, when y € Yy,, we may use (}) to obtain the equation

E(FYEND) = Cm Endra@. 10,0
In particular,

<E(7")(f)(f,,), Cn) = <€m §n>'15(y,.)(YYn)'

Since £ ( f) is obviously a self-adjoint compact operator, it follows that as an
operator on the orthogonal complement of g'*’, the positive part of LY"(f) has
norm at least

}‘s('y,,)( Yyn) = }'r(y,.)( Y)

Thus, £ (f) has a second eigenvalue uZ, ) such that

Him Z Ariyp(Y).
Now if ke C}(®) is such that 0 < k £ 1, k(z) = 1, and k vanishes off Y, then

Ariy(Y) 2 L k(y) d(y) Ay s,

Since the right hand side converges to

j k(y)dA(y) > 0,
(]

there is an a > 0 such that
(1) p; 2 3a,
) v, = 2a.
O) Hag > 1 —a
Accordingly, we define ¢q: (— o0, 00) — (0, o) by

0 ift<a,
qt)= 2t—a) f a<t < 2a,
t if t 2 2a.

By [7; page 134], q(f) is positive and in the Pedersen ideal of C*(®, A). Further-
more, L'(q(f)) = q(L(f)) and E(q(f)) = LE(f). The last equality is a consequence
of the fact that I?(f) is a rank one operator with eigenvalue u! 2 2a. Finally, for
sufficiently large n,

Tr(@E" () 2 iy + Bym Z 12 + a.
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In summary, Tr (E?(g(f))) doesn’t converge to Tr (I(q(f))), and C*(®, 1) cannot
have continuous trace. This completes the proof of Theorem 2.3.

—

10.
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