EXPLICIT FORMULAS FOR STRANGENESS
OF PLANE CURVES

ALEXANDER SHUMAKOVITCH

ABSTRACT. Recently V. I. Arnold [2] introduced three numerical characteris-
tics of generic immersion of the circle into the plane. These characteristics
were defined axiomatically, making hard to calculate them and to evaluate
their range. In this paper we prove explicit formulas for one of these charac-
teristics called strangeness, making its calculation much easier. We also find
sharp upper and lower bounds for the range of strangeness and, in particular,
prove all conjectures formulated by Arnold [2].

INTRODUCTION

In this paper by a plane curve or simply a curve we mean an (C'-smooth)
immersion of the circle S* into the plane R2. We say that a curve is generic if it
has neither self-intersection points with multiplicity greater than 2 nor self-tangency
points, and at each double point its branches are transversal to each other.

In the paper [2] V. I. Arnold has shown that it is possible to assign for each
generic curve three numerical characteristics which are invariant under homotopy
in the class of generic curves. They are denoted by St, JT, and J~. The notation
St originates from the name strangeness which was chosen by Arnold.

The invariants St, J©, and J~ in some sense characterize, respectively, the num-
ber of triple point, direct and reverse self-tangency perestroikas which are needed
to be in a generic regular homotopy connecting one curve with another one (the
strict definitions are in 1.3). All three invariants were defined axiomatically using
recurrence relations, making their calculations quite hard for curves with many
self-intersection points.

Recently O. Ya. Viro [7] found the following explicit formulas for J*(C) and
J~(C) in terms of topological properties of the pair (R?,C):

JHCO)=1- Zindé(X) X(X) +n,

X
J(C)=1-> indZ(X)x(X),

where C is a family of circles obtained as a result of smoothing of the curve C' at
each double point with respect to orientation (see Figure 1); X runs through the
collection of the components of the set R?\ C, inds(X) is the index of points of the
component X with respect to C, x is the Euler characteristic, and n is the number
of double points of the curve C.

Key words and phrases. Immersion of the circle into the plane, generic immersion, Whitney
index, regular homotopy, perestroikas of a plane curve, Arnold’s invariants of a plane curve,
strangeness.
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FIGURE 1. The curve smoothing at a self-intersection point.

In this paper we prove some formulas for St(C). All of them, actually, are
modifications of the same formula represented in different terms. Besides the main
formulas (which are written in a similar form to the Viro’s formulas for J*), there
are also reformulations in terms of the Gauss word of a curve C' (see, for instance,
[3]) and ascending knot diagrams.

In section 1 we formulate the main results, which are proved in section 2. In
section 3 we analyze the value range of St and prove all Arnold’s conjectures [2]
about St. In the Appendix there are proofs of some auxiliary facts.

The author would like to express gratitude to O. Ya. Viro for his valuable dis-
cussions.

1. THE MAIN DEFINITIONS AND FORMULATIONS

1.1. Whitney index. By Whitney index or simply index of a curve we mean the
total rotation number of the tangent vector to the curve obtained when we move
along the oriented curve (it is obvious that this is the degree of the map which
associate a direction of the tangent vector to every point of the circle). We denote
the index of a curve C by ind(C). It is easy to see that the index does not change
under a regular homotopy of a curve that is a C'-smooth homotopy in the class of
C'-immersions.

Let us remark that under the change of orientation (that is an orientation re-
versing reparametrization) the index changes its sign. Moreover, its sign changes
under the change of orientation of the plane R2. Therefore in the case of a nonori-
ented curve (or plane) we can define only the absolute value of index. The simplest
examples of the curve with indices 0, +1,42,... are shown in Figure 2.

o

Fi1GURE 2. The standard curves with indices 0, &1, £2,+3, ...

1.1.A. THEOREM (WHITNEY [8]). Two curves C1 and Cy can be transformed into
each other by a regular homotopy if and only if ind(C7) = ind(Cy).
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1.2. Generic homotopies and perestroikas. Let us call a nongeneric curve as
a first order singular curve or simply as a 1-singular curve if it differs from a generic
curve either in exactly one point of triple transversal self-intersection or in exactly
one point of self-tangency. In the case of generic regular homotopy between two
generic curves C7 and C3 we can meet only finitely many nongeneric curves and
each of them is a 1-singular curve.

In a point of self-tangency the velocity vectors of the tangent branches can have
either the same direction or the opposite one. In the first case the self-tangency is
called direct and in the second one called reverse. Let us remark that the type of
the self-tangency point does not change under reversing of orientation.

——

direct self-tangency

—

triple point reverse self-tangency

F1GURE 3. The types of 1-singular curves.

Hence we have three types of l-singular curves (see Figure 3). The passages
through singular curves during a generic homotopy correspond to three perestroikas
of a curve (see Figure 4).

Let us consider the triple point perestroika more carefully. Just before and just
after the passage through a 1-singular curve with triple point, there is a small
triangle close to the place of perestroika which is formed by three curve branches.
This triangle is called vanishing. The orientation of the curve defines the cyclic
order of move along the edges of the vanishing triangle. This cyclic order gives us
the triangle orientation and, therefore, the orientation of its edges. Let us denote
by ¢ the number of edges of the vanishing triangle for which obtained orientation
coincides with the curve orientation (it is obvious that ¢ takes value between 0 and
3).

Let us define a sign of the vanishing triangle as (—1)?. Remark that the sign
does not change under a reverse of curve orientation. Some examples of vanishing
triangles with different signs are shown in Figure 5. It is demonstrated in the same
figure that before and after the perestroika the vanishing triangle signs are different.

1.2.A. DEFINITIONS (ARNOLD [2]). 1. The triple point perestroika is called posi-
tive if we have a positive vanishing triangle after it. 2. The self-tangency perestroika
is called positive if it increase (by 2) the number of self-intersection points of the
curve.

1.3. Three Arnold’s invariants. The following theorem represents the definition
of generic curve invariants which was promised above.
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FIGURE 4. The perestroikas of generic curves.

FIGURE 5. The vanishing triangle signs.
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1.3.A. THEOREM (ARNOLD [2]). There exzist three integers St(C), JT(C), and
J7(C) corresponding to an arbitrary generic curve C which are uniquely defined by
the following properties.

(i) St, J* and J~ are invariant under a regular homotopy in the class of
generic curves.

(ii) St does not change under self-tangency perestroikas and increase by 1 under
a positive triple point perestroika.

(iii) J* does not change under triple point and reverse self-tangency perestroikas
and increase by 2 under positive direct self-tangency perestroika.

(iv) J~ does not change under triple point and direct self-tangency perestroikas
and decrease by 2 under positive reverse self-tangency perestroika.

(v) On the standard curves Ko, K1, Ko, ..., shown in Figure 2, St, J* and J~
take the following values:

w2
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) (1=0,1,2,...);
J(Ky) =0, JY (K1) =—2i (i=0,1,2,...);
J(Ky)=-1, J (Ki1)=-3i (i=0,1,2,...).

Remark. The normalization of St and J* which is fixed by the last property makes
them to be additive with respect to the connected summation of curves.

1.4. Additional definitions. Let us consider a generic curve C. Its image gives
us a partition of the plane R? into the connected components of the image comple-
ment, the pieces of the curve between double points, and the double points. This
is a stratification of the plane R?. The set of all k-dimensional strata we denote by
Y. As usual, all O-strata are called vertices, 1-strata are called edges, and 2-strata
are called regions. It is obvious that all regions are homeomorphic to the open disk
except the one (which is called exterior region) which is homeomorphic to the open
annulus.

Let us fix an initial point f on the curve C' which differs from all self-intersection
points, and a direction of move along the curve C' at this point (that is an orienta-
tion). Let us enumerate all edges by numbers from 1 to 2n (where n is the number
of vertices of the curve C) following the given direction and assigning 1 to the edge
with the point f.

Let us consider an arbitrary vertex v. There are two edges which go into the
vertex. Let them have numbers ¢ and j such that the tangent vector to the edge
1 and the tangent vector to the edge j give us a positive orientation of the plane
(see Figure 6). Let us assign the number sign(i — j) to the vertex v and to the
edge j and the number (—sign(i — j)) to the edge i. Now we assign the number
—m to the region lying between the edges ¢ and j and to the region which

sign(s — j
is opposite to that one, and the number M to the two other regions (see

Figure 6).
Now for each region we add together all numbers which we get for this region

from all vertices lying on the boundary. Therefore we assign some number to each
stratum o.
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sign(i — j)
2

sign(i — j) sign(i — j)
2 2
sign(i — j)
sign(i — 7) —sign(i — 7)

_ sign(i — j)
2

@)

FIGURE 6. Weights of vertex, edges, and regions. The numbers
in the circles are edge numbers. Twice underlined number corre-
sponds to the vertex, single underlined numbers correspond to the
edges, and not underlined at all to the regions.

1.4.A. DEFINITION. This number is called weight of the stratum o and is denoted
by w(o).

Let us define now for any stratum its index with respect to the oriented curve

C.

1.4.B. DEFINITION. The indez of a region o € 3 is the total rotation number of
the radius vector which connects an arbitrary interior point of the region o to a
point moving along the curve C. It is obvious that this number does not depend
on the choice of the point in o.

1.4.C. DEFINITION. The index of an edge o € ¥; is a half-sum of the indices of
the two regions adjacent to o.

1.4.D. DEFINITION. The index of a vertex o € ¥ is a quarter-sum of the indices
of the four regions adjacent to o.

We denote the index of an arbitrary stratum o (with respect to the generic curve
C) by ind¢ (o).

1.5. Formulas for St. Now we can formulate the main result of this paper. Let
0 be the index of the edge which the initial point f belongs to. Then the following
three formulas hold true:

1

St(C) = w(o) inde(o)+6° — " (%)
oE€Xy

St(C) = % Z w(o) indZ(o)+06% — i, (%)
o€

St(C) = % > w(o) indd(0)+6% — i ()
oEYy

Remark. 1t is easy to see that edge indices and region weights are half-integers.
Nevertheless the strangeness is always an integer.

But before we prove the formulas (x), (xx), and (x+x) (see Section 2), let us
reformulate them in other terms.
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1.6. Ascending knot diagrams. It is possible to get another definition of vertex
and region weights using an ascending diagram of a (trivial) knot with the curve C'
as a projection instead of an edge enumeration.

Indeed, consider an ascending diagram of a knot K drawn from the initial point
f in the chosen direction. Then it follows from the definition of an ascending
diagram that in a vertex v an edge with number ¢ lies under the intersected edge
with number j if and only if ¢ < j that is sign(é — j) < 0. The definition 1.4.A of
the vertex index implies that w(v) = s(v) where s(v) is the sign of the vertex v. It
is show in Figure 7. Hence we get the following version of (x):

St(C) = Y s(0) inde(o) + 6% — L (%)

4
o€

FIGURE 7. Vertex sign and weight in the case of ascending dia-
gram. Vertex contribution into the region weights.

In order to rewrite (xxx) we need to use Turaev’s theory of shadows [5]. Since
shadow theory is not used in this paper anywhere else, all following remarks are
written here only for those who are interested in this theory.

The shadow of the knot K has the curve C' as a projection. Let us denote the
gleam of a region o by gl(c) (there are several gleam definitions in literature, so here
we mean the latest one [6]). Since the contribution from each vertex into weight
and gleam of a region o are the same (see Figure 7 and [6, Chapter IX, Figure 3.4]),
gl(o) = w(o). Now we can present (x#x) in the following form:

St(C) = % Z gl(0) ind3 (o) + 6% — i (xxx1)

o€y

1.7. Gauss word of generic curves. Consider a generic curve C with a chosen
initial point f. Let us assign some symbol to each its vertex. Let them be, say, a1,
as, - .. ,0a,, where n is the number of vertices. Let us move along the oriented curve
C from the point f, writing symbols which correspond to the passing vertices. We
assign an exponent (+1) to the symbol if the intersected curve branch is oriented
from left to right with respect to the direction of our motion, and an exponent (—1)
if it is oriented from right to left (see Figure 8 and [3]).

1.7.A. DEFINITION. The obtained sequence is called Gauss word of the curve C'
and is denoted by W(C).
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Motion
direction

FIGURE 8. The vertex exponents in a Gauss word.

1.7.B. It is obvious that each symbol appears in W (C') exactly two times but with
the exponents with the opposite signs.

The simplest examples of the Gauss word are shown in Figure 9.

T o “laflafta a adt
) =atay adta a] ) =aftaytazta) Clagtad

FiGURE 9. Examples of Gauss words.

Each edge except the first one, which we can consider separately, corresponds to
a pair of symbols following one after another in such a word.

Let us understand now how to reconstruct from the Gauss word indices of edges
and vertices. Let us choose the initial point f on some exterior edge (that is an
edge which bounds the exterior region). Then the index of the first edge is :I:%,
depending on the orientation of the curve C' (see Figure 10).

0 exterior 0
- 2
1 region 1
45/‘1‘—\ /_L_{‘
1 -1

F1cURE 10. The index of the first edge depending on the direction
of motion. The numbers 0 and +1 are region indices and :i:% are
edge indices.
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1.7.C. It is easy to see that the index of an edge after a vertex differs from the
index of an edge before it exactly on the exponent of the vertex in the Gauss word
(see Figure 11).

a+1 « a a—1

Y
A

IS
Iis)

« a—1 a+1 a
1
a—3 motion

direction

<

“+7-vertex ‘—7_vertex

FicUre 11. Changing of the edge index when passing through a
vertex. Twice underlined numbers are vertex indices, single un-
derlined ones are edge indices, and not underlined at all are region
indices.

1.7.D. It follows from the same Figure 11 that the vertex index is equal to the
index of the previous (in the Gauss word) edge to which we should either add (if in
this place the vertex has exponent 1) or subtract (if it has exponent (—1)) number
%. This ends the calculation of all vertex and edge indices using the Gauss word of
the curve C.

We only need to describe now the weights of vertices and edges in the terms of
the Gauss word of the curve C. Let us compare the definition 1.4.A of the weight of
an arbitrary vertex v and the definition of the vertex exponent in the Gauss word.
It is obvious that the weight w(v) is equal to the exponent of the first appearance
of the vertex v in the Gauss word.

In order to calculate the weight of an edge e, let us denote the vertex, which
goes the edge to, by v. Let £(v) be the exponent which v has in the Gauss word
right after the edge e. Then w(e) = —&(v) w(v). This formula allows us to calculate
w(v), since we already now how to find w(v) (see above).

The complete proof of these facts amounts to the accurate consideration in Fig-
ure 6 cases whether i is greater or less than j and is left here to the reader.

Therefore (*) and (%) admits easy reformulation in the terms of the Gauss word
W(C) of the curve C.

Remark. 1t is possible to make similar reformulations in terms of the Gauss diagram
of a curve C' (see the definition in [2]), where we only need to mark in some way
the vertex exponents. For instance, it can be done by orienting of chords on such
a diagram from (—1) to (+1).
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2. PROOF OF THE MAIN FORMULAS

2.1. Equivalence of the formulations. Let us show, first of all, that all three
formulas are correct (or not correct) at the same time.

2.1.A. LEMMA.

Z w(og) inde(og) = % Z w(oy) ind@(o1) = % Z w(oy) indd (a2).

00€X0 01€X1 02€32

PRrROOF. Since all three sums depend on the stratum weights linearly, it is enough
to prove that contributions from each vertex v into these sums are the same. Indeed,
let us look once again at Figure 6 (see Figure 12, where ¢ is, for simplicity, sign(i —
7)) Let a be index of the region lying between the edges with numbers i and j.
Then indices of all other regions, edges and the vertex v are distributed as it is
shown in Figure 12.

FIGURE 12. Indices and weights of vertices, edges, and regions.
Numbers in the circles are edge numbers. Twice underlined num-
ber correspond to the index and weight of the vertex, single un-
derlined ones to the edges, and not underlined at all to the regions.

Let us now calculate the contribution of the vertex v into each sum:

1-st sum: Qe,
1 1\° 1\ 1
2-nd sum: 5 (f—: (a + 2) —€ (a - 2) ) = 5(2045) = ag,
1 3 3 3 1
3-rd sum: 5 (ela+1)° +e(a—1)° —2:0°) = 6(6&5) =ae. O

Now we only need to prove (x). We will do it in the ascending diagram terms (in
1.6 we already have proved the equivalence of the formulations), so we will actually
prove (x').
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2.2. Independence from the initial point. Let us consider an ascending dia-
gram D drawn starting from the initial point f. We denote the set of its vertices
by V. Let

1

Z s(v) inde(v) + 6% — T

veV

where ¢ is, as above, the index of the edge which the point f belongs to. We need

to prove that X;(C) = St(C') independently of the choice of the initial point f on
the curve C.

X (C)

2.2.A. LEMMA. Let fi and fy be two points on the curve C. Then X5 (C) =
25 (C).

PROOF. Let us denote by e; and ez the edges which f; and fo belong to. Let
s1(v) and s2(v) be the signs of a vertex v depending on the chosen initial point.
Let 41 = ind¢(e1) and do = indg(es) (it is obvious that vertex, edge, and region
indices do not depend on the choice of the initial point). Let A = X4, (C) —X¢, (C).

A A
(D) Oé—‘r% €2 a+%
a—+1 o a+1 f o
Vo Vo -
a g a g
o f clx—l o clx—l
e |* "2 el |“ "2

FIGURE 13. Changing of the initial point in the first case of ori-
entation. T'wice underlined numbers correspond to vertex indices,
single underlined ones to edges, and not underlined at all to re-

gions.
eoh 1 ek 1
“-3 ]
a a—1 a f a—1
P Vo P Vo
< o , - a
a+1 f a a+1 a
1 1
e | & + 3 el | & + 3

F1cURE 14. Changing of the initial point in the second case of ori-
entation. Twice underlined numbers correspond to vertex indices,

single underlined ones to edges, and not underlined at all to re-
gions.
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If the edges e; and es coincide then we have nothing to prove. But if these edges
are different, then it is enough to consider a case when one of them follows another.
We can assume that es follows ey and there is a vertex vy between them. It is easy
to see that by change of the initial point, the diagram D changes only at the vertex
vo. Hence for any vertex v € V such that v # vy we have s1(v) = s3(v). Therefore
A = s5(vg) inde(vg) + 835 — s1(vo) inde(vg) — 2.

It is shown in Figures 13 and 14 that there are two cases of index distribution
which depend on the orientation of the intersected branch of the curve C.

In the first case (see Figure 13) s1(vg) = 1, sa2(vg) = —1, inde(vg) = a, 01 =
a— %, and 6 = a + % Therefore

1\? 1\?
Az—a+(a+2> —a—(a—2> =0.

The second case can be examined in a similar way. [
Now we can change the notation from £ ¢(C) to 3(C).

Remark. Tt follows from the proved Lemmas 2.1.A and 2.2.A that (), (xx), and
(##%) can be considered as the definition of St(C).

2.3. Reidemeister moves. Since every knot represented by an ascending dia-
gram isotopic to the trivial knot, Reidemeister Theorem [4] implies that the di-
agram D can be transformed into the standard diagram of the trivial knot by a
finite sequence of the Reidemeister moves 5, Q5 and Q3 (see Figure 15) and their
inverses. It is quite obvious that during this transformation we can remain in the
class of ascending diagrams.

There are also two kinds of moves Q1 and Q3 which are shown in Figure 16 and
which we denote by €} and Q5.

It follows from Figures 17 and 18 that Q] and Q% can be represented as a sequence
of Qf!, 07!, and Q.

2.3.A. COROLLARY. It is possible to transform the diagram D into the standard
diagram of the trivial knot by a finite sequence of moves Q}, Qa, and Q3 and their
inverses. And, moreover, we can remain in the class of ascending diagrams (see
Figure 17).

2.3.B. COROLLARY. [t is possible to transform the diagram D into the standard
diagram of the trivial knot by a finite sequence of moves Qq, Qa, and Qf and their
inverse. And, moreover, we can remain in the class of ascending diagrams (see
Figure 18).

Let us choose the initial point f on an arbitrary exterior edge. Lemma 2.2.A
implies that the value of X(C) does not depend on the choice of f, so we do not
lose any generality. We say that a region is involved in a Reidemeister move if it
lies close to the place of move and has either one edge in the case of {; and Q] or
two edges in the case of {25 or three edges in the case of Q3 and Q5.

2.3.C. LEMMA. It is possible to transform the diagram D into the standard dia-
gram of the trivial knot in such a way that all regions involved into the Reidemeister
moves do not have the point f on the boundary.
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FiGURE 15. The three Reidemeister moves.

o

\ /

FIGURE 16. Additional Reidemeister moves.
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FIGURE 18. Expression of move Q4 through QF' and Q3.
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FIGURE 19. Regions with the point f on the boundary in the first
case of orientation. The numbers show an order of moving along
the edges.

FIGURE 20. Regions with the point f on the boundary in the
second case of orientation. The numbers show an order of moving
along the edges.

PRrROOF. Indeed, since f belongs to an exterior edge, all regions with one, two,
or three edges and the point f on the boundary can look only as it is shown in
Figure 19 or in Figure 20 (it depends on the direction of motion). In the first case
they can be involved only in €} and 23, and in the second one only in €, and Q.
All we need now is to use either Corollary 2.3.B (in the first case) or Corollary 2.3.A
(in the second one). O

2.4. The end of the proof. Since for the standard diagram of the trivial knot
the values of St and ¥ are obviously the same, we only need to prove the following
fact.

2.4.A. THEOREM. Under the Reidemeister moves Qq, ), Qo, Qs, Q% and their
inwverses which have no involved regions with the point f on the boundary, the values
of ¥ and St change in the same way.

PROOF. Let us look at Figures 21, 22, 23, 24, and 25. What is shown are all
possible orientations of diagram parts involved in moves Q;, 2, Qa, Q3, and Qf,
which do not contradict the ascendancy of the diagram. Numbers are indices of
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FIGURE 21. Behavior of St and ¥ under move ;.

« a—+1 « a—+1

M
St — St +a
XY+ o

\i
FIGURE 22. Behavior of St and ¥ under move 2.

\ A

a+1 « a—1

Y
FIGURE 23. Behavior of St and ¥ under move €.
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FIGURE 24. Behavior of St and ¥ under move (3.
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FIGURE 25. Behavior of St and ¥ under move 5.
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F1GURE 26. The four types of a triple point perestroika.

19
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regions and vertices (underlined ones). Vertex signs are shown in circles close to
the vertices. In the case of triangles, a cyclic edge order follows from the mutual
position of under-crossings and over-crossing and is shown in Figures 24 and 25 by
numbers 1, 2, 3 and arrows.

It is easy to check that St and ¥ are changing in these cases exactly as is shown
in the figures (the fact that St is changing by +« under moves Q; and Q, follows
immediately from the “pushing away” formula proved in [2]). Hence St and o are
changing in the same way.

This ends the proof of the theorem as well as the proof of (%), (xx) and (xxx). O

2.5. Additional remarks. It was shown by Arnold [2] that there are four types
of a triple point perestroika which differ from each other by an orientation of the
vanishing triangle edges and by a cyclic order given on this edges. These four
perestroika types are respectively denoted by A3 « AY, A — A3 B? « B!,
and B} < B2 (see Figure 26 and [2, Figure 17.]). It is easy to see after a comparison
of Figures 24 and 25 with Figure 26 that the perestroikas A3+ — Ag and B}r — Bi
correspond to the Reidemeister move {23 on the ascending diagram, and A% « A2
and B% < B! correspond to .

We already have shown that as far as we go from one diagram to another, we
can use either only Q3 move or Q4 move. In the case of curves we can similarly
conclude that there is a generic regular homotopy between two generic curves such
that all triple point perestroikas are either only Ai > A?F and B}r — Bi types or
only A° « A3 and B2 « B! types.

3. PROOF OF THE ARNOLD’S CONJECTURES

Starting at this point, we assume that the initial point f has been chosen on an
exterior edge. It can be seen from Figure 10 that in this case § = :I:%.

3.1. Formula for the Whitney index. Let u = 2§.

3.1.A. LEMMA. For any generic curve C

ind(C) =u+ Y _ w(v).
veV

PROOF. Let us observe that in the terms of the ascending diagram D, the desired
equality can be rewritten as ind(C') = u+)_, oy s(v). We will prove it is this form.

It immediately follows from the definition of the sign s(v) that ) . s(v) =
writhe(D), where writhe(D) is the self-linking number of a knot K with the diagram
D and vertical framing. The curve C can be transformed into the standard curve
with the same index (see Figure 2) by a sequence of perestroikas which correspond
to the Reidemeister moves Qq, Q3, and 5 and to their inverses on the Diagram D.

Since neither ind(C') change under these perestroikas, nor writhe(D) under such
moves, and u depends only on the direction of motion along the curve C (see
Figure 10), we only need to check the formula ind(C) = u + writhe(D) for the
standard curves. But this is obvious (see Figure 27). O

3.1.B. COROLLARY. Since u = £1 and for any vertex v we have w(v) = £1, we
get |ind(C)| < n+1 and |ind(C)| = n+ 1 (mod 2), where n is the number of
vertices of the curve C'.
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00 O (@I

ind=0,u=1 ind=1,u=1 ind=n+1,u=1
writhe = —1 writhe = 0 writhe = n
S 66 GG
O
n vertices
ind=0, u=-1 ind=-1, u=-1 ind=n+1,u=1
writhe = 1 writhe = 0 writhe = n

FIGURE 27. Checking the formula ind(C') = u+ writhe(D) for the
standard curves.

Remark. Both Lemma 3.1.A Corollary 3.1.B were proved by Arnold [2] in slightly
different terms.

3.2. Formulation of the Arnold’s conjectures. Let n be the number of vertices
of a generic curve C. It follows from Corollary 3.1.B that |ind(C)| = n + 1 — 2k,
where k is a nonnegative integer. This number is called index defect of the curve
C or simply defect.

Let us denote by Styin(n, k) and Stymax(n, k) the minimal and maximal possible
values of St for curves with n vertices and index n+1—2k. In [2] Arnold has found
formulas for Sty and Styax for £ = 0,1, 2. Moreover, he formulated the following
conjectures:

n vertices

FI1GURE 28. The curve A, 41.

3.2.A. CONJECTURE (ARNOLD [2]). When n is constant, Stmax(n,k) is mono-
tonically decreasing as far as k is increasing.
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3.2.B. CONJECTURE (ARNOLD [2]). When n is constant, the mazimal possible
value of St is attained only on the curve A, 1 (see Figure 28). Therefore St(C) <
St(App1) = 2t

In this section we not only prove the Conjectures 3.2.A and 3.2.B but also find
formulas for Styin and Stpax-

3.3. Formulas for St.;, and Sty.x. Let us consider a generic curve C with n
vertices and index defect k.
3.3.A. THEOREM.
(n—k)(n—k+1)+ (k—-1)k
5 .

Moreover this bound is sharp and can be attained only on the curves shown in
Figure 29.

St(C) < Stmax(n, k) =

ind=n+1-2k

n — k vertices k vertices

n—k k—1
St = Stanax(no k) = 3 i+ 3 —(—i) = (n—k)(n—k -2F D)+ (k—1k
=1 1=0

FIGURE 29. The curve maximizing the value of St.

3.3.B. THEOREM.

n k=0
St(C) = Stmin(n, k) = { k—1)(2n—3k+2 :
_Gonenaken) g

Moreover this bound is sharp and can be attained only on the curves shown in
Figure 30 (for k =0), in Figure 31 (for k > 0), and in Figure 32 (for n = 2 and
k=1).

Remark. Similar results were obtained by F. Aicardi [1] in the case of tree-like
curves (that are curves with the planar Gauss diagram).

3.3.C. Itisobvious that the Conjecture 3.2.A is a direct corollary of Theorem 3.3.A.



FORMULAS FOR STRANGENESS 23

ind=n+1 D OB D XB

n vertices

f—»

St = Styin(n,0) =n

FI1GURE 30. The curves minimizing the value of St for k£ = 0.

ind=2k—-—n-1

k—1

vertices

n—k-+ 12vertices

—

k—1
St = Stmin(n, k) =Y i—(k—1)(n—k+1)=—
=1

(k —1)(2n — 3k +2)
2

FIGURE 31. The curves minimizing the value of St for k£ > 0.

St = Stynin(2,1) =1—1=0

FI1GURE 32. Additional curve minimizing value of St for n = 2 and
kE=1.
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3.3.D. It can be seen from Theorem 3.3.A that for a constant n, the maximal

possible value of St is % and it can be attained only for k = 0. In this case the

curve shown in Figure 29 convert into the curve A, 1 (see Figure 28). Therefore
the Conjecture 3.2.B also follows from Theorem 3.3.A.

3.3.E. It is easy to obtain from the Theorem 3.3.B that for a constant n the
smallest value of Styin(n, k) can be attained only for k close to %n

We prove Theorems 3.3.A and 3.3.B slightly farther, after some auxiliary facts.
3.4. Additional facts.
3.4.A. LEMMA. Let vertices v1 and vg be the endpoints of the same edge. Then
|inde(v1) — inde(ve)] < 1.

PROOF. See Figure 33, where all possible edge orientations are shown. []

A A A A

a+1 a a+1 a a+1 a a—+1 a
U1 - U1 y - U1 - (%1

a g a T a—+1 - a—+1

« a—1 « a—1 a4+ 2 a+1 o+ 2 a+1
V2 r - V2 V2 r - V2

a—1 "~ a a+1 "~ a+2

a—1 oa—2 a—+1 « a—+1 « a+3 a—+2

FIGURE 33. Indices of successive vertices.

3.4.B. COROLLARY. Let v1,v3 € V, I3 = ind¢(v1) lo = inde(v2), and 1 < .
Then for any l such that Iy <1 < 1y there exists a vertex v with index [.

PROOF. Let us move along the curve oriented C' from v; to vy. It follows from
Lemma 3.4.A that during this motion vertex indices must take all intermediate
values. [

3.4.C. LEMMA. Ifu =1 then the index of the first vertex crossed is either 0 or 1,
but if u= —1 then it is either (—1) or 0.

PROOF. See Figure 34, where all possible edge orientations are shown. []

Let us introduce the following notations: let ni be the number of vertices with
positive weight, n_ with negative one, Ny with negative both weight and sign, and
N_ with negative ones. It is obvious that Ny <ny, N_ <n_, and ny +n_ = n.
Let us also denote by 4max and imin the minimal and the maximal values of the
vertex indices respectively.
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exterior
region

exterior
region

FIGURE 34. Index of the first vertex crossed.

3.4.D. LEMMA. Let v € V and | = inde(v) > max(0,u). Then there exists a
vertex vy such that inde(v1) =1 and w(vy) = 1.

PRrROOF. Observe first of all that Lemma 3.4.C implies that the index of the first
vertex crossed is not greater than max(0, u).

Consider the first moment as we move along the curve to be when a vertex index
gets the value . Denote this vertex by v;. We want to prove that w(vy) = 1.
Indeed, if vy is the first vertex then [ = ind¢(vy) = max(0,u), and for any value
of u such a case corresponds to a vertex with positive weight (see Figure 34). But
if v1 is not the first one, then from Corollary 3.4.B we know that the index of the
previous vertex is [ — 1. It is clear from Figure 33 that we can have such a situation
only in the one case of edge orientation. Since we arrived at the vertex v; at the
first moment, the weight w(vy) is exactly 1 (see Figure 33). O

3.4.E. COROLLARY. ipax < N4

PROOF. Assume the contrary. Let there be a vertex v such that ind¢(v) > N4
Then it follows from Lemma 3.4.D that not all index values from 1 to ind¢(v) are
realized, which contradicts Corollary 3.4.B. O

3.4.F. LEMMA. Letv € V andl = indc(v) < min(0,u). Then there exists a vertex
vy such that indg(v1) =1 and w(vy) = —1.

PROOF. Similar to the proof of Lemma 3.4.D. O
3.4.G. COROLLARY. %min = —IV_.
PRrROOF. Similar to the proof of Corollary 3.4.E. O

Let us introduce some more notations. Let

oI = Z w(v) inde(v), Xy = Z w(v) inde(v),

w(v)=1 w(v)=1
indc (v)>0 indec (v)<0
yt= Z w(v) inde(v), ¥ = Z w(v) inde(v),
w(v)=—1 w(v)=—1

indc (v)>0 indc (v)<0
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where v belongs to the set of all vertices.

It is obvious that Ei =0, ¥ <0, T €0, and ¥~ > 0. Since § = :I:%7 (*)
implies that St(C) = =T + X7 + XF + BT (it is easy to see that a summand with
zero index does not affect the sum in (x)).

3.5. Proof of Theorem 3.3.A.

Ny (N 1)+ N_(N_+1
3.5.A. LEMMA. St(C) < +(Ny + )—2'— (V- + ),
PROOF. Since 7 < 0 and T < 0, we get St(C) < ST + X7, It follows from
Corollary 3.4.B and Lemma 3.4.C that vertex indices must take all values from 1
t0 imax. Since Corollary 3.4.E implies that iy, < N, we get

Tmax

Ei § Z i + ilnax(N—i- - imax) =
i=1

_ imax + 2N+imax - (ima»x)2 _ Z’max - (N+ - imax)2 + N?F

Z.max(imax + 1) + 2imax(N+ - Z.max)
2

2 2
o Ny + N_% _ Ny (Ny+1)
D 2 B 2 '
Similarly,
y- < N_(N_+ 1)-
2
Therefore,

St(C) < Ny (Nt +1) J2r N_(N_+ 1)'

THE END OF THE PROOF OF THEOREM 3.3.A. Assume that u = 1 (it does not
affect the computation of St). From Lemma 3.4.C and Corollary 3.4.B we get that
if there is a vertex with a negative index then there is one with a zero index. Hence
it follows from Lemma 3.4.F that there exists a vertex with a negative weight and
zero index. Therefore N_ < max(0,n_ — 1). Since Ny < n4, from Lemma 3.5.A
we see that

ny(ny + 1) + max(0,n_ — 1)(max(0,n_ — 1) + 1)
2
ny(ng +1)+ (no — n_
5 .
However n + 1 — 2k = |ind(C)| = |[u+ ny —n_| and ny +n_ = n. Hence either
ny=n—k,n_=korny =k—1,n_=n—k+ 1. In the both cases we get that

(n—k)n—k+1)+k(k—-1)
5 .

The sharpness of the bound obtained easily follows from Figure 29, where all
necessary calculations are done. So now we only need to prove that the maximum
cannot be attained on other curves.

Let us denote the curve shown in Figure 29 by A,,_j . It can be seen from the
proof of Lemma 3.5.A and from the calculations above that equality in (+) can be
achieved only for ipmayx = N+ = ny and —iymin = N- = max(0,n_ —1). It is possible

St(C) <

St(C) < (+)
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only in the case when vertex indices take all values from (—n_ + 1) to ny exactly
once. Let us prove by induction on N = Ny + N_ that in this case C' = Am,n,-

The initial statement for N = 0 is obvious since then we have n; = 0 and
either n_ = 0 (hence C' = K;) or n_ = 1 (hence C = Kj). Let us prove now our
statement for arbitrary N > 1 using an inductive hypothesis that is already proved
for N — 1.

Since N > 1 we have either ny > 1 or n_ > 2. Consider first the case ny > 1.
Let us denote by v the vertex with the index n;. Remark, that all vertex indices
are not greater than ny and there is only one vertex with the index (n4y — 1).
Therefore Lemma 3.4.A implies that as we move along the curve C' we have to
cross the vertex v two times successively. Hence C forms a small curl in the vertex
v (see Figure 35).

FIGURE 35. The vertex with the maximal index.

Let us remove the curl and denote the resulting curve by C;. It is obvious that
C4 has (n — 1) vertices whose indices take all values from (—n_ + 1) to (n4 —1).
Inductive hypothesis implies that C; = A,  _1,_. Therefore C' can be obtained
from A, _1,_ by adding a vertex and a small curl in it. Since w(v) = 1, the curl
is oriented as shown in Figure 35. In this case the index of v is equal to the index
of the region where the curl has been made (see Figure 35). Hence the index of the
region is indo(v) = ng.. There is a unique region for the curve Ap, —1,n_ with such
a property, therefore there is unique place where we can add a vertex with a curl.
It is easy to see that the obtained curve is A, ,_ (see Figure 29).

The case n_ > 2 can be examined similarly.

In order to finish the proof of Theorem 3.3.A we only need to remark that
Ap g,k can be obtained from Ag_; 41 by reflection with respect to the vertical
axis. Hence these curves are actually the same. [

3.6. Proof of Theorem 3.3.B. Similarly to the proof of Theorem 3.3.A we as-
sume that v = 1. Let

B8 —a(p-1)  azp
m(@,8) = atary af a<p’
2
3.6.A. LEMMA. Let o and (B be integers such that o > 0 and 3 > 1. Then
1 1
min ala+1) +b(b+ )

0<aka 2 2
0<b<B-1

—a(f—1-0b)—bla— a)) > m(a, B),

and equality can be attained only in the following three cases:

Daz2p,a=0,b=p-1; 2)a=0,b=0; 3)ax=p, a=0, g=1.
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3.6.B. LEMMA. Let « and 3 be integers such that « > 1 and 8 > 0. Then
. ala—1)
== 7/ — >
s, (07 o= a) > mia
and equality can be attained only in the following two cases:
1)8=0,a=1,; 2)a<pf, a=a.

We prove both these lemmas slightly farther in the Appendix.
In order to finish the proof let us examine two cases: one where there is a vertex
with zero index and the other without.

THE FIRST CASE. Suppose that there is a vertex with index 0. Lemma 3.4.F
impliesn_ > 1 and N_ < n_ —1. It follows from Lemma 3.4.C and Corollary 3.4.B
that vertex indices must take all values from 1 to iy,ax. Hence

Tmax

max 'maX 1
Z (N — i) > %

Similarly

*imin(*imin + 1)
5 .
It is also easy to see that

EJ: > Zmln(nJr - N+) Zmll’l(nJr - imax)

and
YT > —imax(ne — 1= N_) > —ipax (- — 1+ imin)-
Therefore
‘max .max 1 ‘min _‘min 1 . .
St(C) = : (Z 9 * ) - ! ( 12 i ) +Zmin(n+ - Zmax) Zmax( -1 +Zm1n)

Corollaries 3.4.E and 3.4.G imply 0 < imax < N4 < ny and 0 < —ipin < No <
_ — 1. Hence it follows from Lemma 3.6.A that St(C) > m(n4,n_).

Since n + 1 — 2k = |ind(C)| = |u + ny —n_| and ny +n_ = n, either ny =
n—kn_=korny =k—1,n_=n—k+ 1. Remark also that since n, > 0 and
n_>1,wegetk>1.

Let S1 = m(n—k, k), So = m(k—1,n—k+1). Sincen—k > kand k—1 < n—k+1,

k(k — 1)

2
k(k—1
Sy = %—(k—l)(n—k-ﬁ-l).

Then S7 — Sy =k —1 >0 for all K > 1. Therefore
(k—1)(—2n+ 3k —2)

3 .
We only need to find all possibilities when the equality in this formula holds.

Lemma 3.6.A implies that there are only three cases when it is so:

S1 = —(k—=1)(n—k),

St(C) > Sz = (++)

]-) ny <n_, tmax = 0, —lmin =n_ — 15 2) ny = 0, imin = 0;
3) n4 <Sno = 1; Tmax = 1.
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Since S1 > S5 for all k > 1, equality in (++) in the cases 1) and 3) is possible only
for k = 1. But in the second case ny = 0. Therefore k also must be 1. Thus in
all three cases we get that equality is possible only for £ = 1 and imax = tmin = 0.
There is unique curve which has all vertex indices equal to 0 (see Figure 36). For
this curve the cases 1) and 3) coincide and differ from the case 2) by a choice of the
initial point f (see Figure 36). Remark that the curve shown in Figure 36 is the
partial case of the curve in Figure 31 when k£ = 1. This completes the consideration
of the first case. O

St = Stmm St = Stmin(n, 1)

FIGURE 36. The curve with all vertex indices equal to 0.

THE SECOND CASE. Suppose now that there is no vertex with zero index. Then
by Lemma 3.4.C and Corollary 3.4.B we get that all vertices must have strictly
positive indices. Remark, that in this case Ny = ny, N_ =0, and iy, = 1. It is
obvious that 37 = ¥~ = 0. As in the First case we can get that

Tmax

imax (Imax — 1
ZI>§:i+1m+—@mngﬁgﬁgggl+n+

2
and
E—_i_ 2 _imaxn—-
Then
.max .max -1 .
St(C) = % Ny — dmax—_-

Corollary 3.4.E implies 1 < imax < Ny = ny. Therefore from Lemma 3.6.B we get
St(C) = m(ns,n_).
In a similar way (as in the First case) we have that if £k = 0 then
St(C) = m(n,0) = n, (+++)
but if £ > 1 then
(k—1)(2n — 3k + 2)
5 )

Lemma 3.6.B implies that there are only two cases when equality can be attained
n (+++) and (++):

St(C) 2 min(Sl,Sg) = —

(++)

n_ =0, imax = 1; 2)n_ = ny, fmax = Ny
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If £ = 0 only the first case is possible. Since all vertices now have index 1
and n_ = 0, it is easy to observe that there exists a unique curve satisfying these
conditions (see Figure 30).

Now we only need to consider the case when k > 1. Since n_ > 0 it implies that
equality in (++’) can be attained only for ny < n_ and imax = n4. If we get the
minimum when n, = k—1 and n_ = n —k+ 1 then the indices of all vertices with
positive weight must take all values from 1 to ny exactly once and the indices of
all vertices with negative weight are equal to ny. It easy to check that the curve
has to look like the one shown in Figure 31 (the proof is the same as in the case of
Theorem 3.3.A).

Let us examine now the last case when the minimum is attained for n4 = k and
n_ =n— k. It is shown in the proof of the First case that this situation is possible
only for £ = 1. ny < n_ implies that n = 2 and ny = n_ = 1. There exist only
one curve satisfying these conditions (see Figure 32). O

Theorem 3.3.B is thus completely proved. [

APPENDIX

Proof of Lemma 3.6.A. Let

ala+1 b(b+1
f(a7b):<<2 >—|— (2 )—a(ﬁ—l—b)—b(a—a)>.
Since % = % =1 and % = % = 2, the determinant of the Hessian of

the function f is (—3). This number is negative, hence the function f never has
local extremal points and it is enough for us to check the desired equality only for
boundary values of a and b.

bo+1) _,

(1) f(0,0) =
If @ > 3 then since b < § — 1, we get 2a — 3 — b > 0. Therefore,

B-=1-0)2a—-p—-0)>20

(8
bb+1)—2ba > B(B+1)—2a(8—1)
(2

b(b+1) B(B+1)
5 —ba > Tfa(ﬁfl),

and it is easy to see that we can have equality only for b = 5 — 1.



FORMULAS FOR STRANGENESS

1
But if o < 3 then (b— o + %)2 > 1 (since (b — «) is an integer). Then

b—a+ 1)’
\

(b—cx—!-l)2 1 ala—1) _ ala+1)
> s 2 2 2 o
I
b(b;— 1) b a(a2+ 1) —aB,

and it is obvious that we can have equality only for o = b = 0.
1
(2) Similarly we get that f(a,0) = afa+1)

case equality can be attained only for « > =1 and a = 0.

(3) flap) = XaFD BOFY g g gy M@ED s 1) (since
the case b = 0 has already been considered, we can assume that b > 1 and,
therefore, bo+1) > 0).
o> g then XY 515> Lﬂ; Y a(B-1) (since a >0
and b > 0).

But if a < 3, thenM—a(ﬂ—l—b)> W—aﬁ.

Therefore, f(a,b) > m(a, 3).

(4) Similarly, f(a,—1) = a(a; 1) + ﬂ(ﬂ; 1)

Lemma 3.6.A is thus completely proved. O

—bla—a)>m(a,B).

—a(f—1) = m(a,B), but in this

Proof of Lemma 3.6.B. Let us remember that we need to prove that if a > 1

then for any 1 < a < «

@m—awm(a,ﬂ)-
If o > 3 then (afﬂf%f}i(since (a — B) is integer). Then
12
-5-4% 1
(@ ﬁ2 2) —§>5(5—0¢)
U
(a-8-3)" 1 _pB+y  __ BB-1)
e sy
4
a(a;1)+o¢faﬂ> 6(/627 1)7(1(571)7

and it is obvious that we can have equality only for 8 =0, a = 1.
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But if a < B then 26+ 1 —a — a > 0. Therefore

(a—a)la+a—-1-208)>=0

4
28(a—a)+ala—1)—a(la—1) =0
4

and equality is possible only for a = .

This completes the proof of Lemma 3.6.B since for a = 3 we have

ala+1) 5,  ala+1)

alf-1)=——-a*=—-——-0af. O

0 ~J O Ui Wi~

NN DNNDNDNDDNDLD - = = = = = O
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