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ABSTRACT OF THE DISSERTATION
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As it is well-known, all Vassiliev invariants of degree one of a knot K C R3 are trivial. There are
nontrivial Vassiliev invariants of degree one, when the ambient space is not R®. Recently, T. Fiedler
introduced such invariants of a knot in an R*-fibration over a surface F. They take values in the
free Z-module generated by all the free homotopy classes of ioops in F.

Here I generalize his invariants to the most refined Vassiliev invariant of degree one. I also
constrict a similar invariant of two-component links. It generalizes the linking number.

I aliso construct a similar first degree Vassiliev invariant of an oriented knot in an S1-fibration and
a Seifert fibration over a surface. It takes values in a quotient of the group ring of the first homology
group of the total space of the fibation. It gives rise to an invariant of wave fronts on surfaces and
orbifolds, related to the Bennequin type invariants of the Legendrian curves, studied by V. Arnold
and M. Polyak. Formulas expressing these relations are written down.

I calculate Turaev’s shadow for the 4Legendrian lifting of a wave front. This a,llows'on,é to use all

the invariants, known for shadows, in the case of wave fronts.
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Most of the proofs in this text are postponed till the last section.

Everywhere in this text R*- and Sl—ﬁbratidns mean locally-trivial fibrations with fibers, horﬁeo-
morphic to K* and 5%, respectively.

In this paper the multiplicative notation for the addition in the first homology group is used. The
zero homology class is denoted by e. The reason for this is, that we have to deal with the integer

group ring of the first homology group. For a group G, I denote the group of all formal half-integer

linear combinations of elements of G by 1Z[G].

We work in the differential category.

1. INTRODUCTION

In [5] M. Polyak suggested a quantization I,(L) € 1Z[g,q"] of the Bennequin invariant of a
generic 'coofiented oriented wave front L C R?. In this paper I construct an invariant S(L), which
is, in a sense, a generalization of l4(L) to the case of a wave front on an arbitrary surface F.

In the same paper [5] M. Polyak introduced V. Arnold’s [3] J* type invariant of a front L on
an oriented surface F. It takes values in H;(ST*F,1Z). I show that S(L).€ $Z[H(ST*F)] is
a splitting of this invariant, in the sense, that it is taken to Polyak’s invariant under the natural
mapping L2 [H;(ST*F)] — Hy (ST*F, 312). | |

Further I generalize S(L) to the case, whe;n L is a wave front on an orbifold.

Invariant S(L) is constructed in two steps. The first one is lifting of L to the Legendrian knot A
in the S'-fbration 7 : ST*F — F. The second step can be applied to any knot in an S*-fibration,
and it involves the structﬁre of the fibration in a crucial way. This step allows one to define the S Fe
invariant of a knot X in the total space of an S*-fibration. Since ordinary knots are considered up
to a rougher equivalence relation (ordinary isotopy versus Legendrian isotopy), in order for Sk to
be well-defined, it has to take values in a factor of Z[H;(N)). This invariant is generalized to the
case of a knot in a Seifert fibration, and this allows one to define S(L) in the case of wave fronts on
orbifol&s. '

All these invariaﬁts are Vassiliev invariants of degree one in an app.ropriate sense.

For each of these invariants I introduce its version, taking values in the group of formal linear

combinations of the free homotopy classes of oriented curves in the total space of the corresponding

fibration.




‘The first invariants of this kind were constructed by T. Fiedler [4] in the case of a knot K in a
R-fibration over a surface and by F. Aicardi in the case of a generic oriented cooriented wave front
L c 2. In this text I generalize T. Fiedler’s invariants to the fnost refined Vassiliev invarjant .of
degree one of knots and links in R*- and S!-fibrations and discuss the connection betweén all these
invariants and Sk. 4 .

The space ST’;‘F is natgrally fibered over a surface F' with a fiber S*. In [9] V. Turaev introduced
a shadow description of a knot K in an oriented three dimensional inanifold N, fibered over a surface
v(rith a fiber S*. A shadow presentation of a knot K is a generic projection of K, enriched by an
assignment of numbers to regions. It describes a knot type modulo a natural action of Hi(F). It
appeared to be a very useful tool. Many invariants of knots in S'-fibrations, in particular quantum
state sums, can be expressed as state sums for their shadows. In this work I construct shadows of
Legendrian liftings of wave fronts. This allows one to use any invariant already known.for shadows

in the case of wave fronts.

However, in this paper shadows are used just for the purpose of depicting knots in S'-fibrations.

2. INVARIANTS OF KNOTS OF KNOTS AND LINKS

2.1. Basic definitions. We say, that a one-dimensional submanifold L of a total space N 3ofa

fibration p : N® — M? is generic with respect to p , if p|; is a generic immersion. An immersion

-of a one-manifold into a surface is said to be generie, if it has neither self-intersection points of

multiplicity greater than two, nor self-tangency points, and at each double point its branches are
transversal to each other. An immersion of (a circle) S* to a surface is called a curve.

Let F be a connected smooth two-dimensional surface (not necessarily corﬁpact or orientable)
and p: E — F be an R'-fibration with oriented total spé,ce E. Let K C E be a (smooth) oriented

knot, in general position with respect to p.

2.1.A. DeFINITION (FIEDLER [4]). Let g be a double point of p(K). Fix an orientation on the fiber
B, = p~*(q). This determines, which of the two branches of K, intersecting Ey, is over-crossing
and which is under-crossing. Define local writhe w(g) to be one if the three-frame (under-crossing,
over-crossing, fiber E;) agrees with the orientation on B and minus one, otherwise. (It is easy to

check, that this definition does not depend on the choice of an orientation on Eqy.)

2.2. Direct generalization of Fiedler’s invariants. In [4] T. Fiedler introduced invariants of

a knot K in an oriented total space of an R'-fibration p : R — F. As it follows from (8], these
2




invariants can be expressed through a more symmetrical invariant Uk, introduced below. If F is
oriented, then Ux also can be expressed through Fiedler’s invariants. The formulas, expressing them
through each other (see [8]), involve the values of all these invariants on some fixed knot homotopic

to K.

Let ¢ € p(K) be a crossing point. Split the curve p(K) at ¢ according to the orientation and
obtain two oriented loops on F (see Figure 1).

FIGURE 1. Splitting of p(K).

2.2.A. DEFINITION. For a crossing point ¢ of p(K) denote by & (g) and & (g) the free homotopy
classes of the two loops, created by splitting at g. Let H be the free Z-module generated by the set
of all the free homotopy classes of oriented loops on F. Define Ux € H by the following formula,

where the summation is taken over all the crossings, such that none of the two loops,. created by

splitting, is homotopic to a trivial loop.

Uk= Y, w@(aE)+&0) @D
(o) mta)e

2.2.B. THEOREM. Uk is an isotopy invariant of the knot K.

The proof is straightforward. One checks, that Ux does not change under all the oriented versions

of the three Reidemeister moves. .

2.2,C. Similarly to [4], one can introduce a version of U, which takes values in Z[Hy(F)]. To obtain
it, one substitutes £1(g) and £&(g) in (2.1) by the homology classes, realized by the corresponding
loops. The summation should be made over the set of all the double points of p(K), such that none

of the two loops created by the splitting is homologous to 0.

2.2.D. Let p: E — F be an R!- or an S*-fibration over a surface. Let K C E be a knot generic
with respect to p and ¢ be a crossing point of p(X). The modification of pushing of one branch of
K through the other along a fiber By is called the modification (of the knot) along the fiber E,.

3




2.2.E. THEOREM. (Of Fiedler [4]) Let q be a crossing point of p(K). Denote by i and j the free
homotopy classes of the two loops, created by splitting of p(K) at q according to the orientation.
Under the modification along E; the jump of Uk is

£2(i+3), fiite
0, otherwise.

Here the sign depends on w(g).
The proof is straightforward.
2.2.F. CorOLLARY. Uk is a Vassiliev invariant bf Jegree one.

To get the proof, one notices, that the first derivative of Ux depends only on the free homotopy
classes of the two loops, that appear, if one splits the singular knot (with one transverse:double:point)

at the double point according to the orientation. Hence, the second derivative of U is identically

Z€TO.
2.3. The most refined Vassiliev invariant of degree one.

2.3.A. Unfortunately Ux appears to be not the most refined Vassiliev invariant of degree one of a
knot in an R*-fibration. To show this, we construct two knots K and K, and a first degree Vassiliev

invariant Ug, such that U, = Uk,, and (7K1 # U'KT

2.3.B. DEFINITION OF Ug. Let I' be an oriented figure eight graph (bouquet of two circles), V¢
be its vertex and E} and EZ be its edges. Set S to be a set of free horﬁotopy classes of mappings
of I into F, factorized by an orientation preserving involution of I, Let G be the free Z-module
generated by S. For a double point g of p(K) put G4 € § to be the class of the mapping of T' to F,
which sends Vr to g, FL U EZ onto p(K), according to the orientations of the edges, and is injective
on the complement of the preiméges of the double points of p(K). Let S’ C S be those classes, for
which none of the two loops of the figure eight graph is homotopic to a trivial loop. Define Ug €@
by the following formula, where the summation is faken over the set of all the crossings ¢ of p(K),

such that G4 € 5.

Ux= Y w06 (23)
{9ep(K)|G,€5'}
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FIGURE 2. Figure eight graph corresponding to a double pomt
Similarly to 2.2.F one checks, that Uk is a Vassiliey invariant of degree one.
Let F be a disc with two holes. Let K; be the knot, shown on Figure 3, and K5 be the knot

obtained from K; by modifications along fibers over the crossing points u and v. (The two shaded

" discs on Figure 3 are the two holes.) One can easily check, that U, = Uk,, but Ug, # Uk,

F1aure 3. Two knots with different Ux and equal Ug values.

'The following theorem shows, that Uy invariant is the most refined Vassiliev invariant of degree

one.

2.3.C. THEOREM. Let vi(K) be any Vassiliev invariant of degree one. It induces a mapping v} :

G — Z, which maps a class of the projection of a singular knot XK' to v1(K"). Fiz some knot K f.oo

Then fof any knot K, which z'sb free homotopic to K 7

1, - -
U1 (K) =u (K_f) + EU;(UK - UK!) (24)
2.3.D. Proof of Theorem 2.3.C.

One can obtain K from K fbya sequence of isotopies and modifications along fibers. Both v;
and Uy are invariant under isotopy. If under a modification along a fiber Ug jumps by 2@G,, then
vy jumps by 2vf (G ). (Clearly v1 -does not jump under modification along a fiber, for which one of

the two loops of Gq is homotopic to a trivial loop. ) The total jump of Uy under the homotopy is
5



ﬁ'Kf — Ug. Thus the corresponding jump of vy invariant is vy (Ky) — vi(X) = %v{ (I]’Kf - Ugk) and
we proved the theorem. O

Tt is natural to take the simplest knot in the corresponding class as the K; knot. Unfortunatel_');,
there is no canonical way to choose one.

As a corollary of Theorem 2.3.C we get, that for any Vassiliev invariant of degree one vy and two
homotopic knots K and Ks, equality Uk, = Uk, implies v1 (K3) = v1 (K2).

The following theorem, characterizes the range of values Uk.

2.3.E. THEOREM. For a singular knot K (whose only singularity is a transverse double point)
denote by K, the free homotopy class of knots, that contains K. For a knot K denote by Gx the
submodule of G generated by the classes of the projections of singular knots K, such that K € K.

I: Let K and K ! be two oriented knots, representing the same free homotopy class. Then Ux and
Ug: are congruent modulo the 2Gx submodule.

II: Let K be an oriented knot, U be an element of G, such that it is congruent to Ux modulo the
2Gx submodule. Then there exists an oriented knot K !, such that: | '

o) K and K' represent the same free homotopy class.

b) U =U.
For the proof of Theorem 2.3.E see Section 8.1.

2.3.F. There is a natural mapping ¢ : G — H, which maps g € G to a formal sum of the free
homotopy classes of the two loops of g. Clearly, ¢(Ux) = Uk. (The ker(¢) is nontrivial and this is
the reason, why Uk is not the most refined invariant of degree one.) Using ¢ and Theorem 2.3.E
we obtain the following characterization of the range of values of Uk. ‘

T. If X and K’ are two oriented knots representing the same free homotopy class, then Ux and
Ug: are congruent modulo the ¢(2G k) submodule.

II: Let K be an oriented knot, U be an element of H, such that it is congruent to Ux modulo
the $(2G ) submodule. Then, there exists an oriented knot K', such that:

a) K and K' represent the same free homotopy class.

b) Ug: = U.

2.3.G. The Ux gives rise to a homotopy invariant of an oriented curve C on a surface F. To
introduce it, we take an oriented R'-fibration E over F, and embed F with our curve C on it into

E as a zero section. Slightly deforming our curve at the crossing points we obtain a knot K¢ in

6




E. There is a natural Z-module homomorphism 7 from G onto G the free Zg-module generated by
the free homotopy classes from the set S’ (see 2.3.B). From the first part of 2.3.K it is clear, that
Uc = m(Uk,) is a homotopy invariant of C. For a free homotopy class of figure eight graph I the
coefficient of it in Ug counts if the number of graphs (homotopic to I), one obtains by choosing some

crossing point of C as a graph vertex is odd or even.

2.4. Partial linking polynomial. Let ® be an annulus. Consider a solid torus T' embedded into
R?, and a projection p : R — K2, such that Im(p]T) is homeomorphic to ©. Let X C T be an
oriented knot, in general position with respect to p. We denote by i; (9) and i3(g) the homology
classes in Hy (©) of the two loops, that are created by splitting of p(K) at the double point g. As

H1(©) = Z we can consider i1 (g) and 45(q) as integer numbers.

2.4.A.. DEFINITION }(AICARDI [2]). Set partial linking polynomial A(XK ): (originally in[2]. it was
denoted by s[K]) to be a finite Laurent polynomial, defined by the following formula

1 . .
- = i1(q) 1 4i2(q)
AF)= Y (w@En@ +4a0)) (2.5)
qeQ
#1(g),42 (g)#0
Below by a; we denote the coefficient of ¢ in A(K).

2.4.B. The set of all the free homotopy classes of oriented loops in © coincides with H;(©).. One
can easily see, that U is mapped to 24(K) 'u‘nder the natural isomorphism v : H — Z[g, g .
The fact, that 71(T") = Z allows one to reconstruct an element g € G from the homology classes

of the two loops of it. Thus, in this case Uy invariant can also be reconstructed from A(K).

2.4.C. (Aicardi [2]). Let h € Z be the image of [p(K )] (the homology class realized by p(K )) under

the natural identification of H. 1(©) with Z. Then aq = ap =0 and a; = ap_; for an arbitrary i € Z.

2.4.D. One can see, that the very definition of A(K) depends on the embedding of T into R3. It
is well known, that the group of orientation preserving autohomeomorphisms of T, factorized by
isotopy relation, is isomorphic to Z. It is generated by the class of an autohomeomorphism ®, that
extends a positive Dehn t\ivist along a meridian of T. That is cutting T' along a meridional disc,
tw1st1ng by 27 in a positive direction and gluing back. Replacement of the embedding of T to R3

by an isotopic one does not change A(K). Embeddings of all isotopic classes can be obtalned from
the given one by a composition with " for some n € Z.

7




Let A’(K) be the partial linking polynomial calculated, after we compose our embedding of T'

with @. Put

AA(K) = A'(K) — A(K) : (2.6)

Let h € Z be the homology class realized by p(K).
2.4.E. THEOREM.
—|h|(#* + 8% 4o P, ifh>0
AAK) = § —|h|(t™ +t~2 + - +h1), ifh <0 . (2.7)
0, | fh=0

For the proof of Theorem 2.4.E see Section 8.2.

As we can make the composition of our embedding with &7, for any n € Z, we obtain the

following.

2.4.F. A(K) as an invariant of the topological pair X C T is defined up to an addition of AA(K).

Thus, an A(K) invariant of a knot K, could be said to be in a canonical form, if it satisfies the -

following conditions:

0<a <h for h > 0,
(2.8)
10<a_y <'|h| for h <O,

If h =0, then A(K ) is always in the canonical form.

2.4.G. THEOREM. Fiz h € Z. Let P, be a subset of all finite Laurent polynomials z:"_’__u pitt,
satisfying the following properties:

a)po=pr=0 |

b)Vi€Z pj=pnj

¢) if h=2k for some k€ Z then Py, 8 odd.

Then Py, is the range of values of the partial linking polynomial. for knots homologous to h.

For the proof of Theorem 2.4.G see Section 8.3.
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2.5. Invariant of links.

2.5.A. DEFINITION OF Ur. Let p : E = F be an R!-fibration, of an oriented space E over a
surface. Let I" be an oriented figure eight graph, Vr be its vertex and E} and EZ be its edges. Set §
to be a set of all the free homotopy classes of mappings of T into F'. Denote by @ the free Z-module
generated by 5. Let K3 UK, = L C E be an oriented two-component link, in general position with
respect to p. Note, that local writhe w(g) is well defined for a point g € p(K;) N p(Ks). Let G € §
be the class of the mapping of T onto p(K1)Up(Ks), which maps ¥t to g, B} to p(K1), B3 to p(Ks)
(according to the orientations of the edges) and is injective on the complement of the preimage of

the double points'of p(L). Define Uy, € G by the following fofmula, where the summation is taken
over p(K1) Np(K>)

U= Y w@d, | 29)
' qu(Ki)ﬂp(Kj)

2.5.B. THEOREM. Uy is an isotopy invariant of the link L.

The proof of Theorem 2.5.B is straightforward. One Just has to.check, that Uy, is invariant under

all the oriented versions of the Reidemeister moves.

;

25.C.HE =F and F = R?, then G = Z (as m (R?) = e). Under this identification U =

21k(K1, K3), where lk(K1, K>) is the linking number of the two knots.

2.5.D.Let L = K1 U---UK, C E be a generic n-component oriented link. For i > j@G,ge
{1,...,n}) set L;; to be the two -component sublink of L, consisting of K; and K. Similarly to
Theorem 2.3.C, one can see, that the ordered set of the invariants Uk, and Ur;; (i > §) is the most

refined degree one Vassiliev invariant of L.

3. TURAEV’S SHADOWS OF KNOTS.

3.1. Preliminary constructions. Let 7 be an oriented Sl-ﬁbratmn of N over .an oriented closed
surface F.

N admits a fixed point free involution, which preserves fibers. Let N be N, factorized by this
involution and p : N = N be the corresponding two-fold covering. Each fiber of p (a pair of antipodal
points) is contamed in a fiber of . Therefore, 7 factorizes into p and a ﬁbratmn #: N — F. Fibers
of # are prOJect1ve lines. They are homeomorphic to circles.

9



An isotopy of a link L C N is said to be vertical with respect to =, if each point of L moves along
a fiber of 7. It is clear, that if two links are vertically isotopic, then their projections are the same.
Using vertical isotopy, we modify each generic link L in such a way, thét any two points of L, thét
belong to the same fiber, are in the same orbit of the involution. .Denote the generic link obtained,
by L'.

Let L = p(L'). It is obtained from L' by gluing together points, lying over the same point of F.
Hence, # maps L bijectively to w(L) = n(L/). Let r : n(L) —= L be an inverse bijection. It is a
section of & over w(L).

For a generic non-empty collection of curves on a surface, by a region we mean the closure of a
connected component of the complement of this collection. Let- X be a region for (L) on F, then
7"r| x isa trivial fibration. Hence, we can identify it with the projection S* x X — X& Let ¢ be a
composition of the section "'lax with thé projection to S*. It maps 8X to S'. Denote by ax the
degree of ¢ (this is actually an obstruction to an extension of 'r| gx Over X). One can see; that ax

does not depend on the choice of the trivialization of # and on the choice of L'.
3.2. Basic definitions and properties.

3.2.A. DEFINITION. The number %ax, corresponding to a region X, is said to be the gleam of X
and is denoted by gl(X). A shadow s(L) of a generic link L C N is a (generic) collection of curves

w(L) C F with the gleams, assigned to each region X. The sum of gleams over all the regions is

said to be the total gleam of the shadow.

3.2.B. One can check, that for any region X the integer ax is congruent modulo 2 to the number

of corners of X. Therefore, gl(X) is an integer, if the region X has even number of corners and

half-integer otherwise.
3.2.C. The total gleafn of the shadow is equal to the Euler number of .

3.2.D. DEFINITION. A shadow on F' is a generic collection of curves together with the numbers
gl(X) assigned to cach region X. These numbers can be either integers or half-integers and they

should satisfy the conditions of 3.2.B and 3.2.C.

There are three local moves 51, S2 and S; of shadows, shown in Figure 4. They are similar to the
well known Riedemeister moves of planar knot diagrams.

10
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FI1GURE 4. Three main shadow moves.
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3.2.E. DEFINITION. Two shadows are said to be (shadow) eguivalent, if they can be transformed

to each other by a finite sequence of moves Sy, Sy, S3 and their inverses.

3.2.F. There are two more important shadow moves S; and Ss, shown in Figure 5. They are similar
to the other versions of the first and the third Riedemeister moves. They can be expressed through

51,52 and Sy and their inverses.

FIGURE 5. Complimentary shadow moves.

3.2.G. In [9] the action of Hi(F) on the set of all the isotopy types of links in N is constructed as
follows.

Let L be a genericlink in N and 3 be an oriented (possibly self intersecting) curve on F', presenting
a homology class [8] € Hy(F). Deforming f, we can assume, that 8 intersects 7 (K) transversally
in a finite number of points distinct frbm the crossing points of 7(K). Denote by a = [a, b] a small
segment of L such, that () contains exactly one intersection point ¢ of 7(L) and B . Assume, that

m(a) lies to the left, and w(b) to the right of 3. Replace a by the arc o/, shown in Figure 6. We
12




FIGURE 6. Fiber fusion.

call this transformation of L a fiber-fusion over the point c. After we apply fiber fusion to I over
all the points of 7r(L) N 3 we get a new generic link L' with =(L) = 7(L'). One could show, that the
shadows of K and K' coincide. Indeed, each time when B enters a regién X of s(L); it:must leave
it. Heﬁce, the contributions of the newly inserted arcs to the gleam of X cancel out. Thus, links,

belonging to one Hy(F)-orbit, always produce the same shadow-link on F.

3.2.H. THEOREM (TURAEV [9]). Let N be an oriented closed circle bundle over F. The mapping,

which associates with each link L C N its shadow equivalence class on F, establishes a bijective

correspondence between the set of isotopy types of links in N » modulo the action of Hy(F), and the

© set of all shadow eguivalence classes on F with total gleamn x(r). (Here x(w) is the Euler number of.

the fibration.)

3.2.1. It is easy to see, that all the links, such that their projections represent 0 € Hy (F) and their
shadows are the same, are homologous to each other. To prove this, one looks at the description of
a fiber fusion and notices, that to each fiber fusion, where we add a positive fiber, corresponds one,

where we add a negative, Thus the numbers of positively and negatively oriented fibers we add are

equal, and they cancel out.

3.2.J .‘ If the surface F is non-orientable and N is oriented, thew one can also define a shadow of a
knot K in N. To define a gleam of a region X, fix a small disc D C X. Extend a section r]a x to
a section R of @ over X \ D. Take some orientation of D. Together with the orientation of N it
éleﬁnes an oriented longitude ! on T' = #~1(D). The orientation of D induces an orientation on 8D,

and hence on R|,3 p+ There exists n € Z such that the oriented curve R[ ap 18 homologous to nl in
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Hy(T). Put gl(X) = 2. A straightforward check shows that n does not depend on the orientation
of D we picked. It is also independent of the choices of D and R. Hence, gl(X) is well defined.

An immediate check shows, that in the case, when F' is oriented, this way of calculating gl(X )
gives the same result as the one, used in Section 3.1.

One immediétely generalizes the action of H (F), described in 3.2.G, to the case, when F' is

non-orientable.

3.2.K. In the case of a non-closed surface the gleams of the regions, that have compact closure and
do not contain components of Boundary, are defined in the same way. To define the gleams of the
other regions, we have to fix a section of our ﬁb;atipn over all the boundary components and ends
of oﬁr surface. In this case the total gleam of the shadow is equal to the the negative obstrucﬁon to
extension of this section over the whole surface. One can notice, that all the theorexﬁs and definitions,
stated in this section, can be now passed to the case of a shadow over an arbitrary oriented surface.
In Theorem 3.2.H H; (F) should be substituted by the first homology group with closed support of
Int F. | |

4. INVARIANTS OF KNOTS IN S'-FIBRATIONS.

- 4.1. Main constructions. In this section we deal with knots in an S*-fibration « of an oriented
three-dimensional manifold N over an oriented surface F'. In this section F' and N are not supposed

" to be closed. As it was said above 3.2.K, all the theorems from the previous section are applicable

in this case.

4.1.A. DEFINITION OF Sg. The orientations of N and F' determine an orientation on a fiber of
the ﬁbraﬁon. Denote by f the homol_ogy class of a positively oriented fiber in Hi (V).

Let X C N be an oriented knot, generic with respect to 7. Let v be a crossing point of 7(X).
The fiber 7~1(v) divides K into two halves, which inherit the orientation from K. Complete each
‘half of K by a half of 7~*(v), such that the orientations on these two arcs define an orientation on
their union. The orientations on F' and 7(K) allow one to identify a small neighborhood of v in F
with a model picture. shown in Figure 7a. Denote the knots, obtained by thé operation above, by
pt and py, as it is shown in Figure 7. We will often call this construction a splitﬁng of K (with
respect to the orientation of K). ,

This splitting can be described in terms of shadows as follows. Note, that pd and pt are not

in general position. We change them slightly in the neighborhood of 7~ (v) in such a way, that
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m(uF) and 7(ug) do not have double points in the neighborhood of v. Let P be a neighborhood of
v in F, homeomorphic to a closed disc. Fix a section over 0P, such that the intersection points of
K Nn~*(8P) belong to the section. Inside P we can construct the Turaev shadow (se¢ 3.2.K). The
action of H; (Int P) = e on the set of the isotopy types of links is trivial (see 3.2.H). Thus, the part

of K can be reconstructed in the unique way (up to an isotopy fixed on dP) from the shadow over

P. The shadows for p and p; are shown in Figure 7a and Figure 7b, respectively.

.
-----

FIGURE 7. Shadows for the splitting of K. .

Regions of the shadows s(uf) and s(ug) are, in fact, unions of regions for s(X). One should
think of gleams as of measure, thus the gleam of a region is the sum of all the numbers inside.
Let H be the (integer) group ring of H;(N), factorized (as a Z-module) by the submodule,

generated by {[K] — f,[K]f — e}. Here by [K] € H1(N) we mean the homolbgy class represented
by the image of K.

At last define Sk € H by the following formula, where the summation is taken over all the

crossing points v of 7(XK)

Sk =y (] - ) (4.1)

v

4.1.B. Since uf Upy = K Un~(v) we get, that
1) = Y1 (42
4.1.C. THEOREM. Sk is an isotopy itnvariant of the knot K.
For the proof of Theorem 4.1.C see Section 8.4.

4.1.D. From 4.1.B it follows, that Sk can be also described as an element of Z[H;(N)], equal to a
sum of ([ui]—[uy]) over all the double points for which the sets {[u7], [u7]} and {e, f} are disjoint. .
Note, that in this case we do not need to factorize Z[H1(N)], to make Sk well defined.
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4.1.E. One can obtain an invariant similar to Sk, taking values in the free Z-module generated
by the set of all the free homotopy classes of oriented curves in N. To do this, one substitutes the
homology classes of uf” and py in (4.1) by their free homotopy classes and takes the summation
over the set of all the crossing points v of n(K), such that neither one of pd and gy is homotopic
to a trivial loop and neither one of them is homotopic to a positively oriented fiber (see 4.1.D).

To prove, that this is really an invariant of X one can easily modify the proof of Theorem 4.1.C.

4.2, Sk is a Vassiliev invariant of degree one.

4.2.A. If a fiber-fusion changes the gleam «y in Figure 7b by +1, then [u}] changes by multiplication
by f. If a fiber-fusion changes the gleam ¢ in Figure 7c by +1, then [u]] changes by multiplication '
by 7. These facts are easy to check.

4.2.B. Let us see, how Sk changes under the modification (see 2.2.D) along a' fiber over a cross-
ing point v. Consider a singular knot K', (whose only singularity is a point v of transverse self-
intersection). Let & and & be the homology classes of the two loops of K ! adjacent to.v. The two ‘
resolutions of this double point correspond to adding i% to the gleams of the regions adjacent to v

in the two wiys, shown in Figure 8b and Figure 8c.

FIGURE 8. Shadow description of fiber modification.

Using 4.2.A one checks, that under the corresponding modification Sx changes by

(f-e)&+ Ez)‘ (4.3)

This means, that the first derivative of Sk depends only on the homology classes of the two loops
adjacent to the singular point. Hence, the secoﬁd derivative of Sg is 0. Thus, it is a Vassiliev
invariant of degree one in the usual sense.

Because of the similar reasons, the version of Sg, having values in the free Z-module generated

by all the free homotopy classes of oriented curves in N, is also a Vassiliev invariant of degree one.
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4.2.C. THEOREM. I: If K and K' are two knots, representing the same free homotopy class, then

Sk and Sk are congruent modulo the submodule generated by elements of form

(F-oU+[Kli™) (44)

(for j € Hi(N)).

Il If K is a knot, and S € H is congruent to Sk modulo the submodule generated by elements of -

form (4.4) (for j € Hy(N)), then there exists a knot K', such that:
a) K and K' represent the same free homotopy class
b) Sir =8 ‘

For the proof of Theorem 4.2.C see Section 8.5.

4.2.D. Fiber-wise compactification of an R!-fibration is an S'-fbration.. Thus for an oriented knot,
K in an oriented R!-fibration E over an oriented surface F both the Uy ’and the Sk invariants are
defined. There ié a formula relating the versions of them taking values in the group rings of the
homology groups (see 4.1.D and 2.2.C). In order to state it we introduce the following notation.
 Fix an arbitrary knot in each free homotopy class of a curve in E. Denote by K this fixed knot
in the free homotopy class realized by K. Put AUK =Ug —Ug, and ASkg = Sk - S’Ié.

4.2.E. THEOREM. 3AUk(f —e) = ASk
For the proof of Theorem 4.2.E see Section 8.7.
4.2.F. COROLLARY. The values of Uk, Uk and Sy invariants, determine Sk.

4.2.G. DEFINITION OF Sg. Let C be a generic oriented curve on an oriented surface F. Let H
be the free Z-module generated by free homotopy classes of curves on F. For a double point v set
pt(v) and g~ (v) be the two curves obtained by splitting of C' at v according to the orientation (see
Figure 7, where they correspond to u3 and u7). As before we can distinguish them (see 4.1.A). Set
wi (v) and u; (v) to be the free homotopy classes realized by them. Define Sg € H by the following
formula where the summation is made over the set of all the doﬁble points of C for which none of

p*(v) and p~(v) is homotopic to a trivial loop.

v

o= (ut (v) — i (v) (4.5)

(4.2.1—1. THEOREM. Sg is a homotopy invariant of the curve C
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The proof is straightforward. One just shows, that Sc is invariant under the moves of passing
through self-tangency point, passing through a triple point and a small kink birth move.
This invariant is closely related to the quadratic form on a certain quotient of Z [ (F)] introduced

by V. Turaev [10] and explored by V. Turaev and O. Viro [11).

4.3. Example. If N is just a solid torus, fibered over a disc, then we can calculate the value of Sk

directly from the shadow'of K.

4.3.A. DEFINITION. Let C be an oriented closed curve in R%, X be a region for C (i.e., it is a
closure of a connected component of R?\C). Take a point & € Int X and connect it to a point near
infinity by a generic oriented path D. Define the sign of an intersection point of C and D in the
way, shown in Figure 9. Put indg X to be the sum over all the intersection points of-C and D of

the signs of these points.

FIGURE 9. Sign of a crossing point.
It is easy to see, that indg(X) is independent on the choices of ¢ and D.

4.3.B. DEFINITION. Let X C T be an oriented knot, generic with respect to 7, and let s(K) be its
shadow. Define o(s(K)) € Z by the following sum over all the regions X for (X))

o(s(K)) = zxj indar(x) (X) g1(X) (4.6)
Denote by h € Z the image of [K] under the natural identification of Hy(T") with Z.
4.3.C. LEMMA. o(s(K)) = h‘
4.3.D.v Put

St = Zta(s(ut)) () (4.7)
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where the sum is taken over all the double points v of 7(K), such that {0,1} and {o(s(u)), o (s (1))}
are disjoint (see 4.1.D).

Lemma 4.3.C implies, that S} is the image of Sk under the natural identification between

Z[H,(T)] and the ring of finite Laurent polynomials.

One can show, that S} and F. Aicardi’s partial linking polynomial of X , introduced in [2], can

be explicitly expressed through each other.
4.3.E. To relate S'K and A(K), we introduce the following notations. Put

42+ k), RSO
AP= St gy i p g (4.8)
0, if h=0

For | € Z denote by o; the coefficient of # in A(K) — A*. (Recall, that h = KD

4.3.F. THEOREM. Let K C T be an oriented knot. Then
(A(K) — Ah (1 + %al — %a_1)
a%aquh+n) ifh>2
(4@~ 441+ ooy~ ta)
+3an (th + 1) ifh < =2
S'(K) = (t—1) ¢ 2 ) ‘ (4.9)
A(K) ifh =41 ‘
A(K) =171 (1 + tay) ifh=-2
A(K) — (1 + Lay) ifh=2
AK) + 4oy ~ ifh=0

4.3.G. COROLLARY. Given [K] there exist formulas, that ezpress S'(K ) through A(K) and A(K)
through S'(K). . '

The proof is straightforward.

4.4. Further generalizations of the Sk invariant. One can show, that an invariant similar to

Sk can be introduced in the case, when N is oriented and F is non-orientable.
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4.4.A. DEFINITION OF Sk. Let N be oriented and F' be non-orientable. Let K C N be an oriented
knot, generic with respect to 7 and v be a crossing point of 7(K). Fix some orientation on a‘
small neighborhood of v on F. As N is oriented, this induces an orientation on the fiber w“l(uj.
Similarly to the definition of Sy (see 4.1.A), we split our knot with respect to the orientation
and obtain two knots {y; (v), u7 (v)}. Then we take the other orientation on the neighborhood
of v in F, and in the same way we obtain another pair of knots {uf (v), pg (v)}. The element
([ ()] = (63 @)] + (4 ()] = [43 (v)]) € Z[Hy(N)] does not depend on, which orientation on the
neighborhood of v we choose first.

Similarly to the definition of Sk, we can describe all this in terms of shadows, as it is shown in
Figure 10. These shadows are constructed with res.pec't to the same orientation on the neigiiborl}ood
of v.

Let f be the hofnology class of a fiber of m, oriented in some way. As one can easily prove =g,
so it does not matter, which orientation we choose to define f. Let H be Z[H;(N)] factorized (as -
a Z-module) by the Z- submodule generated by {[K] —f4e—[K)f =(e-H(K]+ ’e)}. At last
define Sx € H by the following forﬁula, where the summation is taken over all the crossintlc:,r points

v of w(K).

e = 3 (18 001 - [ @) + b @] ~ [z ) (4.10)

v

4.4.B. THEOREM. Sx is an isotopy invariant of the knot K.

The proof is essentially the same as the proof of Theorem 4.1.C.

4.4.C. One can easily prove, that Sk invariant satisfies relations similar to (4.3). In parﬁcular Sy
is also a Vassiliev invariant of degrée one. The analogue of Theorem 4.2.C also holds for S K-

One can introduce a version of this invariant, taking values in the free Z-module generated by
all the free homotopy classes of oriented curves in N. To do this, we substitute the homolog&
classes of uf (v), py(v), 43 (v) and u; (v) by the free homotopy classes realized by them. The
summation should be taken over the set of all the double points of w(X), for which neither one of
i (v), p7 (v), pf (v) and py (v) is homotopic to a trivial loop an& neither one of them is homotopic
to a fiber of . To prove, that this is re‘ally an invariant of K, one easily modifies the proof of

Theorem 4.1.C.
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FI1GurE 10. Sk in the case of nonorientable surface.
5. INVARIANTS OF KNOTS IN SEIFERT FIBERED SPACES

 Let (1, v) be a pair of relatively prime integers. Let

D2={(7',9);05r51,0§0527r}CIR?.Z ' (5.1)

be the unit dise, defined invpolar coordinates. A fibered solid torus of type (u,v) is the quotient
space of the cylinder D* x I via the identification ((r,4),1) = ((r,6 + gZ—”),O). The fibers are the
images of the curves z x I. The n:umber 4 is called the index or the multiplicity. If [u| > 1 the
fibered solid torus is said to be exceptionally fibered and the fiber, which is the image of 0 x I, is

called an- exceptional fiber. Otherwise the fibered solid torus is said to be regularly fibered and each

fiber is a regular fiber.

5.0.D. DEFINITION. An orientable three manifold S is said to be a Seifert fibered manifold, if it is
a union of pairwise disjoint closed curves, called fibers, such that each one has a closed neighborhood

consisting of a union of fibers, which is homeomorphic to a fibered solid torus via a fiber preserving

homeomorphism.

A fiber, h is called ezceptional, if it has a neighborhood homeomorphic to an exceptionally fibered
solid torus (via a fiber preserving homeomorphism) and h corresponds, via the homeomorphism to

the exceptional fiber of the solid torus. If 8S # 0 then 83 should be-a union of regular fibers.
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The quotient space, obtained from a Seifert fibered manifold S by identifying each fiber to a

point, is a 2-manifold. We call it the orbit space. The images of the exceptional fibers are called the

cone points.

5.0.E. For an exceptional fiber a of an oriented Seifert fibered manifold there is a unique pair of
relative prime integers (g, ¥s), such that p, > 0, |Va| < fe and a neighborhood of a is homeomor-
phic, via a fiber preserving homeomorphism to a fibered solid torus of type (ua,va). We call the

pair (e, v,) the type of the exceptional fiber a. We also call this pair the type of the corresponding

cone point.

We can define an invariant similar to the Sk invariant of oriented knots in a Seifert fibered
manifold.
Clearly, any S'-fibration can be viewed as a Seifert fibration without cone points. This justifies

the notation in the definition below.

5.0.F. DEFINITION OF Sk. Let N be an oriented Seifert fibered manifold with an oriented orbit
space F. Let m : N — F be the corresponding fibration, and K C N be an oriented knot in
general position with respect to m. Assume also, that K does not intersect the exceptional fibers.
For each double point v of 7(X) we split K into g and py as in 4.1.A. Let A be the set of
all the exceptional fibers. Since N and F are oriented we have an induced orientation on each
exceptional fiber a € A. For a € A set f, to be the homology class of the fiber with this orientation.
For a € A of type (iq,vs) (see 5.0.E) set Ni(a) = {k € {1,...,ua}|2’L—k:’L mod 27 € (0,7},
Na(a) = {k € {1,...,1a}| 2% mod 2 € (0,m)}. Define RL,R2 € Z[Hy(N)] by the following

formulas:

Rl= Y (Klfte=F—fE) = > (fiF - [K]f¥) (5.2)
kEN: (a) keNz(a)

Ri= "> (feb-[KIE) - 3T (KIfEeE - gE). (5.3)
kEN:1(a) " kENz(a)

Let H be Z[(H1(N)] factorized (as a Z-module) by the free Z-submodule generated by {[K 1f=
e,[K] - f,{RL, R} . A}. Finally, define Sx € H by the following formula, where the summation
is taken over all the double points v of w(K) '
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Sre=3 (-] (5.4)

v

5.0.G. THEOREM. Sk is an isotopy invariant of the knot K.

For the proof of Theorem 5.0.G see Section 5.0.G,‘v

We introduce a similar invariant in the case, when N is oriented and F is non-orientable.

5.0.H. DEFINITION OF S’K. Let N be an oriented Seifert fibered ménifold with a non-orientable
orbit space F. Let w : N — F be the corresponding fibration, and K C N be an oriented knot in
general position with respect to 7. Assume also, that K does not intersect the exceptional fibers.
For each double point v of m(K) we split X into pF (v), p7 W), pf (v) and p5 (v) as in 4.4.A. The
element ([uf (v)] — [p7 ()] + (13 (v)] = (15 (v)]) € Z[H1(N)] is well defined.

Denote by f the horxiology class of a regular fiber oriented in some way. Note that. f2 =¢, so the
orientation we use'tq define f does not matter. For a cone point a denote by f, the homology class
of the fiber 7=%(a) oriented in some way.

' For_‘ a € A of type (fta,va) set Ni(a) = {k € {1,..., 13 2”—;:’& mod 27 € (0,71’]} Ny(a) = {k €
{1,...\,),La}|-2—7%'-& mod 2 € (0,m)} | J\
Define R, € Z[H1(N)] by the following formula:

Ro= 3 ([KIftemt = b+ g 15 -
kEN:(a) ’

So (et 1mUgE AR 1) (65)

kENz(a)

Put H to be Z[H:(N)], factorized (as a Z-module) by the free Z-submodule generated by {(e -
DK +€), {Ra}aea)-

One can prove, that under the change of the orientation on 7~1(a) (used to define f,) R, goes
to —R,. Thus H is well defined. To show this, one checks that, if Ug is odd, then 'Nl (a) = Na(a).
Under this change each term from the first sum (used to define R@) -goes to minus the corresponding
term from the second sum and vice versa. (Note that f? = e.) If u, is even and p, = 21 (for some
L € Z), then Ni(a) \ {I} = N2(a). Under this change each term with k € Ni(a) \ {I} goes to minus
the corresponding term with & € Nz(a) and vice versa. The term in the first sum, which corresponds
to k =1, goes to minus itself.
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Finally define Sx € H by the sum overi all the double points v of m(K)

S = 30 ([u @01 = [ )] + 1 )] = [ ) (5.6)

v

5.0.1. THEOREM. Sk is an isotopy invariant of K.
The proof is a straightforward generalization of the proof of Theorem 5.0.G.

5.0.J. There is a version of Sy, taking values in the free Z-module generated by all the free homotopy
classes of oriented curves in N. To obtain it, one substitutes all the homology classes in the definitions
by the corresponding free homotopy classes. The summation should be made over all the Flouble
points of 7(K), for which neither one of the knots, 6btéined by the splitting, is homotopic to a trivial
loop and neither one of them is homotopic to a_positively oriented fiber of N. Each Liomology class
of the form f¥ in the definitions of R} ana R? should be substituted by the free homotopy class of

the curve, which goes along the exceptional fiber k times. Each class of the form [K] ¥ should be

substituted by the free homotopy class of K with a curve, going along the exceptional fiber & times,

added to it. (Note, that f, is in the center of m (IV), so this class is well defined.) To prove, that
this is really an invariant of K, one easily modifies the proof of Theorem 5.0.G.
The version of Sx, taking values in the free Z-module, generated by the set of all the free homotopy

classes of oriented curves in N, is constructed in a similar way.

5.0.K. One can easily check, that Sk, Sk and their versions described in 5.0.J satisfy relations sim-
ilar to (4.3)). Hence all of them are Vassiliev invariants of degree one (see 4.2.B). The corresponding

versions of Theorem 4.2.C also hold for them.

6. WAVE FRONTS ON SURFACES

6.1. Definitions. Let F be a two-dimensional manifold. A contact element at a point on F is
a one-dimensional vector subspace in the tangent plane. This subspace divides the tangent plane
into two halves. A choice of one of them is called a coorientation of a contact element. The space
of all the cooriented contact elements of F' is a spherization of the cotangent bundle of F, that is
ST*F. We will also denote it by N. It is an Sl-fibration over F. A Legendrian curve A in N is an
immersion of S into N, such that the tangent vector to A at each point lies in the contact plane.
The projection L C F of a cooriented Legendrian curve A C N i; called the the front of A. A wave

front is said to be generic, if it is an immersion everywhere except a finite number of points, where it
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has cusp singularities, and all the multiple points are double points of transversal self-intersection.

A cusp is the projection of a point, where the corresponding Legendrian curve is tangent to the fiber

of the bundle.

Cooriented generic front may be uniquely lifted to a Legendrian curve A ¢ N , by taking a

coorienting normal direction as a contact element at each point of the front.

6.2. Shadows of wave fronts. . '

6.2.A.. For any surface F, the space ST*F is canonically oriented. The orientation is constructed

as follows. For a point z € F fix an orientation on T, F. It induces an orientation on the fiber

- over z. These two orientations determine an orientation on three dimensional planes tangent to the

points of fiber over z. A straightforward check shows, that this orientation is independent on the
orientation on Ty F' we choose. Hence, the orientation on ST*F is well defined.

Thus, for a generic knot in ST*F the notion of shadow is well defined (see.3.1!and 3.2.7).

Theorem 6.2.C describes the shadow of a Legendrian lifting of a generic cooriented wave front
LcCPF.

6.2.B. DEFINITION. Let X be a connected component of F'\ L. We denote by C% the number of
cusps in the boundary of the region X pointing inside X (as in Figure 11a), by C% the number of
cusps in the boundary of X pointing outside (as in Figure 11b), and by Vx the number of corners
of X, where the picture locally looks in one of the two ways, shown in Figure 1lc. It can happen,
that a cusp point is pointing both inside and outside of X. In this case it makes input both into C%

and C%. If the corner of the type shown in Figure 11c participates two times in 8X , then it should

be counted twice, to get the value of Vx.

TV Y
(el ;() (C)c;) (Vx) : (VX)

FIGURE 11. Types of crossing and cusp points.

6.2.C. THEOREM. Let L be a generic cooriented wave front on a surface F (not necessarily closed

or compact), corresponding to a Legendrian curve \. There ezists a small deformation of X, in the
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class of all smooth (not only Legendrian) curves such, that its result is a curve generic with respect
to the projection, and the shadow of this curve can be constructed in the following 'way." We replace
o small neighborhood of each cusp of L by a smooth simple arc. The gleam of an arbitrary regioﬁ
X ’ which has compact closure and does not contain boundary components of F, is calculated via the

following formula:

. 1 .-
gly = xInt(X) + E(C’}{ - C% —Vx) ‘ (6.1)
(Here x denotes the Buler characteristic.)

For the proof of Theorem 6.2.C see Section 8.10.

Note, that as it was said in 3.2.K, the gleam of a region, that does not have compact closure or

contains boundary components is not defined.

6.2.D. A self-tangency point p of a wave front is said to be a point of.dangerous self-tangency, if
the coorienting normals of the two branches coincide at p (see Figure 12). A.da,rigerous self—tangency
point corresponds to a self-intersection of the Legendrian curve. Hence, a generic deformation of the

front L, not involving dangerous self tangencies, corresponds to an isotopy of the Legendrian knot

A ,
FIGURE 12. Dangerous selftangency.

Any genéric deformation of a wave front L, which corresponds to an isotopy in the class of the
Legex'ldrian knots, can be splitted.into a sequence of modifications, depicted in Figure 13. The
construction of Theorem 6.2.C transforms these generic modifications of the wave front to shadow
moves: Ia and Ib in Figure 13 are trgnsformed to the 51 move for shadow diagramé, IIa, ITb, I'a,
II’b, e #nd II'd are transformed to the Sz move, finally IIla and IIIb are transformed to Ss and

53, respectively.

6.2.E. Thus, we are able to calculate for the Legéndrian lifting of a wave front all the invariants,
which we can calculate for shadows. This includes the analogue of the linking number for the fronts
on R? (see [9]), the second degree Vassiliev invariant (see A. Shumakovitch [6]) and quantum state

sums (see [9]).

26



BN TN (=4 -

Il , b ) &

IIT 2 ' b)

FIGURE 13. Wave front moves.

6.3. Invariants of wave fronts on surfaqes; In particular, the Sy invariant gives rise to an
invariant of a generic wave front. This invariant appears to be related to the formula for the
Bennequin invariant of a wave front, introduced by M. Polyak in [5].

Recall the corresponding results and definitions of [5).

Let L be a generic cooriented oriented wave front on an oriented surface F. A branch of a wave

front is said to be positive (resp. ‘negativ;a), if the frame of coorienting and orienting vectors defines
positive (resp. negative) orientation on the surface F. Defirie the sign €(v) of the crossing point v
of L to be -+1, if signs of both branches of the curve, intersecting at v, coincide and —1, otherwise.
Similarly, we assign a positive (negative) sign to a cusp point, if the coorienting vector turns in
a positive (negative) direction, while traversing a small neighborhood of the ‘cusp point along the
orientation. We denote half of the number of positive and negative cusp points by C+ and C-,
respectively.

Let'v be a crossing point of L. The orientations of F' and L together with the coorientation
of L. allow one to identify a small neighborhood of v in F with one of the model pictures shown
in Figure 14a and Figure 14b. Denote by L7 and L7 the wave fronts, obtained by splitting of L in
v according to orientation and coorientation, as it is shown in Figure 14a.1) and Figure 14b.1).

For a Legencirian curve ) in ST*R? denote by I()) the Bennequin invariant of it, described in the
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FIGURE 14. Symmetric splitting of a wave front.

works of S. Tabachnikov [7] and V. Arnold [3] with the sign convention of [3] and [5)-

6.3.A. THEOREM. ([Polyak [5]]) Consider a generic oriented cooriented wave front L on B2. Let A
be the corresponding Legendrian curve. Denote by ind(L) the degree of the mapping, taking a point

p on the front to the point on S, where the coorienting normal at p points to. Define S as the sum

over all the crossing points of L:

§ =3 (nd(L}) —ind(L7) —e(v)) (6.2)

Then

I(\) = 8 + (1 — ind(L))C* + (nd(L) +1)C~ +ind(L)? (6.3)

As it was shown in [5], the Bennequin invariant of a wave front on the R? plane admits quan-
tization. Consider a formal quantum parameter g. Recall, that for any n € Z the corresponding
quantum number [n]q‘ € Z[g, ¢ is a finite Laurent polynomial in g, defined by [n]y = 5%‘1;_—11
Substituting quantum integers instead of integers in 6.3.A, we getvthe following theorem.

6.3.B. THEOREM. ([Polyak [5]]) Let L be a generic cooriented oriented wave front on R? and X

be the corresponding Legendrian curve. Define Sq by the following formula, where the sum is taken
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over the set of all the double points of L.

Sg = [ind(L}) — ind(L7) — €(v)], » (6.4)

Y

Put

lg(L) = 8¢ + [1 — ind(L)],C* + [ind(L) + 1],C~ + [ind(L)]4ind(L) (6.5)
Then lg(A) =1,(L) € %Z[q, ¢~ is invariant under isotopy in the class of the Legendrian knots.

The I,(\) invariant can be expressed [1] through the partial linking polynomial of a generic

cooriented oriented wave front, introduced by F. Aicardi [2].

The reason why this invariant takes values in }Z[g,¢™"] and not in Z[g,q~"] is that the number

of positive (or negative) cusps can be odd. This makes O (C~) a half-integer.

Let ¢ with € = = be the Legendrian lifting of the front L. Let f €H (ST*F) be the homology

class of a positively oriented fiber.

6.3.C. THEOREM. ([Polyak [5]]) Let L be a generic cooriented wave oriented front on an oriented

surface F. Let \ be the corresponding Legendrian curve. Define Ip(A) € Hi(ST*F, %Z) by the

following formula.

ip() =3 (D1 - 51 - e)f) + (F - DC* + (N + o~ (6.6)
(Here we use an additive notation for the group operation in Hy (ST*F, %—Z) )

Then Ip(}) is invariant under isotopy in the class of the Legendrian knots.’

The proof is straightférward. One checks that Ip(}) is really invariant under all the oriented
versioné of non;dangerous sélf—tangency, triple point, cusp crossing and cusp birth moves of the wave
front. - .

In [5] this invariant is denoted by I3 () and, in a sense, it appears to be a natural generalization
of the Arnold’s J* invariant [3], to the case of an oriented cooriented wave front on an oriented
surface. |

Note, that in the situation of Tﬁeorem 6.3.A the indices of all the fronts, involved, are the
images of the homology classes of théir Legendrian liftings under the natural identification between
H (ST*R?) and Z. If one replaces everywhere in 6.3.A indices by the corresponding homology classes

and puts f instead of 1 then the only difference between the two formulas is the term ind? (L).
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6.3.D. The splitting of the knot X into " and p, used to define Sk (see 4.1.A), in the case when
Kisa ngendrian lifting of a generic wave front L, can be done up to an isotopy in the class of
the Legendrian knots. Although this can be done in many ways, there exists the simplest way. Tlle
projections L and f,; of the Legendrian curves, created by the splitting, are shown in Figure 15.
(This fact follows from Theorem 6.2.C.)

Let AS with € = = be the Legendrian lifting of the front Le.

FIGURE 15. Nonsymmetric splitting of a wave front.

6.3.E. THEOREM. Let L be a generic cooriented wave front on an oriented surface F-. Let A be the

carresponding Legendrian curve. Define S(X) € 1Z [H,(ST*F))] by the following formula.

SO =3 (1= 1851) + (7 - PDOT + (f - )0~ (6.7)

Then S()) is invariant under isotopy in the class of the Legendrian knots.

The proof is straightforward. Omne checks that S(}) is really invariant under all the oriented

versions of non-dangerous self-tangency, triple point, cusp crossing and cusp birth moves of the wave

front.

6.3.F. By taking the free homotopy classes of X+ and 5\; , instead of the homology classes, one
obtains a different version of the S()) invariant. It takes values in the group of formal half-integer

linear combinations of the free homotopy classes of oriented curves in ST*F'. In this case the terms

[A] and f in (6.7) should be substituted by the free homotopy classes of A and a positively oriented

fiber, respectively. The terms [A]f and e in (6.7) should be substituted by the free homotopy classes
of A, with a positive ﬁber added to it, and the class of a contractable curve, respectively. Note, that
f lies in the center of m; (ST*F), thus the class of A, with a fiber, added is well defined.

A straightforward check shows, that this version of S(A) is alsov invariant under isotopy in the

class of the Legendrian knoté.
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6.3.G. THEOREM. Let L be a generic oriented cooriented wave front on an oriented surface F. Let
A be the corresponding Legendrian curve. Let S(\) and Ip()) be the invariants introduced in 6.3.5

and 6.3.C, respectively. Let

pr: J2[H(ST'F)] ~ By (ST'F, 32) (68)

be the mapping defined as follows: for any n; € %—Z and g; € Hy(ST*F)

> nigsrr [[ o | (6.9)

Then

pr(S(A) =1r(3) (6.10)

The proof is straightforward: one has to check that
P31= D51 - e)f = 33 - (3] in Hy (ST*F). (6.11)

(Here we use an additive notation for the group operation in H; (ST*F').)

This means that Sr()) is a splitting of [p(}).

6.3.H. One can check, that there is a unique linear combination (3,,¢z nm[m]y) (With ny,, being
non-negative half-integers, such that, ng = 0 and, if n,, > 0, then n_,, = 0) which corresponds to
l4(X) € $Z]g,q%. To prove this, one checks, that {3[n]4l0 < n} is a basis for the Z-submodule of
$Zlg,q7Y, gene£ated by the quantum numbers, and uses the identity n[m], = ~n[—m],. '

The following theorem shows, that, if L ¢ R?, then l4(A) (see 6.3.B) and I (A) can be explicitly

expressed through each other.

6.3.1. THEOREM. Let f € Hy(ST*R?) be the class of a positively oriented fiber. Let L be a generic
oriented cooriented wave front on R2, )\ be the corresponding Legendrian curve, and f* be the

homology class, represented by it.

Let ¢ : Z[H1(ST*R?)] -+ LZ[g,q™"] be the mapping defined as follows: foranynelzZmez

om—h=1,, ifn>0
p(nf™) = ni2m oo ifn> (6.12)

0, otherwise.
* For odd (even) h € Z let 7 be the mapping from the set of half-integer linear combinations of

even (add) quantum numbers to $Z[Hy(ST*R?)] defined as follows: for any n € Z and any even
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(odd) m € Z

(nfm]y) = n(f=FE - fH5T) , . (6.13)
Then
(X)) = ¢(S(N)) + [Algh (6.14)

For l4(\) written in the form, described in 6.3.H

SQ) = (lg(N) ~ [Wlgh) (6.15)

(One can check that 1 is really defined for lo(X) = [h]gh.) For the proof of Theorem 6.3.I see -

Section 8.11.

Note, that the l4(}) invariant was defined only for fronts on the R? plane. Thus, S()) is, in a

sense, a generalization of I4(}) to the case of wave fronts on an arbitrary oriented surface F.

6.3.J. The splitting of the knot X into u7 (v), 7 (v), g3 (v) and 5 (v), used to introduce S(K)
(see 4.4.A), can be done up to an isotopy in the class of the Legendrian knots. Although this can
be done in many ways, there is the simplest one. The projections Lf (), LT (v), L (v) and L3 (v)
are s'hown in Figure 16. (This fact foliows from the Theorem 6.2.C).

This allows us to introduce an invariant similar to S()) for generic oriented cooriented wave fronts
on a non-orientable surface F in the following way.

Let L be a generic wave front on the non-orientable surface F. Let v be a crossing point of L.
Fix some orientation iﬁ the small neighborhood of v in F. Then this neighborhood can be identified
with a model picture, shown in Figure 16. We split our wave front at this point with respect to

‘orientafibn and coorientation as it is shown in Figure 16. We correspond to each c,ross'ing point
" v of L an element ([5\'1*‘(1:)] - AT @] + M) - Py ('u)]) € Z[Hl(ST*(F)].‘ (Here lambdas are
the corresponding Legendrian curves). Clearly, this element does not depend on the orientation we
bicked in the neighborhood of v.

For a wave front L let C be half of the number of cusps of L. Denote by f the homology class of

the fiber of ST*F' oriented in some way. Note, that f2 = e, so it does not matter, which orientation

of the fiber we use to define f.

6.3.K. THEOREM. Let L be a generic cooriented oriented wave fmni on a non-orientable surface

F and ) be the corresponding Legendrian curve. Define S()) € 3Z[H1(ST*(F))] by the following
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FIGURE 16. Nonsymmetric splitting of a wave front on a nonorientable surface.
formula, where the summation is taken over the set of all the double points of L.

SO0 =Y (@ -5 @] +PF@N-B5 @) +C(f —e+F =) (6.16)

u

Then S (A) is invariant under isotopy in the clqss of the Legendrian knots.

The proof is straightforward. One checks that § (A) is really invariant under all the oriented

versions of non-dangerous self-tangency, triple point passing, cusp crossing and cusp birth moves of

the wave front.

The reason we have S()\) € LZ[H:\(ST*F)) is, that if L is an orientation reversing curve, then

the number of cusps of L is odd. In this case C is a half-integer.

Similarly to 6.3.F, one can introduce the version of the S()) invariant, which takes values in the

group of formal half-integer linear combinations of all the free homotopy classes of oriented curves

in ST*F.

7. WAVE FRONTS ON ORBIFOLDS

7.1. Definitions.

7.1.A. DEFINITION. An orbifold is a surface F with the additional structure, which consists of:
D Aset ACF. -

2) A smooth structure on F'\ A.

* 8) A set of homeomorphisms @, of a neighborhood U, of a in F onto R? /G,, such that ¢o(a) =0

and ¢, o\ is a diffeomorphism. Here G, = {e%ﬁk
a\2

ke{l,...,p}} (pa > 0) is a group, which acts
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on R? = C by multiplication.

The points a € A are called cone points.

The action of G on R?, induces the action of G on ST*R?. This turns ST*R? /G into a Seifert
fibration over R? /G. Gluing together the pieces over neighborhoods of F', we obtain a Seifert; fibration
7 : N = F. The fiber over a cone point a is an exceptional fiber of type (e, —1) (see 5.0.E).

The space ST*R2 has a natural contact structure, which is invariant under the induced action of
G. Since G acts freely on ST*R?, this implies, that N has an induced contact structure. As before,

we call the projection L C F of a cooriented Legendrian curve A the front of A

7.2. Invariants of fronts on orbifolds. If Fis oriented, we construct an invariant similar to
S(X). It corresponds to the Sk invariant of a knot in a Seifert fibered space. If F' is a non-orientable
surface, then we construct an analogue of 8()). Tt corresponds to the Sk invariant of a knot in a

Seifert fibered space.

Note, that any surface F' can be viewed as an orbifold without any cone points. This justifies the
.notation below.

vLet F be an oriented surface. The orientation of F' induces an orientation on all the fibers.
Denote by f the homology class of a positively oriented fiber. For a cone point a denote by f, the
homology class of a positively oriented fiber 7~ 1(a). For a generic oriented cooriented wave front
L C F denote by Ct (C~) half of the number of positive (negative) cusps of L. Note, that for a
double point v of a generic front L, the splitting into ij’ and fl,j is well defined. The corresponding

Legendrian curves :\;*,' and X7 in N are also well defined.

For o € A of type (e, —1) put Ny(a) = {ke{1,...,na}|=2 mod 27 € (0,7]} Na(a) = {k e

{1,...,a}| 32X mod 27 € (0, )} Define RL, R € Z[Hi(N)] by the following formulas

Ri= 3 (Kl =58) = 3 (fi=* - [K]fE) Y
kEN1(a) kEN2(a)

R= > (fe*—[KIfF) - 3 (Klfa="~12). ' (7.2)
kEN;(a) " kENz(a)

Set J to be 3Z[H1(N)], factorized by the Abelian subgroup generated by. {{%Rl (a); 3R2(a)}aca }

7.2.A. THEOREM. Let L be a generic cooriented oriented wave front on F' and A be the correspond-
ing Legendrian curve.
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Then S(X) € J defined by the sum over all the double points of L

SO = 3 (W @) - B )]) + (f - W)O* + (Al - )0 (73)

is invariant under isotopy in the class of the Legendrian knots.

For the proof of Theorem 7.2.A see Section 8.12.

Let F' be a non-orientable surface. Denote by' f the homology class of a regular fiber oriented in.
some way. Note, that f2 = e, so the orientation, we use to define, f does not matter. For a cone
point a denote by f, the homoldgy class of the fiber 7—1(a), onented In some way. For a generic
oriented cooriented wave front L C F denote by C half of the number of cusps of L. Note, that for a
double point.v of a generic front L, the element ([X} (v)] — [ 7 ()] + M )] = A5 (v)]) € Z[Hy (V)]
used to introduce S()) is well defined.

For a € A of type ,ua,—l) put Ni (a {k € {1,..., Ha}| =2 mod 27 € (0,7]} and Na(a) =
{ke{1,.. ,ua}|‘ﬁf” mod 27 € (0, ) } Define R, € Z[H;(N)] by the following formula

Bo= 37 (Mgt = g+ flove ~ plgs) -

. kENi(a)

D0 (TR DI - 1Y) (g

kENz2(a)

Put J to be 1 $Z[H;(N)], factorized by a free Abelian subgroup generated by {{2R }aeA}
Similarly to 5.0.H one can prove, that under the change of the orientation of 7~1(a) (used to .

define f,), Ra goes to —R,. Thus, J is well defined.

7.2.B. THEOREM. Let L be a generic coorzented oriented wave front on F and \ be the correspond-

ing Legendrian curve.

Then S(A) € J defined by the summation over all the double points of L

S0 = S (B @ - BT I+ D@ - Dy @) + (N —et - P)C (75)

is invariant under isotopy in the class of the Legendrian knots.

The proof is a strﬁightforv&ard generalization of the proof of Theorem 7.2.A.
As before (see 6.3.F and 5.0.J), one can introduce versions of S(A) and S()), taking values in

the factors of the group of all formal half-integer linear combinations of the free homotopy classes

of oriented curves in N.
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8. PROOFS

8.1. Proof of Theorem 2.3.E. I: K’ can be obtained from K by a sequence of isotopies and
modifications along fibers. Isotopies do not change {7. The modifications change U by elements of
2Gx. Thus, the first part of the theorem is proved.

II: We prove that for any g € Gx there exist two knots K and Kj such, that they represent the

same free homotopy class as K and

U, =Ux—29 (8.1)

Uk, = U +29 ' (8.2)

Clearly, this implies the second statement of the theorem. To obtain the two knots we isotopically
deform K so that w(K) bites itself in the projection (as it is shown in Figure 17) and Gy =Gy = g.
To obtain K, one performs a fiber modification along 7~*(u). To obtain K3, one performs a fiber

modification along 7~ (v).

FIGURE 17. The knot bites itself.

This finishes the proof of Theorem 2.3.E. O

8.2. Proof of Theorem 2.4.E. Let D be a meridional disc along the boundary of which, we
performed the positive Dehn twist (used to define ®). Assume, that all the branches of K, which
cross D, are perpendicular to it and are located on different levels (see Figure 18). Using second
Reidemeister moves transform the diagram in such a way, that if we traverse K along the orientation,
then the branches cross D in the order shown in Eigure 18. (The thick dashed line in Figure 18 is
p(D)). After we compose the embedding of T' with @, the diagram will be changed, as it is shown
in Figure 19. | '
Note, that A(X) and A'(X) change in the same way under the modification of pushing of one

branch of the knot through the other, which happens outside of the neighborhood of D (shown in
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FIGURE 18. Branches of the knot before the automorphism.
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FIGURE 19. Branches of the knot after the automorphism.
Figure 19). Hence, their difference is preserved, Thus, we can assume that our knot X has an

'ascending diagram. After a simple calculation we get the desired result. O

8.3. Proof of Theorem 2.4.G. The relation between U and A invariants, shown in 2.4.B, allows
one to use 2.3.F in the case of a partial linking polynomial. There is a natural bijéctibn between
one-dimensional homology classes of T' and free homotopy classes of oriented loops in T'.

Thus we get, that:

a) If K and X', are such that [p(K)] = [p(K')] = h, then A(K') and A(K) are congruent modulo
the additive subgroup generated by all the elements of type

& (t7 + th7) for j ¢ {h,0} | (8.3)

(Note that if h = 2 then this expression is equal to 4:247.)

b) Let X be a knot (with [p(K)] = h), and let A be a finite Laurent polynomial congruent to

A(K) modulo the additive subgroup, generated by all the elements of type (8.3). Then there exists
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a knot K', such that [p(X')] = h and A(K') = A.

Thus, if X and K' are knots such, that [p(K)] = [p(K")] = h and A(K) € Py, then A(K") € Py.
And vice versa, if for some py, € Py, there exists a knot Kp, , such that [p(Kp,)] = h and A(Ky,) = ph,
then it exists for. any pp € Py. Hence, to prove the theorem it is sufficient to show, that for aﬁy
h € Z there exists a knot Kh, such that [p(Ky)] = h and A(Kp) € Py. Let Kp be a knot, that

rotates b times in T and has an ascending diagram (see Figure 20). The A invariant of it is equal

to (8.4) and it belongs to Ph.
2 4T ifh>0
2 e tMH iR <O (8.4)

0, i h=0
This finishes the proof of Theorem 2.4.G. [

‘FIGURE 201 Knot with an ascending diagram.

8.4. Proof of Theorem 4.1.C. To prove the theoremm, it is sufficient to show, that Sk is invariant
under the elementary isotopies. They project to death of a double point, cancelation of two double
pomts and passing through a triple point.

To prove the invariance, we fix a part P of our surface, such that P is homeomorphlc to 'a closed
disc, in which one of thése events takes place. Fix a section over the boundary of this disc, such
that the points of K N7~1(8P) belong to the section. Inside P we can construct the Turaev shadow
(see 3.2.K). The action of Hi(Int P) = e on the set of isotopy tyi)es of links is trivial (see 3.2.H). -
Thus, the.‘part of K can be reconstructed in the unique way from the shadow over P. In particular
one can compare the homologjr classes of the curves created by splitting at a crossing point inside

P. Hence, to prove the theorem it is sufficient to check the invariance under the oriented versions
of 81,52 and Ss moves.
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There are two versions of the oriented move S1, shown in Figure 21a and Figure 21b.

The [p}] for the Figure 21a appears to be equal to f. From 4.1.B we know, that [u}][uy] = [K]f,
thus [p7] = [K]. Hence, [p}] - [uy] = f — [K] and is equal to zero in H. In the same way we check,
that [uf]—[uy], for v shown in Figure 21b, is equal to [K]f —e. It is also zero in H. The summands,
appearing from the other vertices, are not changed under this move, as it does not change homology
classes of the knots, created by these splittings. .

There are three oriented versions of the Sy move. We shox'v, that Sk is not changed under .one of
them. The proof for the other two is the same or easier. We choose the version, in which participates
the upper part of Figure 22.

The summands, appearing from the vertices not in this figure, are preserved under the move, as
it does not chénge the homology classes of the corresponding knots. So it is sufficient to show, that
the terms, produced by the vertices u and v in this figure cancel out. Note, that the shadow uy is
transformed to u, by the 51 move. Tt is known, that S; can be expressed through Si, S» and Ss,
thus, it also does not change the homology classes of the knots created by the splittings. Hence,
[ut] and [py] cancel out. In the same way one proves, that [u7] and [u]] also cancel out.

There are two oriented versions of the S3 move: S} and 5%, shown in Figure 23a and Figure 23b,
respectively. The S% move can be expressed through S and oriented versions 6f Sy and S5 To
prove this, we use Figure 24. There are two ways to get from Figure 24a to Figure 24b. One is to
apply S§. Another way is to apply three times oriented versions of Ss, to obtain Figure 24c, then S3,
to get Figure 24d, and finally use three times the oriented versions of S5, to finish at Figure 24b.

Thus, it is sufficient to check the invariance under Si. The terms, appearing from the vertices
not in Figures 25a and 25b-are preserved, because of the same reasons as above. It happens, that
the terms coming from vertices u in Figure 25a and u in Figure 25.b are the same. This holds also
fbr‘ the v- and w- pairs of verﬁces on these two figures. We prove this statement only for the u-
pair of vertices. For v- and w- pairs the proof is the s#me or simpler. There is only one possibility:

either the dashed line belongs to both w(u}) in Figure 25a.1 and Figure 25b.1, respectively, or to

both 7(u7) in Figure 25a.2 and Figure' 25b.2, respectively. We choose the one, it does not belong to.

Summing gleams on each of the two sides of it, we immediately see, that the corresponding shadows
are the same on both pictures. Thus, the homology classes of the corresponding knots are equal.
But [uf]{pg] = [K]f, (see 4.1.B) thus, the homology classes of the knots, represented by the other

shadows are also‘equal, and we are done.. This finishes the proof of Theorem 4.1.C.
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FIGURE 22. Invariance of Sx under the second shadow move.
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FIGURE 23. Two oriented versions of the third shadow move.
8.5. Proof of Theorem 4.2.C. I: X' can be obtained from K by a sequence of isotopies and

modifications along fibers. Isotopies do not change S. The modifications change S by elements of
type (4.3). Finally to finish the proof we use the identity {162 = [K].

II: We prove, that for any i € H1(N) there exist two knots K; and Kp, such that they represent

the same free homotopy class as K- and

Sk, = Sk + (f — e) (K™ +1) (8.5)

Skp = Sk — (f = e)(KJi™ +1) (8.6)
Clearly, this would imply the second statement of the theorem.
Take i € H;(N). Let K; be an oriented knot in N, such that [K;] = i. The space N is oriented,

hence the tubular neighborhood Tk; of Kj is homeomorphic to an oriented solid torus 7'. Deform

K;, so that K; N Tk, is a small arc (see Figure 26). Pull one part of the arc along K in Tk; under
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FIGURE 24. Expression of S through the other moves. ‘
the other part of the are, as shown in Figure 27. This isotopy creates two new vertices u and v of
m(K). (As Tk, may be knotted, it can be that there are other new vertices, but we do not need
them for our construction.) By making a fiber modification along the part of 7—1 (u) that lies in T, |
one obtains K. By making a fiber modification along the part of 7~ (v) that lies in T, one obtains

K;. This finishes the proof of Theorem 4.2.C. [J

8.6. Proof of Theorem 4.3.C. It is easy to check, tha,f any two shadows, having the same
projection, can be transformed to each other by a sequence of fiber fusions. One can easily create
a trivial knot, having an ascending diagram, such that its projection is any desired curve. This
implies, that any two shadows on R? can be transformed fo each other by a sequence of fiber fusions
and mévements 51,52, 53 and their inverses. A straightforward check shows, that o(s(K)) is not
changed under the Sl,Sg",Ss moves and their inverses. Under fiber fusions the homology class of )
the knot and o are changed in the same way. To prove this, we use Figure 28, where Figure 28a

shows the shadgw before the application of the fiber fusion (that adds 1 to the homology class of

the knot) and Figure 28b after. In this diagrams the indices of the regions are denoted by Latin
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FIGURE 25. Invariance of Sy under the third shadow move.
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letters. Now one easily verifies, that ¢ is also changed by one. Finally, for the trivial knot with a

trivial shadow diagram the homology class of it and o(s(X)) are both equal to 0. This finishes the

.

FIGURE 28. Chanée of the shadow under the fiber fusion.

proof of Theorem 4.3.C. O

8.7. Proof of Theorem 4.2.E. The knot X can be transformed to K inside our R!-fibration E
by a sequence of isotopies and modiﬁcations along fibers. We compare the variations of § and U
under the procedure, described above. Let v be a crossing point of the diagram, appearing after
the modification and v’ be the corresponding crossing point before the modification. Assume that
wy = 1, as in Figure 29a. Then before the surgery the diagram was as in Figure 29b. Each of the
two crossing points contributes i% to the gleams of the adjacent regions, as it is shown in Figure 29a

and Figure 29b. From Figures 29 a, b, ¢, and d, one obtains that

W =60)f l=6a0) Wl=60) Wl=a6F (8.7)

Note that & (v) = &(v') and &(v) = &(v'). Thus, the change AS) (see 4.1.D) for the surgery,
appears to be equal to '
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60 = 60) +&0)f - &)

= (7 - (@) + &),

it {e, £} n {0 a0, SIOREN v)f} 2,

a5, = 4 E0 ~60) e
i_f{c,f}n{sz(v)f,&(v)} 2 and {e,7} 0 {Ez NAOHES

&(0)f — &),

it {e, } N {&(0), &) f} o and {e,f} {fz(’v)f:fl )} # o

0 otherwise. -

F1Gure 29. Contribution of the crossing point of the knot diagram to its shadow.

The change AU, is given by the following formula

O LCIORLIONE T ZGIONIO o (8.9)

0, ‘ otherwise.
For a homology class ¢ denote by a; the coefficient of 4 in AUx. One checks that 0, is equal to the
sum of the signs of the vertices created by the modifications (at the vertices, where the homoldgy

class of oné of the two curves, created by splitting is ¢), that have to be made to transform X to X,
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Formulas (8.8) allow one to calculate the change of S’ produced by these modifications. After some

calculations one obtains the desired result. This finishes the proof of Theorem 4.2.E. 0O

8.8. Proof of Theorem 4.3.F. Denote the K- and S*- fibration we used to define A and S’ by
p and =, respectively. Deform the knot K in such a way that the set @ of the preimages of all the
crossing points of p(K) is contained in a small cylinder Z, whose axis is paralle] to the kernel of
p. Deform the fiber structure of 7 in such a way, that inside Z the fibers of = are parallel to the

generator element of Z (see Figure 30). This fiber structure is ambient isotopic to the original, hence

FIGURE 30. Deformation of the fiber structure.

this deformation does not change S} If one looks along the new fibers he sees all the crossings from
Q (plus some new crossings, but we are not interested in them). Using modifications along the R
fibers over @ one can transform K to a knot K, that has an ascending diagram with respect to the
R!- fiber structure. This & isotopic to the knot, shown in Figure 20. The A(K) invariant for this
knot is equal to A*. On the other hand, the shadow for K can be transformed by a sequence of

the 51, 8s and S5 moves and their inverses to the shadow shown in Figure 31a. This diagram does

FIGURE 31. ’l‘riviai shadow.
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not have any crossing points thus the S’ invariant of the corresponding knot is 0. But this knot is

isotopic to K. Thus §'(K ) =0.

Finally one repeats the corresponding step of the proof of 4.2.F and gets that

=(A(K) - AM(E - 1)+ Ny, (8.10)
where
' (—%—a_l(l ~tht1) — Loy (th - 1), ifh¢{0,£1,£2}
—Lay(1-1), ifh=0
No=1q -la_j(t- 1)t . fh=-2 (8.11)
—Loy(t— 1)t ifh=2
0, . otherwise

\

To finish the proof one has to split out the ¢ — 1 term from Np. A O

8.9. Proof of Theorem 5.0.G. It is enough to show, that Sk, defined in this way does not change
'under elementary isotopies of the knot. Three of them correspond in the projection to a birth of a
small loop, passing through a point of self tangency and passing through a tnple point. The fourth
one is passing through an exceptlonal fiber.

From the proof of Theorem 4.1.0{ one géts, that Sk is invariant under the first three of the
elementary isotopies, described above. Thus, it is sufficient to prove invariance under the move of
passing through an exceptional fiber a.

Let a be a singular fiber of type (Ba;va) (see 5.0.E). Let T\ be its neighborhood, fiber-wise
isomorphic to the standardly fibered solid torus with an exceptional fiber of type (M) Vo).

We can assume, that the move happens as follows, At the start X and T, intersect along a curve,
lying in the meridional disc D of T,. The part of X close to a in D is an arc C of a circle of a very
big radius. This arc is symmetric through the y axis passing through @ in D. During the move this
arc slides along the y axis through the fiber a (see Figure 32).

Clearly, two points v and v of C after this move are in the same fiber iff they are symmetric with
respect to the y axis and the angle formed by v,a@,w in D is less or equal to 7 and is equal to 2z “
for some | € {1 -sBa} (see Figure 32). They are in the same fiber before the move if the angle
formed by u,a,v in D is less than 7 and is equal to 2% for some L € {1,..., 1o} (see Figure 32).
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FIGURE 32. Branch of the knot passes through the singular fiber.

Consider a double point v of 71‘] p(&) that appears after the move and corresponds to the angle
2;—:’. There is a unique k¥ € Ny(a), such that g”f’:‘ﬁ mod 27 = gﬁ—f’- Note that for the splitting of
[K] into [uF] and [u7] to be well defined, we don’t need the two preimages of v to be antipodal in
7r‘1(v). This allows one to compare these homology classes to f,. For the orientation of C shown
in Figure 32 one checks that connecting v to u along the orientation of the fiber we are adding
in fact k fibers f,. (Note that the factorization we used to define the exceptionally fibered torus
was ((r,6),1) = ((r,0+ 2—’E’-),O) ) Thus [p7] = f¥ (see Figure 33). From 4.1.B we know that
[1§1lu7] = (K]S Hence [uf] = [K]ft="". |

FIGURE 33. Projection of the knot branch passing through a singular fiber.

As. above to each doulsle. point v of 7r| p(K) before this move corresponds k € Nz(a). For this
double point [if] = f&=~* and [u5] = [K1f%. |

Making sums over the corresponding values of k, we get, tha.t the value of the juﬁp of Sg under
this move is RY. Heﬁce it is zero in H. o

For the other orientation of C' we get the value of the jump equal to R2.

Thus S is invariant under all the elementary isotopies, and this proves the theorem. O
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8.10. Proof of Theorem 6.2.C. In the case, when F is oriented the proof is as follows. Deform
L in the neighborhoods of all the crossing points of L (see Figure 34), so that the two points of

the Legendrian knot, corresponding to the crossing point of L are antipodal in the fiber. After we

a)A>( ; ;
b)
FIGURE 34. Making the preimages of the double point of L antipodal in ST*F.

factorize the fibration by the Za-action, the projection of the deformed ) is not a cooriented front

anymore, but a front equipped with a normal field of lines. (This corresponds to the factorlzatlon

S — RP'.) Using Figure 35 one calculates the inputs of different cusp and crossing points to

the total rotation number of the line field, under traversmg the boundary in the counter clockwise

FIGURE 35. Inputs of crossing and cusp points into a gleam.

direction.

This inputs are:

1 for every cusp point, pointing inside X

—1 for every cusp point, pointing outside X
! . (8.12)
- —1 for every crossing point of type, shown in Figure 11c

0  for the other types of crossing points

To get the inputs to gleams, we divide these numbers by 2 (as we do in the construction of

shadows, see 3.1).
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If the region does not have any cusp, or crossing points in its boundary, then the obstruction to
extend the section over 8X to'a section over X is equal to y(Int X).

If F is non-orientable, then to find the gleam of a region X, we first deform the front isotopicall;lr.
So, that all the all the cusp and crossing points of 8X are located very close to a boundary of a
disc D, used to define shadows (see 3.2.J). Under this isotopy gl(X) does not change. Now it is
clear, that the inputs of cusp and crossing points into gl(z) are the same as in the case, when F'
wasg oriented. As before, if X does not have cusp or crossing points on X then the obstruction to
extend a section over 8X to a section over X is equal to x(Int X).

This finishes the proof of Theorem 6.2.C. O

8.11. Proof of Theorem 6.3.1. A straightforward check shows that

ind LT —ind L7 =ind LT — ind L] — e(u) : (8.13)
indZf +ind L7 =ind L +1 (8.14)
ind L} +ind L; =ind L (8.15)

for any double point u of L.

Let us prove prove identity (6.14). We write down the formal sums used to define S(X) and I4())
and start to reduce them in a parallel way, as it is described below. . b

We say that a double point u of L is essential, if [\}] # [A\7]. If u is not essential, then we cancel
out [A}] and [A7]. Identity (8.13) implies, that for non-essential u [ind L —ind L7 — e(u)], = 0.

The index of a wave front coincides with the homology class of its lifting under the natural
identification of Hy(ST*F) with Z. This and.(8.14) implies, that if for two double points u and v
[X#] = [A7], then [A;] = [AF]. Hence, [Xf] — [A7]= —([X}] — [3;]) and all these four terms cancel

‘out. Identity (8.13) implies, that the terms [ind L} — ind L7 — ¢(u)], and [ind L} — ind L7 — e(v)],
also cancel out.

Because of the similar reasons, if for a double point u the term [X}]—[A7] is equal to [A]— f (so that
these two terms cancel out with the term in front of C*). Then [ind Lf —ind L —e(u)]; = [ind L—1],
and the input of this double point into I;(A} also cancels out with a term in front of C*

The same holds, if the input of a double point u into S()) cancels out with a term in front of C~.

Making the cancelations, described above, in both S(A) and (lq(A) — [h]gh) in a parallel way, we

reduce S()) as far as possible. After that we can not reduce further neither S(A) nor l()). In this
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reduced form the terms of the form nf™ with n > 0 correspond to the [3}] terms. Identities (8.13)
and (8.14) imply that the input of the corresponding vertices into Z,(}) is n[2m — h — 1],.

Of course a part of this nf™ could come form the cusp points, but the reader can easily check,
that in this case the input of these cusps into (lg(A) = [R]gh) is also given by é.

Thus, I(A) = ¢(S(X)) + [h];h and we proved the identity (6.14).

Let us prove identity (6.15). We reduce S () and (I5(A) ~[h],h) in a parallel way, as above. After
this reduction each term n[m], is an input of n double points. (Note, that the coefficient in front
of each [m]; was positive from the very beginning, because of the definition of lg(}), and it stays
positive under the cancelations described above.) Let u be one of these double points, Then from
identities (8.13) and (8.14) we get a system of two equations in variables ind f&j and ind Z;‘

indLf —ind L7 =m
) 3 (8.16)
indLf +ind L7 =ind L +1

Solving the system we get that that [A}] = f me and [7] = 7452,

This proves identity (6.15) and we proved the Theorem. [

8.12. Proof of Theorem 7.2.A. There are five elementary isotopies of a generic front L on the
orbifold F. Four of them are: the birth of the two cusps, passing through a non:dangerous self-
tangency point, passing through a triple point and passing of a bra,néh through a cusp point. For
all the possible oriented versions of these mo'ves a straightforward calculation shows thag S(A) €
$Z[H:1(N)] is preserved.

The fifth move is more complicated. It corresponds to a generic passing of a wave front lifted to
R? through the preimage of a cone point a. We can assume that this move is a symmetrization by
G, of the following move. The lifted front in the neighborhood of a is an arc C of a circle with a
big radius centered on the y axis, and during this move this arc slides along the y axis through a
(see Figure 36).

Clearly two points u and v of C' after this move appear to be in the same. fiber iff they are
symmetric with respect to the y axis, and the angle formed by v,a,u is less or equal to , and is
équal-to %Z—" for some k € {1,..., .} (see Figure 36). We denote the set of such numbers k by
Ni(a)={ke {1,...,;;,&,?;%7T € (0,7]}

They are in the same fiber before the move iff the angle formed by u,a,v is less than 7 and

is equal %’”:’1 for some k € {1,..., 0} (see Figure 36). We denote the set of such numbers k& by
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Ny(a) = {k € {1,...,pa}|fﬁ‘—:’- € (0,m)}

a)

FIiGURE 36. The Legendrian curve passes through the singular fiber.

Y

The projection of this move for the orientation of L’ depicted in Figure 36 is shown in Figure 37.

FIGURE 37. Projection of the Legendrian curve passing through the singular fiber.

Sﬁlit the wave front in Figure 37 at the double point v (appearing after the move), corresponding
to some k € Ny(a). Then X; is a front with two positive cusps that rotates k times around a in the
clockwise direction. Hence, [\;] = ff7* = fle—F. We know that [\}][X;] = [\f and that f&e = f.
Thus, [A}] = [N/Z.

In the same way we check, that, if we split the front at the double point v (existing Before the
move), corresponding to some k € Na(a), then [AF] = % and [A7] = [K]flF=I".

Now, making sums over all the corresponding numbers k € {1,..., 5}, we get that the jump of

S(2) under this move is
Ro= Y (NfE-s=%) = 3o (FE-Diseeh). (8.17)
keN1(a) kEN2(a)
A straightforward check shows that R} = RL. (Note that the sets Ni(a) and Na(a) are different
from Ny(a) and Na(a).)
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Thus the jump of S(}) is zero in J.

Taking the other orientation of €' in this move, we get, that the corresponding jump of S(A) is

equal to R2.

Hence, the value of S()\) does not change under all the elementary isotopies, and we proved the

theorem. [

1,
2.

11,

. AN. Shuma.kovi{:ch, Shadow formulas for the Vassiliev invariant of degree twd, Topology 36 1997, no. 2
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