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Let k, / denote positive integers with (k, /) = 1. Denote by p(k, 1) the least
prime p = I(mod k). Let P(k) be the maximum value of p(k, D) for all /. We show
lim inf P(k)/(p(k) log k) > ev = 1.78107... where y is Euler’s constant and ¢ is
Euler’s function. We also show P(k)/(¢(k) log k) — o for almost all .

1. INTRODUCTION

Let k, I denote positive integers with (k, [) = 1. Denote by p(k, I) the
least prime p = I(mod k). Let P(k) be the maximum value of p(k, I) for all L.
Linnik [12] has shown there is a constant ¢ with P(k) <€ k¢ and Graham [6]
has shown we may take ¢ < 20. Furthermore Chowla [1] has observed that
if the Generalized Riemann Hypothesis holds, then P(k) < k*+* for every
€ > 0. Chowla conjectured P(k) < k< for every € > 0. .

In this note we shall take up the subject of lower bounds for P(k). Since
P(k) is at least as big as the @(k)th prime (g is Euler’s function) and since
log k ~ log (k) as k — o, the Prime Number Theorem gives

o == lil;g inf P(k)/(p(k) log k) = 1.

We prove o > e¥ = 1.78107 -, where y is Euler’s constant,

It is known that P(k)/(e(k)log k) is unbounded. In fact, Prachar [13] and
Schinzel [16] have shown there is an absolute constant ¢ such that for each /
there are infinitely many k with

p'(k, 1) > ck log k - logsk - log,k/(logsk)?

where logk: = loglog k, etc., and p'(k, [) is the first prime ¢ >k with

g = I(mod k). Wagstaff [19] has recently achieved a similar result for prime .

By a slight modification of the argument Hensley and Richards [7] use

to prove their key lemma 2 it follows that P(K)/(g(k) log k) tends to infinity

when k is restricted to prime values. In this note we show P(k)/((k) log k)
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tends to infinity for almost all k. More precisely, we show there is a set of
integers Q with density 0 such that if & ¢ Q, then

P(k) = (e + o(1) (k) log k - logyk - logak/(loggk)?

The possible exceptional set Q is explicitly identified as those integers k with
more than exp(log,k/log, k) distinct prime factors.

It is reasonable to conjecture that P(k)/(@(k) log k) tends to infinity for all &.
We cannot show this—the hardest values of k to treat seem to be the product
of the first r primes for various r.

2. THE RESULTS

Let m be a positive integer. Jacobsthal [10] has defined g(m) as the least
integer such that every set of g(m) consecutive integers contains one number
relatively prime to m. It has been remarked by Erdos [5] and Hooley [8]
that from Brun’s method there is a constant ¢, such that

g(m) < (log m)™. (1)

We note that by a recent result of Iwaniec [9], we may take ¢, = 2.

THEOREM 1. Suppose k, m are integers, with 0 < m < k/(1 + g(k)) and
(m, k) = 1. Then P(k) > ( g(m) — 1)k.

Proof. There is an integer a such that each of
a+1, a+2,.., a+glm —1
has a prime factor in common with m. Then each of
b:=ka—jm+k, ka—jm-+2k,.. ka—jm+ (gm)— Dk

has a prime factor in common with m, for any choice of j. We wish to choose
Jjso that (b, k) =1 and m < b < k. To accomplish the first task we need
only choose j relatively prime to k. To accomplish the second task we must
choose j in a certain interval of length k/m — 1 > g(k). Thus we can always
accomplish both tasks. With j so chosen we have

ok, b) =2 ka — jm + gm)k = b + (g(m) — k.
Hence P(k) > (g(m) — k.

THEOREM 2. For all k we have
P(k) > (e* + o(1)) (k) log k.
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Proof. Let € > 0 be arbitrarily small, but fixed. Let m be the product of
the first [(1 — €) log k/log,k] primes which do not divide k. Hence (m, k) = 1.
Since m is about k1<, it follows from (1) that for &k > ky(e), m < k/(1 + g(k)).
Hence from Theorem 1, we have for k > ky(e), P(k) > (g(m) — 1)k. From
a result of Erdés [5], we have for & > k,(e),

glm) > (1 — e)(m/p(m))v(m),

where v(m) is the number of distinct prime factors of m. Hence for k > ky(e¢)
we have

P(k) > (g(m) — Dk
(1—em (I —2¢logk

(P(H'I) 10g2 k k
@lkm) Tog,(kem) @(k) log k

> (1 — 4e) e*p(k) log k,

where the last inequality follows from Mertens’ theorem.

THEOREM 3. Let Q be the set of integers k with more than exp(log.kflogzk)
distinct prime factors. Then for all k ¢ Q we have

P(k) = (e + o(1))p(k) log k - logsk - log,k/(logsk)®. )]

Proof. Let ¢ > 0 be small and fixed and let k£ ¢ Q. Let m be the product
of the primes below (1 — ¢) log k which do not divide k. From Theorem 1
we have for k > k,(¢) that P(k) > (g(m) — 1)k, so that our result will follow
if we prove for all k£ > k,(€) that

g(m) > (1 — 3¢) e(p(k)/k) log k - logok - log,k/(logsk)>. ()

To prove (3) we slightly alter the proof of a theorem of Schénhage [18] as
amended by Rankin [14]. We divide the primes in m into 3 classes:

0<p® <y <p® <z<p¥<x

where x = (1 — ¢)logk, y = exp((1 — €)log x - loggx/log,x), and z =
x/log,x. Let

u = (1 — 2¢) e"(p(k)/k) x log x * logzx[(logx)>.

To prove (3) we must show the primes p®, p», p® can *“‘sieve out” the
interval [1, u]. More precisely, we must demonstrate the existence of integers
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a, where p runs over the prime factors of m, such that each n € [1, u] satisfies
n = a, (mod p) for one of the p.

We begin by casting out all multiples of the primes p'® from [1, u]. Let R
be the residual set. The only members of R not dealt with in the analogous
residual set in the Rankin-Schénhage proof are among those ne[l, u]
divisible by a prime g € (y, z] which is not a p®. Such a prime g is necessarily
a factor of k, and by our choice of &, there are at most exp(log.k/log;k) such g.
Hence the number of such n e [1, «] is at most

(uy) - exp(logyk/logsk) = o(u/log x).

Hence, as with Rankin-Schénhage, the number of members of R is at most
(1 + o(1))u logyx/log x.

We next use the primes p'V’ in such a manner as to sieve out as much as
possible from R. This procedure multiplies the cardinality of R by a factor
of at most

(Da- 1/p))(% (- 1p) < G .

so that the residual set S has cardinality at most

14+01) Kk (+ o(1))ulog, x

evlogy k) log x
_ (o)1 —2¢  x
- 1 — e log x

¥

< (1 — e)x/log x.

Now the number of primes p® is (1 -+ o(1))x/log x (again using k ¢ Q),
so we may completely sieve out the set S using the primes in class p® for
just one member each of S. This completes the verification of (3) and thus
completes the proof of the theorem.

Remark. The fact that Q has density O can be seen at once from the fact
that the “normal” number of prime factors of an integer k is log,k. We can
say a bit more—by an easy argument it can be shown that for every ¢ > 0
and every n,

¥~ L Q(x) < x/(log x)",

where Q(x) is the number of members of Q up to x. One might wonder if by
somewhat sacrificing the strength of (2) one could significantly prove an
exceptional set Q' to be sparser. We have not been able to do this. More
explicitly, we cannot show there is a ¢ > 0 and a set of integers Q" with
Q’'(x) <€ x1—¢ and P(k)/(p(k) log k) — o for k ¢ Q.
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3. FURTHER COMMENTS

There is a conjecture of Kanold [11] (also independently made by Schinzel
and Sierpinski [17]) that for every d > 1, P(d) < d2 Kanold observes that
P(d) < d? follows from the hypothesis: if m is the product of the primes
p < d with p+d, then g(m) < d. It follows from our work that Kanold’s
hypothesis is false for all sufficiently large d. In fact if we let k = dl{1+ad/1ogd],
then k ¢ O and it follows from (3) that for d > dy(e),

g(m) > (1 — 3¢) e”(p(d)/d) - dlog d - logyd/(log.d)*
> (1 — 4e)d log d - log,d/(log,d)* > d.

Of course, the falsity of Kanold’s hypothesis for all large 4 does not rule out
the conjecture P(d) < d?, which we believe to be true.
If0<s<1,0<t,let f(s, t) denote the lower density of the set F(s, ¢)
of k for which at least sp(k) distinct p(k, 1) satisfy p(k, I) < to(k) log k. In
[3], Erdds shows that for every ¢ > O there is an s > 0 such that for all
sufficiently large k, k € F(s, t). A corollary then is: for every ¢ > 0,

5(1) = sup{s: f(s, 1) = 1} > 0.

Moreover, it follows from the Prime Number Theorem that s(¢) < ¢ for all .
From Erdds’ proof in [3] we have s(f) ~ ¢ as ¢t — 0. In the same paper
Erdos shows that there is a f, > 1 and an s, < 1 with infinitely many k ¢
F(sy , t,). A careful reading of the proof shows that this infinite set of & has
in fact positive lower density. It thus follows that there is a ¢, > 1 with
s(t,) < 1. Of course, from our Theorem 3 we have f(1, t) = O for all 2. We
conjecture that s(t) — 1 as # — co. An argument of Elliott and Halberstam [2]
almost gives this—from their proof f(s, t) — 1 as (s, t) — (1, ©).

A problem of B. M. Recaman [15] is to show there are only finitely many
primes p for which the first p primes form a complete residue system modulo
p. We generalize this problem as follows: show there are only finitely many
positive integers k such that the first (k) primes which do not divide k form a
reduced residue system modulo k. Our Theorem 2 solves this problem. Still
open is the effective determination of all the k’s with this special property.
We conjecture the largest such k is 30. An upper bound for such k is, in
principle, effectively computable, since all of the estimates used in Theorem 2
can be made effective.
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