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RUTH—AARON NUMBERS REVISITED

C. POMERANCE

in memory of my mentor and friend, Paul Erdds

Let S(n) denote the sum of the prime factors of n taken with multiplicity.
We say that n is a Ruth-Aaron number if S(n) = S(n + 1) in honor of the
famous American baseball players Babe Ruth and Hank Aaron. Ruth’s lifetime
homerun record was 714, which Aaron broke on April 8, 1974, by hitting number
715 towards his own eventual record of 755. Note that S(714) = §(715). Erdés
and I proved in 1978, in our first joint paper, that the number of Ruth-Aaron
numbers up to z is O(zloglogzlogloglogz/logz). We mentioned that we
could improve this to O(z/logz), but that we did not know how to prove
o(z/logz). So, we could prove the Ruth~Aaron numbers have density 0, but
we could not prove the sum of their reciprocals is bounded. In this note we are
able to improve on this old result by a factor of nearly log, which is enough
to show that the sum of the reciprocals is indeed bounded. Along the way, we
prove a lemma, of perhaps independent interest, concerning the average number
of divisors of a quadratic polynomial over a fairly short interval.

INTRODUCTION

Paul Erdés is famous not only for his theorems, but also for his discovery
and development of young mathematicians, with stories of his “epsilons”
being legend. I am fortunate beyond words that Erdés played a pivotal role
in my career, helping me to develop my talents in combinatorial number
theory, eventually leading to my involvement in the analysis of number-
theoretical algorithms. However, Paul did not discover me when I was an
epsilon. Rather, I had already done my doctorate at Harvard University un-
der John Tate, and was several years into an assistant professorship at the
University of Georgia. Unlike most Harvard-trained number theorists, I had
not become an expert in algebraic geometry; my true love was elementary
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number theory. Among the first papers I studied at Georgia was Erdés’s
1956 paper “On pseudoprimes and Carmichael numbers” in Publicationes
Mathematicae Debrecen. Here he found a good upper bound for the dis-
tribution of Carmichael numbers, and gave his famous heuristic argument
on why they should be relatively numerous. More than twenty years after I
read this paper, Red Alford, Andrew Granville and I would add some new
elements and make this heuristic argument into a proof. We dedicated the
paper, which appeared in Annals of Mathematics, to Erdés on his eightieth

birthday.

But I get ahead of the story. In the spring of 1974, I had still not met
Erdds, I was still trying to find my true character as a mathematician, and
I happened to be watching a baseball game on television. Many European
mathematicians are not so knowledgeable about baseball, so let me explain
that a “homerun” is a special event for a player. It is very difficult to do, and
the best homerun hitters are strong, and with very quick reflexes. One of
the greatest homerun hitters of all time was George Herman “Babe” Ruth,
who, when he retired in 1935, had hit a total of 714 homeruns. This feat
seemed impregnable, being about one-third higher than anyone else of his
or prior eras.

After the Second World War, American baseball became integrated with
African-American players and also players from Latin America. Among the
first American blacks to play for the major teams were Jackie Robinson
and Henry “Hank” Aaron. They are considered as American heroes since
not only were they excellent athletes, but, with great personal dignity, they
put up with constant degrading insults and even death threats. It became
especially bad for Aaron, when in the spring of 1974 it appeared that he
might actually surpass Babe Ruth’s supposedly unbeatable record. On April
8 of that year, he succeeded, hitting number 715. By his retirement several
years later, he had hit a total of 755 homeruns. Today, the address of the
baseball field in Atlanta is given with this in mind: it is 755 Hank Aaron

Boulevard.

At the actual moment when the 714 record was broken, being more of a
mathematician than a baseball fan I guess, I started looking at interesting
properties of the numbers 714 and 715. The first thing that I noticed was
that they factor very easily, and in fact, their product is the product of the
first 7 primes. (It is conjectured now that this is the last pair of consecutive
integers whose product is the product of the first k£ primes for some k.) The
next day, I challenged my colleague, David Penney, to find an interesting
property of 714 and 715. He discovered the same property, but he also
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challenged a class he was teaching that morning, and one of the students,
Jeremy Jordan, discovered that S(714) = S(715), where S(n) is the sum of
the prime factors of n taken with multiplicity. (Since 714 and 715 are both
squarefree, one might also have taken a sum of distinct prime divisors, but
it is a little simpler to consider the completely additive function S(n).)

Penney and I, together with another student, Carol Nelson, wrote a
short, humorous paper [10] on our observations. On the issue of S(n) =
S(n + 1), we had actually managed to give a proof that there are infinitely
many solutions if one is prepared to assume Schinzel’s Hypothesis H. Namely
if n is an integer such that

s=2n+1, p=8n+5 q=48n2+24n—1, r=48n>+30n -1

are all prime, then pg+1 = 4sr and S(pq) = S(4sr). Schinzel’s Hypothesis H
implies that a collection of polynomials such as these will indeed assume
simultaneously prime values infinitely often. -

Say an integer n with S(n) = S(n + 1) is a “Ruth-Aaron number.”
(We had originally called n an “Aaron number,” but in retrospect it seems
fairer to honor both baseball greats.) In our paper [10] we wrote: “The
numerical data suggest that Aaron numbers are rare. We suspect they have
density 0, but we cannot prove this.” These words started my life over as a
mathematician in the ErdGs school. Paul had read this article, which was
published within a few months of the actual baseball event, and wrote to me
that he knew how to prove density 0, and would like to visit me at Georgia
to discuss it. This then became the subject of our first joint paper [6], in
which we also discussed the joint distribution of the largest prime factors of
n and n + 1.

We could prove that the number of Ruth-Aaron numbers up to z is
O(z/log ), but only gave the details of a slightly weaker result. We wrote
“We expect the estimate O(z/(log z)F ) is true for every k, but we cannot
prove this for any kK > 1. In fact, we cannot even get o(z/logz).” So,
in particular, we were not able to prove that the sum of the reciprocals
of the Ruth-Aaron numbers is bounded. In this note, I am able to give
an improvement by nearly a factor logz, and thus show that the sum of
the reciprocals is indeed bounded. Along the way, I prove a lemma, of
perhaps independent interest, that is based on an old result of Erdés [5]
concerning the average number of divisors of consecutive polynomial values.
The result established here is for quadratic polynomials, where the length
of the interval for the consecutive arguments is permitted to be fairly short
in comparison to the size of the coefficients.



570 C. Pomerance

Theorem. The number of integers n < z with S(n) = S(n+1) is

0 z(loglog z)*
(logz)® )
In particular, the sum of the reciprocals of the Ruth-Aaron numbers is
bounded.

An amusing footnote to this story concerns the awarding of an honorary
degree by Emory University to Paul Erd6s in 1995. Paul invited me and
my wife to attend a reception the evening before for the honorees and their
guests. Completely unknown to me until just before entering the room, one
of the others to receive an honorary degree was Hank Aaron! I introduced
myself to him and tried to tell him how his athletic feat had such important
consequences to my career as a mathematician. He smiled diplomatically
and said he was happy for this, though I believe he thought he had just met
a very strange person. I introduced him to Erdés and the two chatted for
awhile. A photo of them exists in one of the recent biographies of Paul’s life.
Ron Gould, a professor at Emory who was one of the people instrumental in
arranging the honorary degree for Erdds, knew that Aaron was to be there,
but of course he had no idea of the connection to Erdés. He and his wife
had come supplied with some new baseballs for Aaron to sign as souvenirs.
They graciously let me have one of these, and I had both Aaron and Erdés
sign the same baseball. Though the writing is unfortunately fading with
~ time, it is a prized possession. I joke that Aaron should have Erd6s-number
1 since, though he does not have a joint paper with Erdds, he does have a

joint baseball.

PROOF OF THE THEOREM

Let P(n) denote the largest prime factor of n. Say n < z and S(n) =
S(n +1). Write n = pk, n+ 1 = gm where p = P(n), ¢ = P(n +1).
We first note that we may assume that

(1) p> wl/loglogx, q> xl/loglogz

since the number of integers n < =z for which (1) does not hold is
O(z/(log :1:)2) , see [3].
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The following easy result was established in [6]: for P(N) > 5,
(2) P(N) < S(N) < P(N)log N/log P(N).

In light of (1), we may assume P(n), P(n + 1) > 5, so that (2) holds for n
and n + 1.

We next note that the numbers k, m determine the primes p, q. Indeed,
from the two equations

pk+1=qgm, p+S(k)=q+ S(m)

we get that

(S(k) = S(m))m — 1 . (S(k) — S(m) k=1

(3) P= k—m ’ k—m

Thus, the number of choices for n corresponding to choices of k,m with
k,m < z'/2/log z is at most z/(log z)2. We hence may assume that

1/2

(4) p<z'?logz or q<z'/?logz.

Suppose p > z1/2log z. Then (2) and (4) imply that

log(n + 1) < z1/2 log x log(n + 1) 1/2

2 log z.
logg ~—  log(z!/2logz) <zt lopw

p<S(n)=8mn+1)<gq

A similar inequality holds if ¢ > z'/?log z. We conclude that

1/2

(5) p < 2z'/?logz and ¢ < 2z'/?logz.

Suppose that
6) S(k) < p/(logz)?, S(m) < g/(logz)".
Then, since p + S(k) = g + S(m), we have

p+g
(log z)?

For p satisfying (1), the number of primes g such that (7) holds is
O(ploglogz/(log z)®) and the sum of 1/q for such primes ¢ is
O( loglog z/(log :1:)3) Now, for a given choice of p,q the number of n < z

(7) | Ip—q| <



572 A C. Pomerance

withp [ n and ¢ | n+1 is at most 1+ z/(pq). Thus, if (6) holds, the number
of n that we are counting is at most

: logl
Z (1 + i) < Z (p og og3a: N xloglogx)
(log z)

3
p,g subject to (1),(5),(7) p<2z1/?logz p(log z)

z loglog

< .
(log z)*

We thus may assume that (6) does not hold. The arguments for the cases
S(k) > p/(log z)? and S(m) > g/(log z)? are parallel, so we shall only give
the details for the first case. That is, we shall assume that

(8) x S(k) > p/(log z)?.

Write k = rl where r = P(k). As in the proof of (5), the inequality (2)

gives us _
logz < log(z + 1)

< p—"__
_plogp’ log q

The second inequality and (1) imply that logg > Zlogp, so that ¢ >
| %p log p/ log z. That is, we have

logp log z
‘ <¢g< .
9) p210g:L' - q"plogp
Similarly, (8) gives us
logp
10 — < r<op.
(10) p2(log:1:)3 =r=P

For a given choice of p, 7, g the number of n <  with pr|inandgq|n+1
is at most 1 + z/(prq). Suppose p < £!/3. Then the number of n in this
case is at most '

% e (5

p,q,r subject to (1),(9),(10)

psx1/3
z t loglogz loglogz  z(loglogx)*
< 3 2 5 lo " lo < 2
(log z) p>zl/ o log z p gp gD (log z)
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Thus, we may assume that p > z'/3. It follows from (9) that p/6 < ¢ < 3p,
and it follows from (10) that p/(6(log z)?) < r < p.

Using (3), we have that
p(rl —m) =p(k —m) = (S{) +r - S(m))m - 1.

Hence
pl(rl —=m) —rml = (S(l) — S(m))mi -1

and we conclude that
(11) (pl — m)(rl —m) = (S(1) — S(m)) ml — I + m>.
Thus, given [, m the number of choices of r, and hence for n, is at most

7((S(t) = S(m))ml — 1 +m?) < 7o),

where T denotes the divisor function. Suppose that p > z2/5. Since

| < z/(pr) < z(logz)?/p? and m < z/p, we conclude that the number
of choices for n is at most z4/5+°(1), Hence we may assume that

(12) '3 < p < 2?5,

Suppose that
(13) P(l) < z'/%, P(m) < =/,

Then p + r = g + O(x1/6). Given p,r it follows that the number of choices
- for ¢ is O(z'/®). But the number of choices for p, r with r < p and (12)
holding is O(z*/®). Thus the number of triples p,q,r is O(z?%/30). But
prq > z/(log z)?, so the number of choices for n given p,r,q is O((log z)?).
It follows that but for O(z2%/3°(log z)?) choices for n < z we have that (13)
does not hold. '

We first consider the case that P(I) > z1/6, Write | = sj where
s = P(l). We rewrite (11) as

(14)  (psj — m)(rsj —m) = mjs® + ((S(j) — S(m))mj — j) s +m2.

We shall fix a choice for j,m and sum over choices for s. The following
lemma is useful.
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Lemma. Suppose A, B, C are integers with gcd (A,B,C) = 1, D :=
B2 — 4AC # 0, A # 0. Suppose the maximum value of |At? + Bt + C| on
the interval [1,x] is Mp. Let M = max { My, |D|,z}, let p = [log M/ log x|
and assume that p < —lilog log x. Then

Z 7(|An? + Bn + C|) < z(log :1:)23'”-1+4

n<zr

holds uniformly for x > zy. (We interpret 7(0) as 0 should it occur in the
sum. The number zy is an absolute constant independent of the choice of
A, B,C.)

Proof. For a positive integer m, let N(m) denote the number of solutions
to the congruence An?+Bn+C =0 (mod m). By the Chinese remainder
theorem, N(m) is a multiplicative function. If p is a prime that does
not divide the discriminant D, then N(p®) < 2 for all positive integers
a. Suppose p | D is an odd prime. Note that we may assume that p does
not divide A. For if p | A, then it would also divide B, since it divides
B? — 4AC, and so it does not divide C, since A, B,C are coprime. So if
p| A and p | D, we have N(p®) = 0 for all integers a. So assume the odd
prime p divides D and not A. Making the change of variables that sends
2Az + B to =, we see that N(p®) for our polynomial is the same as for
the polynomial z2 — D. Say D = ép’, where p does not divide §. Then
 N(p®) = plo/2! for a < j. If j is odd, then N(p®) = 0 for a > j. If j is even,
N(p®) = 2pi/? for a > j or N(p®) = 0 depending on whether (6/p) = 1 or
—1, respectively. Now assume 2 | D. Thus, B is even. If A is even, then C
is odd and N(2%) = 0 for all positive integers a. So, we may assume that
A is odd. Replacing Az + B/2 with z, we may assume our polynomial is
22 —D/4. Say D/4 = 215, where 6 is odd. Then N(2¢) = 2l¢/2] fora < j. If
4 is odd, then N(2%) =0 for a > j. Assume now that that j is even. Then
N(2+1) =22, If§#1 (mod 4), then N(2*) =0fora>j+1. Iféd=1
* (mod 4), then N(2712) = 2!*3/2. If§ £ 1 (mod 8), then N(2%) = 0 for
a>j+2 andif§ =1 (mod 8), then N(2%) =2243/2 for a > j + 2. We
conclude that if we factor m as mgmimso where the prime factors of my
divide D and mg to at least the second power, the prime factors of m; are
different from the prime factors of my and they divide D, and the prime
factors of m; do not divide D, then N(m) <« 7(mg)/mq.

Let mo(n) denote the largest divisor of An? + Bn + C consisting of
~ primes p < z'/3 for which p? divides An? + Bn+C and D. If mo(n) > z'/3,
then An2 + Bn + C is divisible by an integer m such that the prime factors
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of m all divide D, and z!/3 < m < z2/3. The number of n < z with
An? + Bn + C divisible by such a number m is

<<Zerim) <<x2% <a53 1,
m m m

Now the number of integers m < x2/3 whose prime factors all divide D is
< z°), see g3] Also, the maximal contribution for a term in our divisor sum
is < 2(1+o(1))log M/loglog M yhich js < £!/7+°(1), Thus, the contribution to
the divisor sum from integers n with mqo(n) > £1/3 is < #1/42+e(1)  which is
negligible. Hence we may consider only those numbers n with mo(n) < /3.

Let m;(n) denote the largest divisor of An? + Bn + C consisting of
primes < z'/3 which do not divide mq(n), and let my(n) denote the largest
- divisor of An? + Bn + C consisting of primes > x1/3. Then

7(|An? + Bn + C|) = 7(mo(n)) 7(m1(n)) 7(m2(n))
< 2%7(mg(n)) T(m1(n)).
Indeed, the number of prime factors of ma(n), counted with multiplicity, is

at most 3. Also, there is a divisor m(n) of m;(n) which is < 2%/3 and such
that

T(ml(n)) < 7(m(n)) W,

Indeed, since the prime factors of m;(n) are all < z1/3, there is a factor-
ization of m1(n) as ayay...a; where each a; € (z'/3,22/3), so that ¢ < 3p.
But

, T(ml(n)) < T(al)'r(ag) - T(at) < (max {T(a,-)} )t.
We conclude that

‘T( | An? .+ Bn + C'I) < 23”T(mo(n)) T(m(n)) .

Using our reduction to the case mg(n) < z'/3, we have mg(n)m(n) < . Let
mg run over squarefull integers composed of primes p with p? | D, and let
m run over integers composed of primes p such that p? does not divide D.
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Then,

Z 7(|An® + Bn + C|)

n<z, mo(n)<z!/3

< Y rmrm® Y

mo<zl/3, m<z2/3 - n<z, mgm|An24-Bn+C
3u
<« 2y S 7(mg) N (mg) 7(m)™ N(m)
my m

mosxl/a, me2/3

< 23;1.:1’, Z T(mo) Z T(m)

mo<zl/3 Y m<x2/3

3p+1

> T(mo) _ (1+§+;§%+...)<<(logIDI)3=0((l°g"’)4)'

Using the inequalities

i) <m0 2 < Zllogz k) (forz > 1),
n<lz )

where 7;(n) denotes the number of ordered factorizations of n into k positive
integral factors, we have

T(m)3u+1 1 2 3pu+1
Z — < G 3logx+2

msx2/3

23;4-}-1

Now 23#t1 < \/logz for = > z¢, so that

2
3 log z + 23#*! < logz,

for £ > z¢. Assembling these estimates, we have for > z¢ that

Z (|An® + Bn + C|) < z(log P

n<lz

which proves the lemma.
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We now apply the lemma with A = mj, B = (S(j) — S(m))mj — j,
C = m2. Since j comprises the small prime factors of n and m comprises
the small prime factors of n + 1, we have that ged (j,m) = 1 and so
ged (4, B,C) = 1. Note that 4AC = 4m3j, that j2 | B and that B2 = ;2
(mod m). Thus, if D =0, then j | 4 and m = 1. Then j = 2 or j = 4. This
gives the triples 2,2,1 or 4,6,1 for A, B,C, and neither choice has D = 0.
Thus D # 0. Further, assuming that j < 6z'/6(logz)?, m « z%3, and
s < 62'/3(log £)%/4, we have that the maximum of |As? + Bs + C| for the
range of s is < z*/3(log z)?. It follows from the lemma that

(15) > 7(]As® + Bs + C|) < (1/4)z'/?(log z)°
s<6z}/3(logx)?/j

for some positive constant c¢. (We have ignored the condition that s is
prime.)
If £1/3 < p < z'/3(log z)°*®, the number of n in this case is at most

T 2c+10 T 1 «zloglogzx
1+——) & 23 (log z + — - L .
pzx;,( pq (log z) longp (log 7)?

Thus, we may assume that p > z'/3(log £)°*5. Then m < z%/3/(log z)°*?,
so that summing (15) over all choices for m,j we get a quantity that is
<« z/(log z)?, which is negligible.

Finally, we consider the remaining case in (13) when P(m) > z'/6. Let
m = tu where t = P(m). Then, from (11), we obtain

(16) (pl — tu)(rl — tu) = (v — wl) + ¢t(ulS(l) — ulS(u)) 1.

We apply the Lemma to the quadratic polynomial with A = 2 — ul, B =
ul(S(l)—S(u)), C = —I. As before, we may assume that p > z'/3(log z)°*°
so that | < 6z'/3/(logz)**%. We have u < z!/2, and t <« (1/u)z?/3.
Summing the number of divisors of the right side of (16) for t,u,l ranging
as stated, we get an estimate that is <« z/(logz)?***?, which is negligible.
This completes the proof.

Remarks. Note that it is not assumed that the polynomial in the Lemma
is irreducible. With the coefficients fixed, it is known that the average order
of the divisor function on a quadratic polynomial is log z for the irreducible
case, and (logz)? for the reducible case, see [2], [5], [9]. It is reasonable to
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conjecture that the power of logz in the Lemma can be greatly reduced,
and perhaps the methods of [5] will help in this regard. Very little seems
to be already known for the case we have dealt with here, which calls for a
uniform result as the coefficients vary. There is at least the paper [7] which
is a step in this direction, but it is not valid in a wide enough range for our
use. Note that the assumption in the Lemma that AD # 0 is really not
necessary; these cases are in fact simpler. In addition, it would not be hard
to fashion a version of the Lemma which holds for polynomials of higher
degree.

The Lemma is also likely to be of use in other studies, such as the
distribution of Carmichael numbers with exactly 3 prime factors. In [1}, the
authors obtain the number up to = being < z%14+°(1), where the “o(1)”
comes from the maximal order of the divisor function. Using the Lemma
above it should be possible to replace £°(1) with a factor (log a:)o(l), and do
so with explicit constants.

One might notice that the equation (11) suggests that we look at the
restricted divisors of the right side that are in the residue class m mod [.
However, in the range of interest, with the right side of (11) just larger than
14, the existing work [8], [4], on divisors in residue classes, just fails to be of
use. It is for this reason that we considered the Lemma.

It is possible to reduce somewhat the power of log log z in the Theorem.
As stated in [6l, probably the number of Ruth-Aaron numbers up to T is
is « z/(logz)" for any fixed k and > z1-¢ for any fixed ¢ > 0. It is
still unproved if there are infinitely many Ruth-Aaron numbers, but an
argument in [10], mentioned above in the Introduction, shows that this
would follow on assumption of Schinzel’s Hypothesis H.

Finally note that the same result holds by virtually the same proof if the
function S is replaced by the sum of the distinct prime factors or is replaced
by the sum of the prime powers p?||n. These functions are not completely
additive, but the extra considerations necessary to deal with this are small.
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