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1. Introduction. Let A(n) be the universal exponent for the group of
residues modn that are coprime to n. A more explicit definition of A is:

%)= $09) = P~ (p—1) if p is-an odd prime,
AQ2°) = ¢(2°) if e=0,1, or 2
229 = 1629 ~ if e>3

and finally,
Am) =lem.(A(P$), ..., A(py)  if n=p...p% (ps distinct primes).

This is Carmichael’s function [3]. Not only is it an intrinsically interesting
number theoretic function, A(n) has a connection with some primality testing
algorithms [1, 117], In this paper we investigate the average order, normal
order, and minimal order of A

Estimates for the minimal order are already 1mp1101t in the analysis of the
primality testing algorithms in 1]. But they are not immediately obvious, so it
is worthwhile to make them explicit here:

THEOREM 1. For any increasing sequence {n,,; of positive integers, and any
positive constant ¢, < 1/log2, one has

A(T’ll) > (log ni)C[)]Og]oglogni.

for i sufficiently large. On the other hand, there exists a sequence ny <n, <...,
and a constant ¢, with A(n) < (logn,)**1°818le™ for gl .

“The normal order of log(A(m)/n) - was -stated without proof by the first
author in [5]. Here we prove more:

THEOREM 2 There is a set S of posztwe integers of asymptotic density 1 such

that, for nes,
A(n) — n/(log n)log loglogn + A+ O((logloglogn) — 1 +#)

* Research supported by the National Science Foundation.

5 — Acta Arithmetica LVIIL 4




364 P. Erdés, C. Pomerance and E. Schmutz

where (with q running over primes)

.« logg
A= —1+Y —=%5 = .2269688...,
>;‘(q—l)2

and &> 0 is fixed but arbitrarily small.

Another result that was stated without proof in [5] is the following estimate
for the average order; for all >0, k>0 and for x > x,(e, k),

X bl gme %
logx(loglogx) = xnéxﬂ’(n) = (log x)l**s'

We prove a sharper result here:

THEOREM 3. For all x = 16, we have

x exp[ Bloglogx 1 —|-o(1))]

AL

nsXx

log x logloglogx

where (with q running over primes)

_ 1\
B=e 71;[(1—m>»—34537

Before proving these theorems, let us fix some global notations that will be
used consistently throughout the paper. First, ¢, ¢, and ¢ will be generic |
positive constants, not necessarily the same at different places. Second, p and
q will denote primes. (Usually p will be a prime factor of n, and g a prime factor
of A(n).) Third, let v,(m) denote the integer v > 0 for which ¢°|m and ¢°** ¥Ym.
Fourth, we let y = loglogx. Finally, if S is a set, let w(n, S) denote the number
of distinct prime divisors of n that are in S; if S contains all the primes, let
w(n):=wh, S). . '

We are grateful to Andrew Granville for calling our attention to a small
error in the proof of Theorem 1'in an earlier draft of this paper.

. 2. Minimal order. In [1], using ideas from [14], it is shown that there is
a computable constant ¢, > 0 with the property that, for any x > 10, there is |
a square-free number m, < x* for which ‘ j

« ) ‘ - . Z 1> ec:logx/)oglogx.
P_]-‘mx

Let x;:= (logi)?/c»oslotlot! gand let n; = [ ], 1m., p. Note that, for i sufficiently |
large, we have '

n> [l 2> exp[(logZ)exp[Ezﬂg—xiﬂ > i

p—1imx, loglogxi
But then, for i sufficiently large,

Alny) < my, < x? = (logi)*eoelosle? < (log n)) logloglogn:
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By taking a subsequence {n; ;24> We can obtaln a sequence that is 1ncreasmg and
satisfies the inequality for all e

For optimality, first note that it is obv1ous that A(n)_»oo as n— o0,
Suppose that A(n) = k, so that

k =lem.{A(p%): p*| n}.

Then, since we always have p* < 44(p%), and since A is at most 3-to-1 when
~ restricted to primes and prime powers,

) n< [T p* <T@k < @,

Mp*)lk dlx

where d(m) denotes the number of divisors that m has, It is known [8, 17] that
d(m) < 20 FeUNogmfloglogm - Pyiting this in (1) gives

n< CXp [(310g4k)2(1+o(1))logk/]0glogk]’
so that
/1(71) =k > (logn)(l,llogz+o(1))logloglogn'

as n—o0. This concludes the proof of the theorem. m
It has been conjectured in [1] (see Remark 6.2) that 1/log2 is the “right
constant”. o

3. Normal order. First observe that

log(n/A(n) = logh(n)—LogA(n)+ log(n/b(n).

It is well known [9, p. 353] that n/loglogn « ¢(n) < n. Hence, to prove the
theorem, it is sufficient to show that, but for o(x) choices of n < x, we have

© log ¢(n)—log Ar) = ylog y+Ay+0<(logJ;; )1_8>.
(Recall that y = y(x) = loglogx.) For all n we have |
3 log ¢(n) = Zq:vq(d)(n))log g, login) = §04(1(11))10g q.
To prové (2), we break the sums in (3) into. several ranges for t’hé prime g:
I: g <y/logy, It yflogy < q < ylogy,
I: ylogy<q<y* I q>)

- (These intervals are also listed in order of declining 1mportance for (2).)
We first compute the contribution to log qS(n) from primes in I, and I,.
Let h(n):= ) g<yioy Uy(#(n))log g, so that h(n) is an additive functlon The
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strategy is to apply the Turan-Kubilius inequality [4] to h(n). First we must

estlmate
h(p )( 1)
-2,
.\ pr;;x " r)
We use the inequality h(p¥) <log¢(p") < log(p¥), getting
- h("* 1 h —1
Y —(p,z—)<1—-)= 2_(1)}_}_0(1): Y, logg ), (v ,)+0(1)
pi<x P P PSX : q\ylogy pEX
= Yy logg), . ~"+0(1)
g<ylogy iz1 pr
p=1(gh
log(q")))
1 0 N
> ong(¢(,) ( 7

, ) gsylogy
~ by the estimates in [12]. This in turn is equal to
zlog log

y) y X (q_1f2+0(log ¥)

loggq 1
5o %
g<ylogy i=1 q q\ylogy

2g—1)1
(29— )ogq+0(1ogy)

y
q\:L:‘oqu 159
logqg | «(2g—=1)logg
P = '—_'+y -
yqsgogy_ q ; q(q_l)Z q>§1:ugy Q(q 1)2
If we let ‘ ‘ g1
q—1)logq
= lim logx> and >
| xm(q;x , ; a(q—1)*
then this is equal to (by the prime number theorem with error term)
ylog(ylogy)+csy+0 (e V") +c,y+0(log®y)
= ylogy+yloglogy+(cs+cq)y+0(ye™ V"),

@
In order to apply the TurAn-Kubilius inequality, we must also estimate

)2 2
y, ML 5 2l 0q),

" pSx

the quantity

presx 14
We have '
h(p)? 1
2 s Ly bo-iogd)
p<x P p<xp q<ylogy
vql(p l)vq?(p I)IOg‘thgQZ
1/p:=H,+H,

p\qul,qz\ylogy
o0

= Yy loggylogg, ), X

91,92 Sylogy i,j=1 p<x,p=1(g})
. p=1(ai)

say, where in H,; we have g, =¢,, and in H, we have g, # ¢,
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For H, we have

Hy<2 ) log’q > 1
a<ylogy izjz1 p<x P
. pE1(g") '
y log(q‘)>)
=2 log? . +0< -
q\%‘:)gy ql?j?l ¢(q) q

1 ’1
« 3 SCEL v § I

gSylogyi=1 gsylogyi= q

log? log? |
«y y 24 v i'q«ylogzy-

: g<ylogy q - g<ylogy
Also '
o e 1
Hy=2 3} logglogg, ¥ Y =
a1 <g2<ylogy hi=1 p<x P
: p=1(giaf)
[ <] i i
: y log(q14%)
=2 logq, logg, ( +0( —
: qx<qzz$,vlogy ' 2 ) 9195

logg > ilogg)?
(q\yzlogyiz‘,l ¢(q) ((qsgogy i;:l qi >>

' 2 2
« y( Y 12&1—) +< )y l_c:j_q) < ylog?y.
_ a a .

<ylogy q Sylogy

Now we can apply the Turdn—Kubilius inequality, and conclude that

n<x pE<x

» (h(n)— » ”(")(1—})))2« xylog?y,

where

is glven by (4). Therefore, the number of n < x, for which

) |h(n)— ylogy —yloglog y— (cs+c4)yl<y/logy

'fa11s is o(x). We may therefore assume that (5) holds.
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We must estimate the contribution to log A(n) from primes ¢ in I, and I 5.
First we show that for all but o(x) choices of n < x we have
(©6) ' Y. logg® <log?y.

%> y?[log?y
o> 1,q°‘||A(n)

The average value of this quantity is found by summing:

12 > logqa‘S—)l; x (logq"‘)( 1T L E) ,

X p<x q% > y2/log2y i a>1 p<x P
a>1,%]| Alm) a%> y?{log?y p=1(g%

lo
< Y (logq“)(¢( 0 0< gq)><<logy,
qu>y2/l°g2y

so the number of n < x for which (6) fails is O(x/logy) = o(x).
Then by (6), the contribution to log A(n) from the primes in I, is

(7) Y, v(A)logg« Y logy-+log?y « yflogy.

qgsyflogy asyflogy

We now turn to the most subtle part of the argument, namely the |
estimation of the contribution to log A(n) from primes in I,. Let P(q) denote the .
set of primes p < x with p = 1(g). Also define

Pi(@):={peP(g): p<x'” and for all g'el,, p & 1(qq)},
P,(q):={peP(g): p= l(qq’) for some gq'el,},
Py(q):={peP(g): x'” <p<x and p ¢ 1(gq) for all g'el,}.

Then P(g) is the union of these disjoint sets: P(g) = (q)uPz(q)uPs(q) ;
For n < x, we see from (6) that ) .,v v,(A(m)logg, the contribution to |
log A(n) from all gel,, is given by : :

(8) 2 logg+0(y Y logg)+0(Y ¥ 10_gq)+0(log2y).
w(n, Igf(‘r;)) >0 o<l peg’lz"(q) 2l PEIIJ’]: (@)

We show that normally the contributions from p €P,(q) and from pe P,(qg) are
negligible by averaging, The average contribution from peP,(qg) is '
1

—ZZ Y. logg< Yloggy ¥ =

X n<xgela pln.pePz(q) qel2 g'el2 p<x,p=1(q) P

_ log(gqq")
qulogqqgh (f/’(fM) ( aq' ))
<<ylogy<z 1) +log? y(Z ) < M.

gqely gely q IOg y
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Thus the number of n < x for which

) Y Y logg < y(loglogy)*/logy
gelz  pln :
. pePa(q)

fails is O(x/loglogy) = o(x). We may therefore assume that (9) holds.

We now consider the contribution to logA(n) from gel, and pe P,(q).
Since the normal number of prime factors of n < x that are larger than x'% is
logy, we may assume that the numbers n that we are looking at have fewer
than 2logy prime factors larger than x'”. For these n,

(10) ' Y > logg<«log®y.
aels  pln
peP3(q)

Finally, we consider the contribution to log A(n) from gel, and pe P, (g).
We are concerned with the expected number of g &I, for which n is divisible by
a prime p e P,(g). Towards this end, we estimate the number that do not have
this property. Let ‘

gy=" > 1.
: : gel2
o(mP1(g))=0
We would like to apply the Turan—Kubilius inequality to g(n). But it is not an ‘
additive function, nor does it resemble an additive function. Nevertheless, we -

can still establish a normal order for the function g(n). To do this, we shall
establish asymptotic formulas for the average value of g(n) and g(n)>. We have

| . Yam=y ¥ 1=2{x 11 (1_1%>+0(io;—2x)}

nsx gely nsx gely pePi(q)
o(n,P1(q))=0

by the fundamental lemma of Brun’s sieve [7, Theorem 2.5]. To estimate the
product in (11) we need to estimate

5 1 > 1 » 1
pePl(q)p prl/l’p pri/yp
p=1(a) pePa(q)

el 1 )

q—l q'ela p<x D
r=1(gq')

= 2+0<bﬂ>+0< Z 'y_/) = X.{.O(&g_l()_g_X)'
q q. ge1,99) 4 glogy

Therefore, from (11) we have

(12) Z g(n) =x) exp{—j_i_o(zl_o_g_bﬂ)}_i_o(L)

e AR qlogy log x
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For y/logy < q < y/(2loglogy) and all large x we have
, y yloglog y)} 1
13 e +0 <
3 XP{ q ( qlogy log?y
so that the contribution to (12) from the values of ¢ < y/(loglog y) 1
O(xy/log? ).

For g > y/(2loglog y),

| yloglogy\] _ yloglogy "
eXp{()( qlogy- )}_1+0( qlogy /' |

Together with (12) and (13), this implies that

~y yloglogy)) < Xy )
=x ¥ exp{—2 4 140( 22V}, o _
‘ ng‘xg(n) xq§2 P { q } ( ( qlogy log?y

Thus, using 0 < exp{~ y/a} <1, we have

a4y PXCEEN exp{ q} o("‘y Cogioey )

We shall save the estimation of the last sum until later.
First we estimate

2 g’ =3 2 1

n<x n<x q1,q2¢l3
o(n,P1(g:))=0,i=1,2

=Y gm+2 Y ZI 1.

n<x - q1.926I3
q1#4z w(n,Pl(Qi)) Ol 1,2

By the fundamental lemma of Brun’s sieve, this is

1 b
=Xam+2 Y x ] (1—*) 0( )
n<x q;,q’z;fz PeP1{q1)UP1(g2) Ing

Since' Py(q,) and P,(q,) are disjoint for 4; # q,, this is equal to

1\\? . |
) ”gxg(n)_i_x(q;z pell:ll(q) (1_E>) —xqu pell’—l[(q) (1~Z_7) +0<I gx) H‘
_(1/’“)(2 g(n) +0(xy)

nsx

using (11) and the observation that g(n)« y for all n.
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It remains to estimate the sum in (14). We have

rd
(16) >, exp{ p }

ael

= g~ 1/logy lo lo e Yt ( { ( J )) i.t.
(75(.]/ gJ’) 75()’/ gy)) yﬂ{gy tz 7[( ) n 1o 0
But note that

loglo loglog y)*
e ¥ (n(ylog y)— n(y/logy)) L lfgygy +0<y ( lfgziy ) ),

In addition,

ylogy y
[ etz <7z H— n( )) dt
yiogy 1 log y
Io ;
= y ng -y __t_+0 _t-_ dt—n A (e"lllogy_e.—logy)
¥llogy t*\logt log?t logy

yiogy .
= [ et ( ! +0<Iogk;gy))dt+0(—y2>
Yilogy t\logy log?y log®y

i e du+0<————y (1°g1°gy)2)

1/logy ulogy logzy

log 5 (e" 1oey]oglog y + e ~losy loglog ¥)

P g YloBu 0<y(loglogy)2>
1/logy 21 g Ingy

loglogy © 1 | 2
_Yloglogy 'y RPN y(loglggy)
logy  logyy, u log?y

We therefore have

-y 2yloglogy c¢sy  (y(loglogy)
(17) ex {——}= - +22 1 0(4
qu PUa S =77 gy logy "\ log*y

where

‘F _1/ulogu
0

Cs = du= — (e "logvdv =y, Euler’s constant.
0
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From (15) we get |
2 (g(n)—;lc- ) g(m)> = 0(xy),
nsx msx

so that from (14) énd (17), the number of n < x for which

- ' 2yloglogy  ¢sy\| _ y(loglogy)®
(18) g(n)- (y logy  Togp)| = Tog? y
fails is ’
xlog* y ) , '
O\ ———= ) =o(x). ' :
(y(loglogy)“ &)
Thus we may assume that (18) holds.
Note that

_ __yloglogy y y(loglog y)*Y
n(ylogy) @(y/logy)_—y logy logy 0<, log?y -

Note also that, for gel,, we have
log g = log y+O(loglog y). :
Hence, by (8), (9), (10), and (18), we have for all but o(x) choices of n <x

' 3
(19) 2 v,(Am)logg= ¥ logq+o<¥@£&)
qelz P IOgy
o(n,P1(2)>0

= (Iog y+O(loglog y)) Yo 1+0 YYOBIOBY)” (loglogy)
geln logy . -
) o(n,Pi1(q))>0 f

= (log y+ O(loglog y))(n(ylog y) ~n(y/log y)— ¥ 1)'

gely i
omPig)=0 |

3
N O(y(loglogy)> N
logy
yloglog y !
= (1 (0] vl hel L4 ;
(ogy{r (loglogy))( oz

EPENE y(oglog y)®
+(1 cS)logy+0< fog?y

_ ' _ y (loglog y)*
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' We now turn our attention to the range I3, Since we may assume that
"g*}n for gel,, we have by (©6)
20) ~Iog*y+ 3, 0, (br) ~,iYloza < 3 (o) 1)iog g
qels .

gels
ve(Am) =1

< Y on, Pg)logq™ Gn).

qels
on.P(g)>1

We now compute the average value of G(n). We have

6m=Yloggyi ¥ 1

nSx gels iz2 nsx .

w(HQP(Q))=i :
, x X AL
< XYloggyi ¥ <SYlogg ¥ ot ¥ -
gel3 i22 p1<..<piePq) P1++Pi 41, =2 (i—1)! peP(@) D

i 2
< Y logg -L(J—+0(b%>> «7 X logg  xy

; <
gel3 iza(—1)!\g—1 gel3 q logy
Therefore the number of » < x for which
21y Gnm) <y loglog y/log y

fails is O(x/loglog y) = o(x). We thus may assume that (21) holds.
Finally, we turn our attention to the range I,. It is easy to see that, for all ;
but o(x) values of n < X, we have

(22) . o Zz(vq(cb(n)%vq(ﬂ(n)))logq =0.
q>y .
Indeed, the number of n < x divisible by some g2 or by two primes in P(g),
with ¢ > y? is o '
x y log q))z
< —+Xx ——4+ 0| —2= <
q>zy2q2 q>Zy2 <Q“‘1 ( q log y

We now assemble all of our results. From (5), (7), (19), (20), (21), and (22),
we have ’

log p(n)—log A(m)

= o(x).

' loglog y)?
= ylogy+yloglogy+(c3 +c4)y—yloglqu+(c5—1)y+0(y_(%ﬂ>

. loglog y)3
=ylogy+(cs+c4+.cs~—1)y+0<z(1igﬁ%)

for all but o(x) choices .of n<x. 4 '
Finally, we evaluate the constant 4 %f C3+C4+c5—1. From [16] we have

logp logp
Cq = —-‘y— : = Y- —=
? §n§z P -1
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Hence
log p @p—1logp
A=—1— .
Z Z p(p—1)?
logp logp
= +Z( 1)2=_1+ZIZ k1

Then, with the help of the numerical approx1mauons in [16] it is stra1ghtforg
ward to compute that 4 = 2269688,

It is worth mentioning that, as an 11n1ned1ate consequence of (22), we have
the following:

COROLLARY. The largest prime factor of qﬁ(n)/ﬂ(n) is less than (loglog n)* for
all n in a set of asymptotic denszty 1,

4. Average order. In this section, we estimate the average order

© F(x)i=~— Z A(n).
nsx . ,

It turns out that most of the contribution to F(x) comes from integers which
are atypical in the sense that they have only @ (y/logy) prime divisors. Even if
we restrict our attention to integers with @(y/logy) prime factors, most of the -
contribution is from a small exceptional set on which A is large. L

Before embarking on the proof, let us first fix some notation. Let 7'(x) -
denote the number of prlmes and powers of primes up to x. Let S;, S,, ..., Sp
be disjoint sets whose union is the set of odd prlmes less than or equal to X,
Define

Ep= Y 1/p%

pP*<x
peS;

" For us, j is a vector (jy, j,, ..., jp) with each j, a non-negative integer, and
lill:=Jji+j,+ ... +jp. Finally let C(x, J) be the set of integers < x with
exactly j; dlstmct prime divisors in S;. The followmg proposmon 1s of
mdependent interest:

 PROPOSITION. There is an absolute constant ¢ > 0 such that, for any z with
1<z<x, and all vectors j # 0 as defined above, we have

D Eli D Ji
#Clx, J) < P(x, Z)+~—logz<l—[] )(Z E)
i=1Ji* i=1"i

where ¥ (x, z) is the number of integers < x whose prime factors are all < z. ar
S, is empty, then O/E:=0 and 0°:= 1)

Proof. Suppose neC(x, j) and n has a prime factor p > z. Say peS,,.
Then n = mp" for some m, o > 1 with pfm and me C(x/z, j—e,). For each
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me C(x/z, ] eio), the number of p* < x/m with pe§, is at most (for some
absolute positive constant c)

() ox __ex
m/ ~mlog(x/m) ~ mlogz’

z <))
meC(x/z,j—e1g) k=1 Jx! E,

Putting these two bounds together and summing over all choices of io
gives the result, m

But clearly

COROLLARY There is an absolute positive constant ¢ > 0 such that for all
x> e* and all vectors j as defined above, we have

N X exy (2 EINC2 G\
Cc < — =,
#E < iog whwﬁlogx<ilju>CZ%E
Proof. Note that C(x, 0) is the set.of powers of 2.up to x, so the corollary

is true for j = 0. For j # 0, take z = x'”, and apply well-known estimates of de
Bruijn [2] for ¥(x, z). (Recall that y = loglog x.) m

Now we shall specialize; that is, we make a particular choice for the
“partition” §,,S,, ..., Sp. Let m = [y/log®y], and let D = m!. From now on,

we define S,:= {p < x: ged. (p—1, D) = 2k}. With this particular choice of
a partition, we can estimate the E s that appear in the proposition.

Lemma 1, For k < < log®y we have the uniform asymptotic estimate

y
logy

1 qg—1
qI;IZ( (a— 1)2>q|211,_ql>2‘1 2

There is also a constant cg >0 such that, for all 2k|D, E, > 1/D¢.

Proof. Let k < log?y and let s,() = #{p < t: gcd(p 1, D) = 2k}. First
we shall use the fundamental lemma of Brun’s sieve to estimate sk(t) Let
&= (logx)""°®¥, and for t > ¢, let

A=A@):={{p—1)2k: p < t&p_1(2k)}.

E, = ‘P (1+0(1)),

where

Let
p = {q: gdivides D/2k} .
Finally, let
aflg—1)  if v,2k) = 0 < v,(D),
w(@=<1 if 0< v,(2k) < 1,(D),
0 else.
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The restriction t > & is more than enough to ensure that the conditions of
Theorem 2.5 of [7] are satisfied. Hence

AL 0@\,
Sk(t) = S(A, P, J’) <¢(2k)ql(]);;[2k) <1 ""-——q——>>(1 +0(1)),

where the function implicit in the o(1) can be chosen umformly with respect to
k. But ‘

RO co(q)) li(s) (1 1 ) (1___>
o (2k) q|(lp_'[/2k)<1 ' H g'*h - 1(61 1) £;[) q—1 qug/lzk) q
=w 4 ) ( _1>
7 2k qll_;[ ~1 I;[) ( 44— -1 q[(lT;_IIZIc) ! q

li(?) ( 1 ) q
= L 9
k gp q—1 qu;Ik q-—1
ar2k

aX(D/2k)
li(t) , 1)' < 1 ) L q—1 q
= — : —_—— 1— .
2k ap \ 4 ﬂ, (q—1y ,HI;[kq—Z q|1—zlk g—1
>2 a>2 q>2 at(D/2k).
=10 p (140w
logy * '

In the last step, we have used Mertens’ theorem that
( 1)4 e”?

[ (1-1)~
g<r\ g/ logT

[ =1
L g —
‘M’(Lz/z’c)
for y large, ie. the product is empty.
With this estimate for s,(r), it is easy to estimate E,: we have
1 1 1

E,= ) -+ Y -+ X

J
PESIL P> & 4 PeESK,pSE p peSK,j> 1 14

and the fact that

The first sum is

5.(0) 5,8 Sk(v) P, xh(t) yP,
— + dt =o(1)+(1+o(1 ——dt = (1+0(1
e P = o0+ o) s = (140
The second and thlrd sums are at most

1 1
S+ Y S«logy

p<¢P  piz1
and thus are negligible. This completes the proof of the first part of the lemma.




, Carmichaél’s lambda function : o 377

Now suppose that 2k leldeS D. Let
0= ] ¢ and T=]]g"®,

QI(D/Zk) a2k

By the Chinese remainder thedrcm, we can choose o < QT so that o = 2(Q)
and o = 2k+ 1(T). By a well known theorem of Linnik [15], there is a prime
p < (QT)s < D% for which p = a(QT). Evidently, peS,. Thus E, > 1/D%, m

With these results available, wc can now prove the upper bound. Certainly

—~Zzl(n ——; Z An)+— Z - An),

n\x nsx nsx
on)<y? co(")?y2

The second sum 1s negl1g1ble because there are only O(x/log?x) integers n < x
with more than y* prime divisors (set D := 1 in the corollary to the proposition,
or apply the well known inequality of Hardy-Ramanujan). The first. sum is
cqual to

s=2 % T i

X AI=y? neClx.)
(This would be true for any partltlon 81,85, ..., Sp, 80 it is certainly true for
the one we have chosen.)
For neC(x, ]), we have
~ Do(n Dx
A < d )

11 ek . H @y

Combining this estimate with the corollary to the proposition, we get the upper
bound

,cxyD) - ( D Eje )( D j,.) cxD L |
§< AR all B ey peen —_—,
(k»gx s\ e\ & 5t feg ,.j.fv:yz,ﬂl T

To estimate the second term, note that
D
1
||‘,Féyzk];1(2k)j" <M 2 (2k)"~'- H LT= (1/2k)

k=1 ji <y?

}

< 2D.

Thus the second term is negligible, For the first, note that for Ih |[ < y we have -

by Lemma 1
B\ ¥’D
(Z Ei) <D

i=1

Hence, we need only estimate

(xys Dc) } ( D Eik )
logx I j2”<y2 kI=Il (Zk)"‘jk! )
But this is less than

(2)oo( £ 2)- () 5 v
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i

for our choice of D as D)/log y]!, Now let I:= [log y], and cons1der the sum in
the exponent:

D ﬂ i Ek+ D Ek

K12k 22k k=11 2k
First we show that the second sum is negligible, Us1ng the Brun-Titchmarsh
inequality, it is easy to verify that E, « y/¢(k). Hence

D E .
E _y_«zzo(L);
k=;+12k kgiz kok) 1P logy

By Lemma 1, the first sum Zf;.l E,/2k is asymptotic to

1 \2& ( 1 q—-1> y
e " — ~ B »
ql;Iz< (q 1)2> ;1 Zkquzﬂ>2q._2 logy

where

B def 627 H

1 21 q—
q>2< (a— 1>§_2q|21:1I __2

R

k? qlzk,q>zq_'2

Observe that

is multiplicative. Hence our expression for the constant B can be simplified:

et 1 1 ‘ 1
=_<”4+16+ )}l(l",(q—lf)

2e7Y 1Y/ 1
=“qﬂz< cq-l)%X”(qH)(q—z))

T L W

We have proved the upper bound in Theorem 3. Before provmg the lower
bound, we need some notation. Define

2, (x; j):= the set of mtegers that can be formed by picking v = il
distinct primes p,, p,, ..., p, in such a way that

(@) Vi, p; < x'"° and

(b) the first j, primes are in S, the next Jj are in §,, etc.
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Q,(x; j) consists of those integers m = (pyp,...p,) €2, (x;j) with the
~-additional property that gc.d.(p,—1, p;—1) divides D = [y/log®y]!, Vi # .
"5 (x; j) consists of all integers n of the form n = mp where me 2, (x; j) and
peS, satisfies max(x/2m, x'?) < p < x/m.
Q,(x; j) consists of all integers n=(pyp,...p,)p in Q4(x;j) with the
additional property that gc.d.(p—1, p;—1) =2 for all i

Now we can proceed with the proof of the lower bound. To help make the
overall argument clear, we postpone several lemmas until afterwards, Let
I:=[logy], and let J denote the set of j’s with 0 < ]k < Ey/k for k<1, and
Jo=0for k>1 Ewdently,

- Z An) = > A).
n\x x jeJ neRq4(x34)
Lemma 2 yields the lower bound (using j, = 0 for k > ).
L3 a0>(6)T Men* 3 1
X p<x jeJ k= nefq(x;J)

To estimate the innermost sum, note that

y 1= Y > L

neRa(x;J) me22(x;J) {p: (mp)efa(x; i)}
By Lemma 3, this is greater than

cx

mef22(x;J) my IOg X

Of course one must check that the hypothesm Iill < y* of Lemma 3 is
satisfied. But for jeJ, we have by Lemma 1

o E y
23 Tk L,
(23) il < sz:lk Togy
Thus - -

l ‘
%Zl(n)>( i )2 ey 3 1

y log X/ jern=1 me@a(x; ) M

Lemma 4 implies that, for some constant ¢’ > 0, this is  greater than

Togx P | Tog y(oglog y)? jerie @5T

B x x C y ' 3 [Ek/k] (E /zk)jk
"~ logx log y(loglog y)*.

k=1 jz=0 i)

6 — Acta Arithmetica LVIII, 4
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Note that
[Zw].wj e” o
kel for wz1
=0l .2 S

Thus the quantity in (24) is greater than

X =y o LB x By (¥
logxeXplilogy(log]ogy)z]2 explik;l 2k] logxex [log)_;+0 logy i

Finally, we prove -the lemmas that were just used. in the lower bound
argument, ‘ : .

LemMA 2, If neQ,(x;j) then
D
Ay > Z T @k
Y k=1

where c is an absolute, positive constant, -

Proof. Suppose n = (p;p,...p,)peQ,(x; j). Let d; = g.cd. (p;—1, D), and
let m;:= (p;~1)/d;. Then ' ,

A =lem. (p,—1,p,~1,..., p?,—l, pl—\l)

p=1_ ) _ ¢

2 214 2]
k=1

i=1

= (mymy...m,)

n X
> > =

D D N
y H (2k)jk y H (2k)j’c
k=1 k=1
LeMMA 3. If meQ,(x; j), and |j| < y?, then
#{p: (mp)e Q,(x; )} > cx/(mylogx)

where c is an absolute, positive constant.

Proof. In the proof of this lemma, let

{1, 02> 0 0} = g 2< g <y}olg: g> 2, gl p(m)).
Then - :

o A S XX - (r—1)
# {p: (mp)eQ,(x; j)} > #{pe(zm, m]' p=3(4) and for i <s, g, f 5 }

To estimate this quantity, we use Brun’s sieve. Let p:= {g, ..., g,} U {2}, and
let : '

4. p—1, X X
A'_{ 2 'pe(2m’m]}'
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Observe that m is relatively small: m < (x*?°y* = x*”, Then by Theorem 2.5’ of
[7], we have :

ohon > e () e 1),
. ' i

mlog(x/m) ;.= mlog(x/m) ;=3 g;

Note that s « logx. Hence the last expression is greater than ¢”x/(mylogx). =

Lemma 4. If jelJ, then for all sufficiently large x,

| —cyloglogy'| .- Ei
2 *>6XP[%*‘2—'“ 1%

mea(x;0) log*y k=1Jr
where c is a positive, absolute constant,

Proof Since jeJ, we have j, =0 for k> 1, Thus
1 1 BN |
DT
-me.Qz(x;j)m ]1']2 Jl!<p)P1P2 pv .

where the sum in (25) is over all sequences {p;>}-; of primes for which
v= il =ji+j,+... +j, and _

(A) The first j, primes P> Pas - by, are in 8,, the next j, in §,, etc,

(B) Vi, p,—l has no pr1me factors m [y/log y, ylog? y], ‘

(©) Vi, p; <% '

(D) Vi, o(p;— 1)<yloglogy and o(p~1, [y, 3])<10glogy,

(B) Vi#j, p#p;p

(F) Vi #j, gcd (p;i—1,p;—1) d1v1des D = [y/log*y]!.

Let us examine the rth sum in the v-fold summation on the rlght s1de
of (25):

(26) 21/p,.
Suppose that p;, p,, ..., p,—1 have already been specified. In order to satisfy -

condition (F), p,—1 must avoid certain primes that may appear in the various
p;i—1 for i <r. For this lemma, let : »

(25)

{{ha 45> 4} = {qey, y*1: glp;—1 for some i <r},

'{%1:+1, Qr+2s > 4s) = {g >y qlp;—1 for some i <r}.

There is some k </ such that p;e,Sk; in fact k is such that
Jitiat o A <r <j1+j2+ oo g

Let E, =Y 1/p, where the sum is over those peS, for which condition (B)
holds. Since
' l 6loglogy

2

aefy/log3y, ylog3y] 4 log y
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it follows from the proof-of Lemma 1 (i, from the fundamental lemma of the
sieve) that -

- loglogy
(27) Ej = Ek<1+0< oz y )>

The sum in (26) is at least
Ey— Tc”‘ - T~ Ty,

where
1
TC::: —y
‘ x1lv <p$xp
1 | 1
Iy:= 2 —+ Z o
P<x p pPSXx p
w(p— 1)>yloglogy w(p—1,[y,»3]) =loglogy
r-11. s 1
Tyi= Y = Tpi=), 2 -
i=1D; i=1 p<x P
p=1(gi)

Indeed, T, Ty, Ty, Ty respectively take care of those p for Wthh (©), (D), (B),
and (F) fail. '

We have T, ~ 310g y. Further, it is easy to see that T}, is small. Indeed,
note that

1 . 1
< Y =+ =
msx M gimesqelyy®l  p<x P
w{m) = yloglogy w(m)Zloglogy p=1(m)
1 Yy
< Y=+ Y
m<x m gq|lm=-gely, y3] ¢ (m)
w(m) 2 yloglogy w(m) > loglogy

1 ‘ 1>i 1 ( 1 )" A
< — — -|-y C = JE—
i>ylozglogyll (qéx q i?lgllogy il qe[y,;%,a?l d’(qa)

< 2 —(c+y)‘+y >

iZyloglogy ** 1>loglogyl!

(cy)rostorn Y ciiogton]

“yloglog ]! [oglog y1!

AR
< <10g10y>.




Carmichael’s lambda function 383

Since r < v = ||j||, we see from (23) that
' Ty < loglog y+0(1).

Since the primes py, p,, ..., p,—; already chosen satisfy (D), we see from (23)
that

t <rloglogy < vloglogy « (y loglog y)/log y, -
s <ryloglogy < vyloglogy « (y* loglog y)/log y.
Thus, from (B),
L | e ) sy. yloglogy
Tr<y ) —+ — e 2P
! ,-=Z1 a; yi=§-1 g, ylog®y" ¥~ logty
ComBining these estimates, we deduce from Lemma 1 that

yloglogy E
TC+TD+>I‘E"{‘TIVT-<<‘1Tg4y.—=O(iEky . .

a@+ogﬂﬁg>
log y

~and so the lemma follows immediately from (23) and (25). m

Thus the sum in (26) is

5. Further problems. There are many questions about Buler’s ¢ function
+ mat remain interesting when put in terms of the A function. It has been known
since I. J. Schoenberg proved this in the 1920’ that n/¢(n) has a continuous
“distribution function. That is, D(u), the asymptotic density of the n for which
/¢ (n) < u, exists for every u and is a continuous function of . In this sense, the
correct “measuring stick” for ¢(n) is the function n. '

It follows from Theorem 2 that, if A(n) has a “measuring stick”, it would be
about n/(logn)'slslen+4  However, we suspect that there is no monotone
function that stays within a constant factor of A(n) for most n. In fact, the
following is probably true: there is a function y(x)— oo such that if ¢ > 0 is
arbitrary, if x > x,(c), and if 4 = [1, x] is any set of integers with |[4] > ex,
. then : :

. A) 4
| et 20) > Y

Although we think we can prove the above statement, it may be a hard
problem to find the fastest growing function Y (x) for which it holds. We suspect
that it holds for y(x) = exp [, /loglog x], but it is not clear whether this is close
to the best possible, - '

Let N(k) be the number of solutions to A() = k. From the proof of
Theorem 1, it is possible to show that the maximal order of N (k) is very large.
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In fact, we have

(28) N(k) > exp[exp[(c,— 9‘(,1))10g k/loglog k] ]
for infinitely many k. On the other hand,
N (k) < exp [exp [(log 2 +0(1))log k/loglog K1l

This contrasts sharply with what is known about ¢ (n). The number of solutions
to ¢(n) =k is always less than the much smaller bound

k éxp [(—1 +0 (1)logk logloglog,; k/loglog k].

* Perhaps this is the best possible, but all we can prove is that there is some ¢ > 0
such that the number of solutions to @) = k is greater than k° for infinitely
many k—see [13] for a history of ‘the problem. It is known that

#{n: ¢(n) < x} ~ ex,

where ¢ = {(2){(3)/{(6). In contrast, we see from (28) that no such result can
hold for A(n). We have '

exp [GXP[LCMH < #{m M) <x)

loglog x
(log2+o(1))log x
< exp [e)fp[ Toglog .

Let Ry(x) = #{m < Xim= ¢(n) for somé n} It is known (sée [10]) that
oy ;. . o
R, (x) = fog exp [(c+0(1))(logloglog x)?].

What .about R,(x)? Since few numbers have a large divisor of the form p—1
(see [6]), it is clear that R (%) = o(x). In fact, the number of values of 1 up to .
x is at most x/(logx)* for some ¢ > 0: On the other hand, R,(x) > x/logx
“trivially because this is already attained on the primes. Perhaps one can find
a constant ¢, for which R, (x) = x/(log x)°" *°, Probably 0 <c,; <1, but wedo
- ot know ‘what to ‘suggest for the “correct™ value ‘of ¢,
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