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1. Introduction

The problem of quickly determining whether a given large integer is prime or composite

has been of interest for centuries, if not longer. The past 30 years has seen a great deal

of progress, leading up to the recent deterministic, polynomial-time algorithm of Agrawal,

Kayal, and Saxena [2]. This new “AKS test” for the primality of n involves verifying the

polynomial congruence

(x+ a)n ≡ xn + a mod (n, f(x)) (1.1)

for varying choices of the integer a, where f(x) is a particular integer monic polynomial that

has a loose connection to n. The test then is to first construct an appropriate polynomial

f(x) and then verify (1.1) for every integer a in a certain, relatively small interval. If, in

addition, n has no small prime factors and n is not a power, then n is prime. Note too

that if n is prime, then (1.1) holds for every integer a and for every f(x) ∈ Z[x].

In particular, the AKS test for primality is based on the following beautiful theorem.

Let ϕ denote Euler’s function and log2 the base-2 logarithm.

Theorem AKS [2]. Suppose n is an integer with n > 1, and q is an integer coprime to n

with the multiplicative order of n mod q exceeding (log2 n)2. With f(x) the q-th cyclotomic

polynomial, suppose (1.1) holds for every integer a with 1 ≤ a ≤
√

ϕ(q) log2 n. Then n

either has a prime factor below
√

ϕ(q) log2 n or n is a power of a prime.

To use this result as a primality test, after a suitable value of q is found and n has

been checked for proper prime factors below
√

ϕ(q) log2 n and for being a power higher

than the first power, one proceeds to check the congruences (1.1) for the requisite values

of a. These congruences all hold if and only if such a number n is prime.
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If the degree of f(x) in (1.1) is d, the number of elementary operations to verify this

congruence is Õ(d(logn)2), assuming that |a| < n. (The notation Õ(X) signifies a bound

c1X(logX)c2 for suitable positive constants c1, c2.) To achieve this time bound, one uses

various fast arithmetic subroutines, see [14]. Thus the time to test n for primality using

Theorem AKS is Õ(q3/2(logn)3).

It is not hard to show that for most numbers n (and for most prime numbers n), a valid

choice for q may be found that satisfies O((logn)2), and so the time bound Õ((logn)6) is

achieved. Further, it is conjectured in [2] that every n > 1 has such a valid choice for q.

Two results are presented in [2] concerning the choice for q. The first, which is entirely

elementary, shows that q = O((logn)5), leading to the time bound Õ((logn)10.5) in the

primality test. The second result in [2] is short, but uses a “big gun” in analytic number

theory, namely the theorem of Fouvry [13] that a positive proportion of primes q have a

prime factor r | q − 1 with r > q2/3. Using this tool, it is shown that there is a choice for

q with q = O((logn)3), leading to the time bound Õ((logn)7.5) for the primality test.

It should be noted that the proof of Fouvry’s theorem depends ultimately on Siegel’s

theorem, a result that without a major breakthrough in the direction of the Extended

Riemann Hypothesis (ERH) for Dirichlet L-functions, is numerically ineffective. Thus,

there is no way to specify the implied constants in the time bound Õ((logn)7.5). (Actually,

it is possible to specify numerical constants, but then the bound is proved to hold only for

numbers n that are “sufficiently large” and we know no way to specify exactly how large.)

In contrast, the elementary bound for q of O((logn)5) in [2] can actually be shown

to be (log2 n)5 for every n ≥ 3, see [7], Theorem 4.5.3. And so with the complexity-

Õ((logn)10.5)-version of the AKS primality test, there is no mystery about implied con-

stants or “sufficiently large.”

In this paper we show how one may replace the choice of f(x) as a cyclotomic

polynomial in Theorem AKS with an arbitrary integer monic polynomial f(x) of degree

d > (log2 n)2 that “behaves” as if it is irreducible in (Z/nZ)[x]. Further, we show how such

a polynomial may be chosen with d = O((logn)2), and so obtain a deterministic primality

test that achieves the complexity Õ((logn)6). Though our arguments are not simple, they

avoid the use of Siegel’s theorem and other ineffective tools and arguments.
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Theorem A. There is a deterministic algorithm to determine if a given number n > 1 is

prime or composite which runs within the effective time bound Õ((logn)6).

Apart from primality testing, one can raise the problem of constructing an irreducible

polynomial f(x) over the prime finite field Fp of a given degree d. This problem can be

viewed as “constructing” the finite field Fpd . Even for d = 2, it is considered a hard

problem, since it is equivalent to finding a quadratic nonresidue for the prime p. There is

a trivially correct, deterministic algorithm to find a quadratic nonresidue, namely choose

consecutive integers a starting at a = 2 until one is found. Assuming the ERH, this trivial

algorithm can be proved to terminate before a reaches 2(log p)2, and so runs in polynomial

time. However, without assuming the ERH, we know no deterministic method for finding

a quadratic nonresidue for p that takes subexponential time. (A better method for finding

a quadratic nonresidue is to choose random numbers a until one is found. The expected

number of trials is just 2, but this search is not deterministic.)

Adleman and Lenstra [1] showed more generally that assuming the ERH, there is a

deterministic polynomial-time algorithm for constructing an irreducible polynomial over Fp

of degree d. (The running time is polynomial in d and log p.) Moreover, without assuming

any unproved hypotheses, they presented a deterministic algorithm that given d and p,

discovers an irreducible polynomial over Fp of degree d′, where d ≤ d′ < cd log p for some

absolute, effectively computable positive number c. They obtain their polynomials as the

polynomials for certain cyclic extensions of the rationals which remain irreducible when

considered over Fp .

We improve on the unconditional algorithm from [1] for d large.

Theorem B. There is a deterministic algorithm and an effectively computable number B,

such that, given a prime p > B and an integer d > (log p)1.84, produces an irreducible poly-

nomial over Fp of degree d′, where d ≤ d′ ≤ 4d. Moreover the running time is Õ(d1.6 log p),

with effective constants.

Our paper is organized as follows. In section 2 we present the following primality

criterion that is similar in spirit to Theorem AKS, but does not need to use cyclotomic

polynomials.
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Theorem C. Suppose n > 1 is an integer and that f(x) is an integer monic polynomial

of degree d > (log2 n)2. Suppose too that the following three conditions hold: both f(xn)

and xnd −x are congruent to 0 in the ring Z[x]/(n, f(x)), and for each prime l | d, xnd/l −x
is a unit in this ring. If (1.1) holds for each integer a with 1 ≤ a ≤ d1/2 log2 n, then n

either has all of its prime factors at most d1/2 log2 n or n is a power of a prime.

As with Theorem AKS, it is a simple matter to distinguish primes from composites in the

restricted set of integers which have a small prime factor or are a power of a prime. Thus,

Theorem C may be used as the backbone of a primality test once one has a method to

produce polynomials f(x) of suitable degrees that satisfy the initial hypotheses.

Note that if n is prime and f(x) is irreducible over Fn, then the three conditions

about f(x) in Theorem C all hold. In section 3, we describe how polynomials f(x) may

be constructed that are guaranteed to be irreducible modulo n if n is prime. These are

the polynomials that we use to prove Theorem B and are the polynomials we use in the

primality test of Theorem A. In the primality criterion, we do not know that n is prime,

but the three conditions of Theorem C may be tested. If one of these conditions should fail,

we have proved that n is composite. If they all hold, we can then proceed to use Theorem C

to decide if n is prime or composite. The polynomials discussed in section 3 are related to

Gaussian periods, certain sums of roots of unity that Gauss employed in his famous proof

that for n ≥ 3, a regular n-gon is constructible with straight-edge and compass provided

ϕ(n) is a power of 2.

In section 4 we state our main technical result that allows us to construct our polyno-

mials of near-prescribed degree, and present some useful elementary lemmas. This technical

result corresponds to the argument in [2] that an integer q exists as in Theorem AKS that

is not too large, and in fact, we use some similar devices in our introductory lemmas.

Proved over the subsequent 4 sections, a statement of this technical result is as follows.

Theorem D. There is a deterministic algorithm such that for all integers n beyond an

effectively computable bound, and any integer D > (logn)1.84, the algorithm finds a finite

collection of integer pairs (r1, q1), (r2, q2), . . . , (rk, qk) such that each ri is prime and ri <

D6/11, and each qi satisfies 1 < qi < D3/11, qi | ri − 1, and the multiplicative order of
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n(ri−1)/qi modulo ri is qi. Further, the integers q1, q2, . . . , qk are pairwise coprime and

satisfy D ≤ q1q2 · · · qk ≤ 4D. The number k is O((log logD)2), and the running time of the

algorithm is Õ(D12/11), with both of these estimates having effective implied constants.

Theorem D is proved with tools from analytic number theory. In section 5 we review

some results concerning the distribution of primes in residue classes, and give a somewhat

weaker, but effective version of the Bombieri–Vinogradov inequality. (See [19] for a similar

result.) We also introduce our major tool, a theorem of Deshouillers and Iwaniec [10]. This

result is a “prequel” to Fouvry’s theorem, and is interesting to us not only for its strength,

but because it is effective in prinicple.

In section 6 we show that there are many primes r with certain stringent constraints

on the primes in r− 1. For this we follow closely a paper of Balog [4]. This paper uses the

same theorem of Fouvry as in [2], and also the Bombieri–Vinogradov theorem. To achieve

effectively computable estimates, we use instead the Deshouillers–Iwaniec result and the

effective Bombieri–Vinogradov inequality from section 5.

The famous Frobenius postage problem asks for the largest number which is not in

the additive semigroup generated by a set of coprime positive integers. Section 7 presents

a new result of Bleichenbacher [6] that might be considered a continuous version of this

problem. It is proved that 1/M(S) is a strict upper bound for the set of numbers not in

the additive semigroup generated by the open subset S of the interval (0, 1), where M(S)

is the logarithmic measure
∫

S
dx/x. Similar results were also recently obtained by Lev [16].

In section 8 we tie together the results of the previous two sections to give a proof of

Theorem C.

Section 9 presents an algorithm for constructing suitable polynomials as mentioned

above. With (r1, q1), (r2, q2), . . . , (rk, qk) as in Theorem D, the polynomial constructed is

the minimum polynomial over Q of the product of the Gaussian periods ηrj ,qj
, the degree-

qj period in the cyclotomic field Q(e2πi/rj ). The degree of this polynomial is the product

q1q2 · · · qk.

Finally in section 10 we present our primality test and analyze its complexity.
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2. A primality criterion

In this section we consider the main theorem behind our primality test. The reader

will readily note many similarities with the results of Agrawal, Kayal and Saxena. The

principal difference here is that the auxiliary polynomial that one uses is allowed to be any

monic polynomial in Z[x] that “behaves” as if it is irreducible over the “finite field” Z/nZ.

This concept is made precise shortly.

We begin first with a general result about commutative rings.

Easy Fact. Suppose that R is a commutative ring with unit, f ∈ R[x], β1, β2, . . . , βk ∈ R
with f(βi) = 0 for 1 ≤ i ≤ k and βj − βi ∈ R∗ for 1 ≤ i < j ≤ k. Then

∏

(x− βi) | f(x).

To prove the Easy Fact, one first notes that it is true for k = 1 since there is some q ∈ R[x]

and some ρ ∈ R with f(x) = (x − β1)q(x) + ρ, so that upon letting x = β1 we see that

ρ = 0. The general case now follows by induction since if f(x) = h(x)(x−β1) · · · (x−βj−1),

upon letting x = βj and using the hypotheses, we see that h(βj) = 0, so that x−βj | h(x).

We now introduce the main ideas of this section. Suppose f ∈ Z[x] is monic of degree

d > 0, n is an integer with n > 1, and

A = Z[x]/(n, f).

Let α = x+ (n, f) ∈ A. Suppose that

f(αn) = 0, (2.1)

αnd

= α, (2.2)

αnd/l − α ∈ A∗ for all primes l | d. (2.3)

Note that if n is prime, then (2.1) holds. Further, if n is prime, then (2.2) and (2.3) hold

if and only if f is irreducible modulo n.

Whether or not n is prime, we shall first see what properties may be deduced from

the above assumptions. First note that A is a free Z/nZ-module with basis 1, α, . . . , αd−1.

Also note that the ring homomorphism from Z[x] to Z[x] which takes x to xn induces a

ring homomorphism from A to A which takes α to αn. Indeed this follows immediately
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from (2.1). We denote this ring endomorphism of A by σ. Note that (2.2) implies that σd

is the identity map on A, so that σ is an automorphism of A and has order dividing d.

Further, (2.3) implies that σ has exactly order d.

Lemma 2.1. In A[y] we have f(y) =
∏d−1

i=0 (y − σiα).

Proof. This lemma will follow from the Easy Fact if we show that each f(σiα) = 0 and

that

σiα− σjα ∈ A∗ for 0 ≤ j < i < d. (2.4)

Indeed, both f(y) and
∏

(y − σiα) are monic of degree d, so if the product divides f(y),

they are equal. Since σ is an automorphism of A it follows instantly that each f(σiα) = 0.

To show (2.4), it suffices to consider the case j = 0 (since σ is an automorphism). Note

that d does not divide i so that there is some prime l | d with (i, d) | d/l. Hence there are

integers u, v with ui + vd = d/l. Since σ has order d it then follows that σuiα = σd/lα.

Hence by (2.3), σuiα− α ∈ A∗. But ni − 1 | nui − 1 so that αni−1 − 1 | αnui−1 − 1, and so

σiα− α = αni − α | αnui − α = σuiα− α.

But a divisor of a unit is a unit, so we are done.

Let p denote a prime factor of n, and let R = A/pA ∼= Z[x]/(p, f). We identify

members of A with their image in R, so in particular the coset x + (p, f) is denoted by

α. The ring R is a vector space over Z/pZ with basis 1, α, . . . , αd−1. Note that R is not

necessarily a field since the polynomial f is not necessarily irreducible modulo p. Our

automorphism σ of A naturally induces an automorphism of R, which we will continue to

denote as σ. Further, (2.3) implies that in R we have that σd/l(α) 6= α for all primes l

dividing d, so that σ has order d as well when considered as an R-automorphism. Among

the automorphisms of R is the Frobenius automorphism φ which sends every element to

its p-th power.

Lemma 2.2. Viewing σ as an automorphism of R, there is some integer i with σi = φ.

Proof. It suffices to show that for some integer i we have σiα = αp, since if two auto-

morphisms agree on a generator of the ring, they are the same automorphism. As φ is an
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automorphism of R it follows that f(φα) = 0, and so it follows from Lemma 2.1 taken over

to R that
d−1
∏

i=0

(αp − σiα) = 0. (2.5)

To see that a factor in this product must be 0 we prove the following for β ∈ R:

if σβ ∈ βR then β = 0 or β ∈ R∗. (2.6)

(Note that the converse of (2.6) is trivially true.) Indeed, if we know (2.6), it remains to

note that for any integers i, j we have

σ(αi − αj) = αin − αjn =
(

αi − αj
)

(

αi(n−1) + αi(n−2)+j + · · · + αj(n−1)
)

∈ (αi − αj)R,

so that αi −αj is either 0 or a unit. But not all of the factors in (2.5) can be units, so one

must be 0.

We now prove (2.6). Assume that σβ ∈ βR and that β is not 0 and not a unit. Write

β = g(α) where g ∈ (Z/pZ)[y], deg g < d. Since βR 6= R, we have that the projection

R → R/βR takes units to units. The ring R/βR also contains Z/pZ so that if we use an

overbar to denote the image of an R-element in R/βR, then g(γ) = g(γ) for all γ ∈ R.

The assumption that σβ ∈ βR immediately implies that each σiβ ∈ βR, so that

0 = σiβ = g(σiα) = g(σiα).

It now follows from (2.4) and the Easy Fact applied to the ring R/βR that the degree of

g is at least d, a contradiction. We now have the lemma.

Let

G = {β ∈ R : β 6= 0, σβ = βn}.

Note that 1, α ∈ G and σG ⊂ G.

Lemma 2.3. G is a cyclic subgroup of R∗.

Proof. It is clear from the definition of G and (2.6) that G is a subgroup of R∗. It remains

to show that G is cyclic. Let f1 be an irreducible factor of f considered over Z/pZ, and
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let K denote the finite field Z[x]/(p, f1). There is a natural projection ψ from R to K. We

shall show that the restriction of ψ to G is injective, so that G is isomorphic to a subgroup

of K∗. Since K∗ is itself cyclic, the lemma will follow.

Say β ∈ G and ψβ = 1. Write β = g(α) where g ∈ (Z/pZ)[y] has degree < d. Since

β ∈ G we have σiβ = βni

for each i, so that

g(ψσiα) = ψσig(α) = ψσiβ = ψ(βni

) = (ψβ)ni

= 1.

It then follows from (2.4) and the Easy Fact applied to K that either g(y) − 1 is the

0-polynomial or has degree at least d. Hence it is 0, so that 1 = g(α) = β. Thus, ψ|G is

injective, which completes the proof of the lemma.

Lemma 2.4. Among the ordered pairs of integers (i, j) with 0 ≤ i, j ≤
√
d there are two

different pairs (i0, j0), (i1, j1) with pi0(n/p)j0 ≡ pi1(n/p)j1 (mod #G).

Proof. We consider the automorphism group of G. For any finite cyclic group G under

multiplication, the automorphism group is naturally isomorphic to (Z/(#G)Z)∗ where a

residue m corresponds to πm, the map which takes elements of G to their m-th powers.

By the definition of G, our ring automorphism σ acts as well as a group automorphism of

G and is identified with πn. We consider the order-d subgroup 〈σ〉 = 〈πn〉 of AutG. By

Lemma 2.2, the Frobenius map φ is in this subgroup; it is identified with πp. So, σφ−1,

which is identified with πn/p, is in the subgroup as well.

Consider the automorphisms πi
pπ

j
n/p for integers i, j with 0 ≤ i, j ≤

√
d. There are

more than d of these expressions, and they all lie in a subgroup of order d, so two of them

must be equal: say

πi0
p π

j0
n/p = πi1

p π
j1
n/p ,

where (i0, j0), (i1, j1) are different pairs. Then

pi0(n/p)j0 ≡ pi1(n/p)j1 (mod #G),

as claimed.

For a pair (i, j) considered in Lemma 2.4, note that pi(n/p)j ≤ p
√

d(n/p)
√

d = n
√

d.

Our goal now is show that under a certain easily checkable hypothesis we have #G >

n
√

d − 1, which will allow us to turn the congruence of Lemma 2.4 into an equality.
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We say a positive integer is B-smooth if it is not divisible by any prime exceeding B.

Theorem 2.5. Let f ∈ Z[x] be a monic polynomial of degree d, let n > 1 be an integer,

let A = Z[x]/(n, f), and let α = x+ (n, f) ∈ A. Assume that (2.1), (2.2), and (2.3) hold,

and in addition, suppose that

d > (log2 n)2, (2.7)

(α+ a)n = αn + a for each integer a, 1 ≤ a ≤ B := b
√
d log2 nc. (2.8)

Then n is B-smooth or a prime power.

Proof. Suppose that n is not B-smooth so that n has a prime factor p > B. Let R be the

ring A/pA ∼= Z[x]/(p, f). Let σ be the automorphism of R that takes α to αn. Our first

task is to show that the cyclic group G considered in Lemma 2.3 is large. For each proper

subset S of {0, 1, . . . , B}, we assert that

∏

a∈S

(α+ a)

is a member of G and that different choices for S give rise to different members of G.

Indeed, by (2.8), σ(α+a) = αn +a = (α+a)n for 1 ≤ a ≤ B and the same is true trivially

for a = 0. Thus, it is clear that each product is in G ∪ {0}. Corresponding to S consider

the polynomial
∏

a∈S(x + a). Since d > B and p > B it follows that these polynomials

over Z/pZ are distinct, nonzero and have degrees < d. So evaluating these polynomials at

α gives rise to distinct nonzero members of R, which proves our assertion. Thus #G is at

least as big as the number of such sets S, that is,

#G ≥ 2B+1 − 1 > 2
√

d log2 n − 1 = n
√

d − 1. (2.9)

As we noted above, for 0 ≤ i, j ≤
√
d, we have

1 ≤ pi(n/p)j ≤ p
√

d(n/p)
√

d = n
√

d.

Thus, if we have two different pairs (i, j) in this range, the gap between the two expressions

pi(n/p)j is at most n
√

d − 1. So consider the two different pairs (i0, j0), (i1, j1) guaranteed

for us by Lemma 2.4. Thus, by that lemma and (2.9) we have

pi0(n/p)j0 = pi1(n/p)j1 .
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Since (i0, j0), (i1, j1) are different pairs, we have j0 6= j1, so that by unique factorization,

n is a power of p. This completes the proof of the theorem.

3. Gaussian periods

If m is a positive integer and a is an integer coprime to m, we let ord (a mod m) denote

the multiplicative order of a modulo m.

For prime r, let ζr = e2πi/r. If q is a positive integer with q | r − 1, we can consider

the Gaussian period ηr,q. This is the trace of ζr to the unique subfield of Q(ζr) of degree

q over Q. Thus, if

S = {s mod r : s(r−1)/q ≡ 1 (mod r)}

is the subgroup of q-th powers in (Z/rZ)∗, then

ηr,q =
∑

s∈S

ζs
r .

Let w be a residue modulo r such that ord (w(r−1)/q mod r) = q (in particular, any prim-

itive root modulo r has this property). Then the q cosets of S in (Z/rZ)∗ are wjS for

j = 0, 1, . . . , q − 1. Let gr,q be the minimum polynomial for ηr,q over Q, so that

gr,q(x) =

q−1
∏

j=0

(

x−
∑

s∈S

ζwjs
r

)

.

The polynomial gr,q(x) is integer monic and irreducible in Q[x]. For prime p we may ask if

gr,q(x), when considered in Fp[x], is irreducible. The following theorem of Kummer gives

a criterion for this event.

Lemma 3.1. Suppose that p is a prime number. For r prime and q a positive divisor

of r − 1, the polynomial gr,q(x) is irreducible when considered in Fp[x] provided that

ord (p(r−1)/q mod r) = q.

Proof. A proof of this result is given in [1]; here is another proof. We may assume that

q > 1 and that ord (p(r−1)/q mod r) = q. Let K be the field of rq-th roots of unity over

Fp. There is a natural projection ψ of Z[ζr, ζq] to K. Let η = ψ(ηr,q). Since gr,q(η) = 0,

and the degree of gr,q(x) is q, it suffices to show that the degree d of η over Fp is q. Let
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φ be the Frobenius p-th power automorphism of K, so the degree d of an element α of K

over Fp is the least positive integer d such that φd(α) = α. We have

φj(η) = ηpj

=
∑

s∈S

ζpjs, ( ζ = ψ(ζr) )

where S is defined above as the group of q-th powers modulo r. Since pq mod r is a member

of S, it follows that φq(η) = η, and so we have d | q.
Let χ be the Dirichlet character modulo r which sends S to 1 and p to ζq. (Since

S, pS, . . . , pq−1S are the q cosets of S in (Z/rZ)∗, the two conditions are sufficient to

define χ.) Since q > 1 and q is the order of χ, we have that χ is non-principal, and since

r is prime, it follows that χ is primitive. Thus, if τ(χ) is the Gauss sum
∑

j mod r χ(j)ζj
r ,

we have |τ(χ)|2 = r. In particular, ψ(τ(χ)) 6= 0. Letting ω = ψ(ζq), we have

ψ(τ(χ)) =

r−1
∑

j=1

ψ(χ(j))ζj =

q−1
∑

i=0

ωi
∑

j∈piS

ζj =

q−1
∑

i=0

ωiηpi

.

We reorganize this last sum by writing i = m + ld, with 0 ≤ m ≤ d− 1, 0 ≤ l ≤ q/d− 1,

getting

ψ(τ(χ)) =
d−1
∑

m=0

ηpm
q/d−1
∑

l=0

ωm+ld =
d−1
∑

m=0

ηpm

ωm

q/d−1
∑

l=0

ωld.

But if d is a proper divisor of q, this last inner sum is 0, so that ψ(τ(χ)) = 0, a contradiction.

Thus, d = q, which proves the lemma.

Remark. It is not hard to prove that the condition ord (p(r−1)/q mod r) = q is necessary

for gr,q to be irreducible over Fp.

Corollary 3.2. Suppose r1, r2, . . . , rk are primes, q1, q2, . . . , qk are pairwise coprime pos-

itive integers, with each qi | ri − 1, and p is a prime with each ord (p(ri−1)/qi mod ri) = qi.

If η is the product of the Gaussian periods ηri,qi
and f is the minimum polynomial for η

over Q, then f is irreducible when considered in Fp[x].

Proof. By Lemma 3.1, each ηri,qi
, when considered in an appropriate extension of Fp, has

degree qi over Fp. But in general, if α1, α2, . . . , αk all lie in an extension of Fp and have

pairwise coprime degrees, their product α has degree q = q1q2 · · · qk over Fp. Indeed, if φ
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is the Frobenius p-th power automorphism, and l is a prime factor of q, say l | qi, then

φq/l(αj) = αj for j 6= i and φq/l(αi) 6= αi, so that φq/l(α) 6= α.

4. Period systems

In this and subsequent sections, all labeled and implied constants are absolute (in that

they do not depend on any parameters) unless otherwise stated, and they are all effective.

In addition if a variable is to be taken “sufficiently large,” either absolutely or depending

on other variables, such a sufficiently large bound may be effectively computed.

For a positive integer n, we say a sequence (r1, q1), (r2, q2), . . . , (rk, qk) of ordered pairs

of positive integers is a period system for n if

(a) r1, r2, . . . , rk are primes,

(b) for i = 1, 2, . . . , k we have qi | ri − 1, qi > 1, and ord (n(ri−1)/qi mod ri) = qi,

(c) q1, q2, . . . , qk are pairwise coprime.

Theorem 4.1. There is a deterministic algorithm such that for each integer m > 0

the algorithm produces an integer Dm and further, for each integer n > 1, and each

integer D with D > Dm and D > (logn)11/6+1/m, the algorithm finds a period system

(r1, q1), (r2, q2), . . . , (rk, qk) for n with each ri < D6/11 and each qi < D3/11, with D ≤
q1q2 · · · qk < 4D, and with k = O((log logD)2). The running time of this algorithm is

Õ(D12/11). The implied constants may depend on the choice of m.

Remarks. We will be applying Theorem 4.1 in the case D = (log2 n)2, so that m may

be taken as 6. There is nothing special about the number “4” in the theorem, it is only

a convenient choice which may be replaced with any number larger than 1. Further, we

can show that the interval [D, 4D] contains more than D/ec(log log D)3 integers of the form

q1q1 · · · qk as in the theorem. If we do not insist on effectivity, this last result can be

improved to D/(logD)c integers of the form q1q2 · · · qk in [D, 4D] corresponding to period

systems for n. Further, k may then be taken as O(1), and the range for D may be widened

to D > (logn)1+ε.

It will be convenient for us to prove Theorem 4.1 with q1, q2, . . . , qk being distinct

primes. In the sequel we will denote 1/m by ε.
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Recall the definition of a B-smooth number from section 2. It is known from work

of Hildebrand and Maier that the number of B-smooth numbers in the interval [1, x]

is ∼ ρ(logx/ logB)x as x → ∞ with B > exp((log logx)5/3+ε). Here ρ(u) denotes the

Dickman–de Bruijn function. This continuous function is identically 1 for 0 ≤ u ≤ 1 and

satisfies the differential-delay equation uρ′(u) = −ρ(u− 1) for u > 1. We have log ρ(u) =

−u log(u logu) + O(u) for u ≥ 2. The result of Hildebrand and Maier will not be used in

the sequel, but the function ρ(u) does play a role.

We begin with a result concerning the ord function which will allow us to have in

play many pairs (r, q) with which to construct a period system. First we cite a result from

[18]. The methods used there, though not explicitly stated as such, are effective. Let π(x)

denote the number of primes in the interval [1, x].

Lemma 4.2. There is an absolute and effectively computable positive number c0 with

the following property. Let α be a number with 0 < α < 1, and let x be so large that

logx/ log logx > 1/α4. The number of primes r ≤ x such that r − 1 has a divisor m with

m > xα and with m being xα2

-smooth is at most D(α)π(x), where

D(α) =
c0
α2

(

ρ(1/α)

log(2/α)
+ ρ(1/α2)

)

.

Proposition 4.3. Let n > 20 be a natural number, let x be a number such that x ≥
(logn)1+3/ log log log n, and let α = α(x) = 1/ log logx. Let R(x, n) denote the number of

primes r ≤ x such that r − 1 has a prime divisor q > xα2

with ord (n(r−1)/q mod r) = q.

For n larger than an effectively computable bound, we have

R(x, n) ≥ (1 −D(α))π(x) − x1−α2 − x1−α/4.

Proof. The number of primes r which divide n or some nj − 1 for j ≤ xα is less than

log2 n+
∑

j≤xα

j log2 n < x2α log2 n < x1−α/4

if n is so large that log2 n < x1−9α/4. Thus, there are at least π(x) − x1−α/4 primes

r ≤ x not dividing n, and not dividing any nj − 1 as above. For such a prime r we have

ord (n mod r) > xα. Let qr denote the greatest prime factor of ord (n mod r). If n is so
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large that logx/ log logx > 1/α4, Lemma 4.2 is applicable, and we have qr > xα2

, but for

at most D(α)π(x) exceptional primes r ≤ x. Note that the number of integers r ≤ x with

r − 1 divisible by some l2 with l prime and l > xα2

is at most

∑

l prime

l>xα2

x

l2
< x1−α2

.

Hence, there are at least (1 − D(α))π(x) − x1−α2 − x1−α/4 primes r ≤ x with qr > xα2

and q2r does not divide r− 1. For such a prime r we have ord (n(r−1)/qr mod r) = qr. This

completes the proof of the proposition.

Remark. Proposition 4.3 implies that for n, x as given, we have

π(x) − R(x, n) = O
(

x/(logx)log log log x
)

.

5. The distribution of primes in residue classes

For a natural number q, an integer a coprime to q, and a real number x, let π(x, q, a)

denote the number of primes p ≤ x with p ≡ a mod q. Also, let

ψ(x, q, a) =
∑

n≤x
n≡a mod q

Λ(n), θ(x, q, a) =
∑

p≤x, p prime
p≡a mod q

log p,

where Λ(n) is von Mangoldt’s function. (We have Λ(n) = log p if n = pj for some prime p

and some positive integer j, and Λ(n) = 0 if n is not a power of a prime.)

Dirichlet proved in 1837 that if q is a positive integer coprime to the integer a, then

π(x, q, a) is unbounded, in fact, he showed that the sum of the reciprocals of the primes

p ≡ a mod q diverges. In 1896, de la Vallée Poussin proved the prime number theorem

for arithmetic progressions. This result asserts that for q, a as in Dirichlet’s theorem, we

have π(x, q, a) ∼ π(x)/ϕ(q) as x → ∞. In the last 100+ years people have been trying to

improve on this result, by allowing q → ∞ as well. Clearly q cannot be as large as x, since

then the assertion loses meaning. We know that if the ERH is assumed then we can take q

up to nearly x1/2. But rigorously, we only have asymptotics for each individual π(x, q, a),

with effective error estimates, for q < (logx)2−ε, see [8], page 123. Allowing the ineffective
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theorem of Siegel allows us to extend this range to q < (logx)A for any fixed A, giving us

the Page–Siegel–Walfisz theorem. However, since our goal is to use only effective tools, we

will bypass this result.

Other ways that the prime number theorem for arithmetic progressions has been

extended is to allow for a few exceptional moduli, and then to prove results about the

remaining unexceptional moduli. One such theorem is found in [3]. Another type of theorem

is to show that the exceptional moduli in toto do not contribute too much to the error

on average. An example of such a result is the Bombieri–Vinogradov theorem, which we

discuss below. As it stands, this result uses Siegel’s theorem to show that the contribution

from exceptional moduli is small. We give a result that instead just ignores the exceptional

moduli, if there are any.

Finally, barring asymptotics, or asymptotics on average, we have inequalities. In par-

ticular, the Brun–Titchmarsh inequality gives useful upper bounds for π(x, q, a). However,

this inequality degrades as q grows larger, so people have tried to get results that do not

degrade so rapidly or are at least better on average. A culmination of these efforts is found

in the series of papers of Bombieri–Friedlander–Iwaniec. However, these papers and many

others, use Siegel’s theorem. Further, unlike with the Bombieri–Vinogradov theorem, it

does not seem so simple to disentangle Siegel’s theorem from the result. As it turns out,

we do not need a great improvement on the Brun–Titchmarsh inequality, just a small im-

provement. And a result of Deshouillers–Iwaniec from 1981 fills the bill: it is effective, and

strong enough for our needs.

In this section we collect the main results we shall use on π(x, q, a), including a proof-

sketch of a version of the Bombieri–Vinogradov theorem that is effective.

Lemma 5.1. [Brun–Titchmarsh inequality] If x > q we have

π(x, q, a) ≤ 2x

ϕ(q) log(x/q)
.

The lemma in this form is due to Montgomery and Vaughan [17]. Note that the inequality

gives an upper bound for π(x, q, a) that is of the expected order of magnitude, namely

x/(ϕ(q) logx), if q < x1−ε. When q is of order of magnitude xα, the upper bound provided

by the lemma is presumably too large by a factor 2/(1 − α).
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A result similar to the following lemma can be found in Timofeev [19], Theorem 2.

Lemma 5.2. [effective Bombieri–Vinogradov inequality] There are absolute, effectively

computable positive numbers c1, c2 such that for all numbers x ≥ 3, there is an integer

set S(x) ⊂ [(logx)1/2, exp
(

(log x)1/2
)

] of cardinality 0 or 1, such that for each number

Q ∈ [x1/3 logx, x1/2],

∑

q≤Q

′
max

2≤y≤x
max

gcd(a,q)=1

∣

∣

∣

∣

ψ(y, q, a)− y

ϕ(q)

∣

∣

∣

∣

≤ c1x
1/2Q(logx)5 + c1x exp

(

−c2(logx)1/2
)

,

where the dash indicates that if S(x) = {s1}, then no q in the sum is divisible by s1.

Proof. We follow Vaughan’s proof of Bombieri’s theorem, see Davenport [8, Chapter 28].

There is an effectively computable positive number C such that for any number X > 2,

there is at most one natural number s1 ≤ X for which there is a primitive (real) character

χ1 with modulus s1, and for which the L-function L(s, χ1) has a real zero β1 > 1−C/ logX.

Further, if s1 exists, it exceeds logX. Let S(x) be the set of such integers s1 for X =

exp
(

(log x)1/2
)

. Thus S(x) is either {s1} or the empty set.

For a Dirichlet character χ to the modulus q, let

ψ(y, χ) =
∑

n≤y

Λ(n)χ(n).

Also, let δ(χ) = 1 if χ is the principal character, and otherwise let δ(χ) = 0. We consider

|ψ(y, χ)− δ(χ)y| for q ≤ exp
(

(logx)1/2
)

, q not divisible by s1 if s1 exists, and 2 ≤ y ≤ x.

Any real zero of the L-function L(z, χ) must be at most 1 − C/(log x)1/2. It then follows

from (8) on page 123 of [8] that

|ψ(y, χ)− δ(χ)y| ≤ 2y1−C/(log x)1/2

+O
(

y exp
(

−C ′(log y)1/2
))

,

where C ′ and the O-constant are effectively computable. We thus have uniformly for q ≤
exp

(

(log x)1/2
)

with q not divisible by any member of S(x) that

max
2≤y≤x

|ψ(y, χ)− δ(χ)y| = O
(

x exp
(

−c(log x)1/2
))

, (5.1)

where c = min{C,C ′}.
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Let

E(x, q) = max
2≤y≤x

max
gcd(a,q)=1

∣

∣

∣

∣

ψ(y; q, a)− y

ϕ(q)

∣

∣

∣

∣

.

We have from the argument on page 163 of [8] that

∑

q≤Q

′
E(x, q) = Q(logx)2 + logx

∑

q≤Q

′ 1

ϕ(q)

∑

χ mod q

∗
max

2≤y≤x
|ψ(y, χ)− δ(χ)y|, (5.2)

where
∑∗

indicates the summation is over primitive characters. Let c3 = min{1, c/2} and

let Q′ = exp
(

c3(logx)1/2
)

. Then by (5.1),

∑

q≤Q′

′ 1

ϕ(q)

∑

χ mod q

∗
max

2≤y≤x
|ψ(y, χ)− δ(χ)y| = O

(

x exp
(

−c3(logx)1/2
))

. (5.3)

From (2) on page 162 of [8] (Vaughan’s inequality), we have for any number U with

1 ≤ U < x,

∑

U<q≤2U

1

ϕ(q)

∑

χ mod q

∗
max

2≤y≤x
|ψ(y, χ)| = O

((

x/U + x5/6 + x1/2Q
)

(logx)4
)

.

(Note that since q > 1 in the sum, any primitive χ mod q is nonprincipal.) Thus, as on

page 164 of [8], we have

∑

Q′<q≤Q

1

ϕ(q)

∑

χ mod q

∗
max

2≤y≤x
|ψ(y, χ)| = O

((

x

Q′ + x5/6 log x+ x1/2Q

)

(logx)4
)

,

where there is no restriction on the divisibility of q by a member of S(x). Putting this

estimate together with (5.2) and (5.3), we have

∑

q≤Q

′
E(x, q) = O

(

x1/2Q(logx)5 + x exp
(

−c2(logx)1/2
))

for any choice of c2 with c2 < c3. This completes the proof of the lemma.

Lemma 5.3. With the same notation and hypotheses as Lemma 5.2, we have

∑

q≤Q

′
max

gcd(a,q)=1

∣

∣

∣

∣

π(x, q, a)− li(x)

ϕ(q)

∣

∣

∣

∣

≤ c4x
1/2Q(logx)5 + c4x exp

(

−c2(logx)1/2
)

,
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where c2 is as in Lemma 5.2, and c4 is an absolute, effectively computable number.

Proof. First note that one may replace the expressions ψ(y, q, a) in Lemma 5.2 with

θ(y, q, a), since

|ψ(y, q, a)− θ(y, q, a)| ≤
∑

n≤y
n is a power

log y = O
(

y1/2 log y
)

.

Thus, the result follows directly from Lemma 5.2 and the identity

π(x, q, a) =
θ(x, q, a)

logx
+

∫ x

2

θ(y, q, a)

y(log y)2
dy.

In fact, one can save a factor of log x using this identity, but this is unimportant.

Lemma 5.4. [Deshouillers–Iwaniec] There is an effectively computable function xε, de-

fined for positive numbers ε, and absolute and effectively computable positive numbers

c5, c6 with the following property. For arbitrary numbers ε, x,Q with ε > 0, x ≥ xε, and

x1/2 ≤ Q ≤ x1−ε, and for an arbitrary integer a with 0 < |a| < xε, we have for almost all

integers q ∈ [Q, 2Q] with gcd(q, a) = 1, the number of exceptions being less than Qx−εc6 ,

π(x, q, a) ≤ (4/3 + εc5)x

ϕ(q) log(x/q)
.

This result was announced in [9], and a sketch of the proof was presented in [10]. No claim

of effectivity for c1, c2, xε was made by these authors, but their methods are, at least in

principle, effective.

6. Sieved primes

The goal of this section is to prove a result on the distribution of primes r with r− 1 free

of prime factors in some given set, our proof closely following an argument of Balog [4].

Before stating this result we first present an elementary lemma.

Lemma 6.1. We have for any number t > 1 that

∑

d<t

1

ϕ(d)
=

ζ(2)ζ(3)

ζ(6)
log t+ ν + O

(

log(2t)

t

)

,
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where ζ is the Riemann zeta-function and where ν is a constant identified below

Proof. By writing

1

ϕ(d)
=

1

d

∑

u|d

µ2(u)

ϕ(u)
,

with µ the Möbius function, we have (with γ the Euler–Mascheroni constant)

∑

d<t

1

ϕ(d)
=
∑

u<t

µ2(u)

ϕ(u)

∑

d≤t, u|d

1

d
=
∑

u<t

µ2(u)

ϕ(u)

1

u

(

log

(

t

u

)

+ γ + O
(u

t

)

)

= log t
∑

u<t

µ2(u)

uϕ(u)
+
∑

u<t

µ2(u)(γ − logu)

uϕ(u)
+ O

(

1

t

∑

u<t

µ2(u)

ϕ(u)

)

= log t
∏

p prime

(

1 +
1

p(p− 1)

)

+
∑

u

µ2(u)(γ − logu)

uϕ(u)
+O

(

log(2t)

t

)

=
ζ(2)ζ(3)

ζ(6)
log t+ ν +O

(

log(2t)

t

)

,

where ν =
∑

u µ
2(u)(γ − logu)/(uϕ(u)).

Proposition 6.2. There are effectively computable positive functionsXε, δε of the positive

variable ε satisfying the following property. If x ≥ Xε and Q is a set of primes in the interval

(1, x1/2] with
∑

q∈Q

1

q − 1
≤ 3

11
− ε, (6.1)

then there are at least δεx/(logx)2 primes r ≤ x such that every prime factor q of r − 1

satisfies q ≤ x1/2 and q /∈ Q.

Proof. Let 0 < ε < 3/11, let x be large and suppose we have a set of primes Q satisfying

(6.1). Let β be a small positive number to be determined later. For a prime r ≤ x, let g(r)

denote the number of factorizations of r − 1 as lh, where

x1/2−2β < l < x1/2−β, x1/2+β < h < x1/2+2β,

lh is not divisible by any member of Q,

l is not divisible by any member of S(x),

h is not divisible by any prime larger than x1/2,
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where S(x) is defined in Lemma 5.2. It may be of course that g(r) = 0. Let N denote the

number of primes r ≤ x with g(r) > 0. Our goal is to get a good lower bound for N . From

Cauchy’s inequality, we obtain

N ≥





∑

r≤x

g(r)





2



∑

r≤x

g(r)2





−1

.

Our first task is to get an upper bound for
∑

r≤x g(r)
2, and to do this we shall ignore

the non-divisibility requirements in the definition of g(r) and use only the relatively simple

Lemma 5.1. We have, with [a, b] denoting the least common multiple of a, b,

∑

r≤x

g(r)2 ≤
∑

r≤x

∑

l1,l2|r−1

x1/2−2β<l1,l2<x1/2−β

1 =
∑

x1/2−2β<l1,l2<x1/2−β

π(x, [l1, l2], 1).

By Lemma 5.1, we thus have

∑

r≤x

g(r)2 ≤ 2x
∑

x1/2−2β<l1,l2<x1/2−β

1

ϕ([l1, l2]) log(x/[l1, l2])

<
x

β logx

∑

x1/2−2β<l1,l2<x1/2−β

1

ϕ([l1, l2])
.

We have

∑

x1/2−2β<l1,l2<x1/2−β

1

ϕ([l1, l2])
=

∑

d<x1/2−β

∑

gcd(l1,l2)=d

x1/2−2β<l1,l2<x1/2−β

1

ϕ(l1l2/d)

≤
∑

d<x1/2−β

∑

a,b<x1/2−β/d

1

ϕ(abd)

≤
(

∑

d<x

1

ϕ(d)

)3

.

By Lemma 6.1, we conclude that

∑

r≤x

g(r)2 = O

(

1

β
x(logx)2

)

.
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We now turn our attention to the heart of the proof, which is to obtain a good lower

bound for
∑

r≤x g(r), and for this we shall use Lemmas 5.3 and 5.4. Let L denote the set

of integers l with x1/2−2β < l < x1/2−β and l is not divisible by any member of S(x). And

let H denote the set of integers h with x1/2+β < h < x1/2+2β. To begin, we have

∑

r≤x

g(r) ≥
∑

l∈L
π(x, l, 1)−

∑

l∈L
q|l for some q∈Q

π(x, l, 1)

−
∑

h∈H
q|h for some q∈Q

π(x, h, 1)−
∑

h∈H
q|h for some prime q>x1/2

π(x, h, 1)

= S1 − S2 − S3 − S4, say.

For S1 we use Lemma 5.3, getting

S1 = li(x)
∑

l∈L

1

ϕ(l)
+ O

(

x

(logx)2

)

.

(Note that Lemma 5.3 supports a smaller error estimate than used here.) By the above

asymptotic estimate for the sum of 1/ϕ(d), and using that S(x) is either empty or has a

single member greater than (logx)1/2, it follows that with ξ = βζ(2)ζ(3)/ζ(6),

S1 = ξx+O(x/(logx)1/4).

For S2 we again use Lemma 5.3, getting

S2 ≤ li(x)
∑

q∈Q

∑

l∈L, q|l

1

ϕ(l)
+O

(

x

(logx)2

)

≤ li(x)
∑

q∈Q

1

q − 1

∑

x1/2−2β/q<l<x1/2−β/q

1

ϕ(l)
+O

(

x

(logx)2

)

.

By Lemma 6.1 we have that

∑

x1/2−2β/q<l<x1/2−β/q

1

ϕ(l)







= β logx+ O(q log(2x)x2β−1/2), for q < x1/2−2β

≤ β logx+ O(q log(2x)xβ−1/2), for x1/2−2β ≤ q ≤ x1/2−β

= 0, for q > x1/2−β.

Thus,

S2 ≤ ξx
∑

q∈Q

1

q − 1
+ O

(

x

logx

)

.
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We estimate S3 by using Lemma 5.4 with “ε” chosen as β and with “Q” being various

powers of 2 so that the intervals [Q, 2Q] cover the interval (x1/2+β, x1/2+2β). If h is an

exceptional modulus in Lemma 5.4, we use the trivial estimate π(x, h, 1) ≤ x/h. We thus

get

S3 =
∑

h∈H
q|h for some q∈Q

π(x, h, 1)

≤ (4/3 + O(β))x
∑

h∈H
q|h for some q∈Q

1

ϕ(h) log(x/h)
+O

(

x

logx

)

≤ (8/3 + O(β))
x

logx

∑

h∈H
q|h for some q∈Q

1

ϕ(h)
+O

(

x

logx

)

≤ (8/3 + O(β))
x

logx

∑

q∈Q

1

q − 1

∑

x1/2+β/q<h<x1/2+2β/q

1

ϕ(h)
+ O

(

x

log x

)

= (8/3 + O(β))ξx
∑

q∈Q

1

q − 1
+O

(

x

logx

)

.

For S4 it is sufficient to use Lemma 5.1. Note that

∑

h∈H
q|h for some prime q>x1/2

1

ϕ(h)
≤

∑

x1/2<q≤x1/2+2β

q prime

1

q − 1

∑

t≤x2β

1

ϕ(t)
.

By Mertens’ theorem, the first sum on the right is O(β), and by our earlier estimates, the

second sum is O(β log x). Thus the sum
∑

1/ϕ(h) is O(β2 logx), so that with Lemma 5.1,

we have

S4 ≤ 2x
∑

h∈H
q|h for some prime q>x1/2

1

ϕ(h) log(x/h)

= O

(

x

logx

∑

h∈H
q|h for some prime q>x1/2

1

ϕ(h)

)

= O(β2x).
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Putting together our estimates for S1, S2, S3, S4 we have that

∑

r≤x

g(r) ≥ S1 − S2 − S3 − S4

≥ ξx



1 − (11/3 + O(β))
∑

q∈Q

1

q − 1



+ O(β2x) +O(x/(logx)1/4)

≥ ξx
(

1 − (11/3 + O(β))(3/11− ε)
)

+ O(x/(logx)1/4)

= ξx(11ε/3 + O(β)) +O(x/(logx)1/4).

Thus, if β is chosen as a small absolute constant times ε, we have

∑

r≤x

g(r) ≥ εξx.

Using this with our upper bound for
∑

r≤x g(r)
2, we get the desired estimate for N , where

we may choose δε as a small constant times ε5. This completes the proof of the proposition.

Remarks. By using the results of Bombieri–Friedlander–Iwaniec instead of Lemma 5.4 one

can do better. In fact, by the method of Friedlander [13] we can not only replace “3/11” with

“1/2” in Proposition 6.2, but the number of primes r satisfying the condition is of order of

magnitude π(x). However, the results of Bombieri–Friedlander–Iwaniec involve constants

that are not effectively computable. If one is not concerned with effective constants, this

stronger form of Proposition 6.2 would support the conclusion of Theorem 4.1 for D >

(logn)1+ε.

7. The continuous Frobenius problem

Our goal in this section is to present a proof of an inequality that might be viewed as a

continuous analogue of the Frobenius postage problem. Recall that in this problem one is

given a finite set of positive integers with gcd 1, so that every sufficiently large integer may

be written as a nonnegative integral linear combination of the given set. The problem is

to find the largest integer which cannot be so represented. There is a simple formula for

this largest integer in the case that the given set has just two members, but there is no

known formula in the general case. In fact, the problem of determining this largest integer

is known to be NP-hard. Erdős and Graham have posed extremal variants of the Frobenius
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problem, such as finding how many members the given set may have in an initial interval

if a given number is not representable. Many of their questions were answered in [11] and

[15]. Using these results, Lev was able to get a result only a little weaker than what we

present in the proposition below. The version we present is due to Bleichenbacher, and the

proof does not use the earlier work on the Frobenius problem.

Proposition 7.1. (Daniel Bleichenbacher) Suppose S is an open subset of the positive

reals that is closed under addition, and such that 1 6∈ S. Then for any number t ∈ (0, 1],

the dx/x measure of S ∩ (0, t) is less than t.

Proof. We actually shall prove a little more. Let M be a positive differentiable measure on

the positive reals, with derivative m. Thus, if S is any measurable subset of the positive

reals with characteristic function χS , we have

M(S) =

∫ ∞

0

χS(x)m(x)dx.

Let S be as in the hypothesis of the theorem, and first suppose that St := S ∩ (0, t) is

a finite union of open intervals; that is,

St =
n
⋃

i=1

(ai, bi),

where

t ≥ b1 ≥ a1 ≥ · · · ≥ bn ≥ an ≥ 0. (7.1)

Let a = (a1, . . . , an),b = (b1, . . . , bn). The condition that 1 is not in the additive semigroup

generated by St is equivalent to the assertion that for all vectors h ∈ (N≥0)
n,

either h · a ≥ 1 or h · b ≤ 1. (7.2)

That is, it is not the case that h · a < 1 < h · b.

Suppose now that we fix the vector b and assume that

t ≥ b1 > b2 > · · · > bn > 0. (7.3)

If j > 1/bn is an integer, then (7.2) implies that we must have an ≥ 1/j. In particular, we

must have an ≥ bn/2. Hence, the set of vectors a which, with the fixed vector b, satisfy
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(7.1) and (7.2) forms a compact subset of (R>0)
n. Thus there is a choice of the vector a

which maximizes M(St) for the given vector b. Call this maximum value Mb and assume

that a is fixed at a choice which produces this maximum.

Since we allow empty intervals, that is, we allow ai = bi, it is clear that if some

coordinates of b are deleted to form a shorter vector b′ then Mb′ ≤Mb. Thus, by possibly

replacing b with a shorter vector, we may assume that each ai < bi. We now show that we

may assume that each ai−1 > bi for 2 ≤ i ≤ n. For suppose some ai−1 = bi. We may then

consolidate the two intervals (ai, bi), (ai−1, bi−1) into one interval (ai, bi−1). Indeed, if not,

then now 1 is representable by a sum of members of St ∪ bi, so that bi must be involved in

the sum, say with positive integral coefficient c. If c = 1, then replace bi in the sum with

bi + ε, for a suitably small ε > 0, and then replace another member x ∈ St of the sum with

x− ε. (There must be another number in the sum since bi < 1.) If ε is small enough, both

bi + ε and x − ε are in St, and we have represented 1 as a sum of members of St. And if

c ≥ 2, then since bi + ε/(c− 1) and bi − ε are both in St for ε small enough, we can replace

the c copies of bi in the sum with c− 1 copies of bi + ε/(c− 1) and one copy of bi − ε, and

so represent 1 as a sum of members of St. Either way, we reach a contradiction, and so the

consolidation of the two abutting intervals continues to enjoy the property that 1 is not in

the additive semigroup generated by the intervals. Hence, we may assume that ai−1 > bi

for 2 ≤ i ≤ n. Thus, we may assume that the vector a satisfies

t ≥ b1 > a1 > · · · > bn > an > 0. (7.4)

Now let
H0 = {h ∈ (N≥0)

n : h · a < 1},

H1 = {h ∈ (N≥0)
n : h · a = 1},

H2 = {h ∈ (N≥0)
n : h · a > 1}.

Since each ai > 0, it follows that H0, H1 are finite sets. We now show that H1 is nonempty.

Suppose not. Let u = (1, 1, . . . , 1). We claim that if ε > 0 is small enough, then the pair

a− εu,b still satisfies (7.2) and (7.4). This would create a choice for St with strictly larger

M(St), a contradiction, thus showing that H1 is nonempty. It is clear that we may choose

ε > 0 small enough so as to preserve the condition (7.4). For h ∈ H0 we have h · b ≤ 1, so
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that the vectors in H0 do not pose a problem for condition (7.2), and since H1 is assumed

empty,H1 also does not pose a problem. There are only finitely many h ∈ H2 with h·a ≤ 2.

We may choose ε > 0 small enough so that h · (a− εu) ≥ 1 for all such h. But if we choose

ε < an/2, then if h · a > 2, then h · (a − εu) > 1
2h · a > 1. Hence, as claimed, if ε > 0 is

small enough, a− εu,b still satisfy (7.2) and (7.4), providing a contradiction which shows

that H1 is nonempty.

Let h ∈ H1. For notational convenience, let an+1 = bn+1 = 0. And let ek be the k-th

standard basis vector in Rn. For any k, since h · a = 1 and ak > ak+1, we have

h · a − ak + ak+1 < 1.

Suppose that hk > 0. Let h′ = h − ek + ek+1 in the case that k < n, and let h′ = h − ek

in the case that k = n. Then h′ ∈ H0. Hence, from (7.2), we have that h′ · b ≤ 1. That is,

h · b − bk + bk+1 ≤ 1.

Using that h ∈ H1 we get that

h · (b− a) = h · b − 1 ≤ bk − bk+1.

Thus, we have

hkh · (b − a) ≤ hk(bk − bk+1), (7.5)

an inequality that clearly continues to hold even if hk = 0.

Let v ∈ Rn and let

fv(x) = M

(

n
⋃

i=1

(ai + xvi, bi)

)

.

Note that

f ′
v(0) = −v ·m(a),

where m(a) = (m(a1), . . . ,m(an)). Note too that by the maximality of a, if the vector

a + xv satisfies (7.2) and (7.4) for all x in some interval [0, ε) with ε > 0, then f ′
v(0) ≤ 0,

that is, v ·m(a) ≥ 0. In fact, this event occurs whenever h · v ≥ 0 for all h ∈ H1. Indeed,
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suppose so, and suppose that h′ ·(a+xv) < 1 < h ·b for some h′ ∈ (N≥0)
n. Since h ·b ≤ 1

for all h ∈ H0, we have h′ 6∈ H0. If h ∈ H1, then h · (a + xv) = 1 + xh · v ≥ 1 for all

x ≥ 0, so that h′ 6∈ H1. For any given ε > 0, there are only finitely many h ∈ H2 with

h · (a + εv) < 1 < h · a. Reducing the size of ε to a small enough positive quantity makes

this set of h empty, and so h′ 6∈ H2. It follows that for ε > 0 small enough, if h · v ≥ 0 for

all h ∈ H1, then a + xv satisfies (7.2) and (7.4) for 0 ≤ x < ε, and so v ·m(a) ≥ 0.

We now apply a theorem of Farkas [13]:

Lemma. (J. Farkas) Suppose A is an n×k real matrix and m ∈ Rn. Then the inequalities

Av ≥ 0,m · v < 0 are unsolvable for a vector v ∈ Rn if and only if there is a vector

p ∈ Rk with p ≥ 0 and pTA = m.

(Note that we say a vector is ≥ 0 when each entry of the vector is ≥ 0.) We apply this

lemma to the matrix A whose rows are the u vectors in H1 and to the vector m = m(a).

We have shown that Av ≥ 0 implies that m · v ≥ 0. Thus the lemma implies there

is a vector p ∈ Ru with p ≥ 0 and pTA = m. Say H1 = {h1, . . . ,hu}, and let each

hj = (hj1, . . . , hjn). We have

u
∑

j=1

pjhji = m(ai) for 1 ≤ i ≤ n.

Multiplying (7.5) applied to hj by pj and summing over j we have, when 1 ≤ k ≤ n,

u
∑

j=1

pjhjk

n
∑

i=1

hji(bi − ai) ≤
u
∑

j=1

pjhjk(bk − bk+1) = m(ak)(bk − bk+1).

Multiplying corresponding inequalities by ak and summing over k, we get
n
∑

k=1

ak

u
∑

j=1

pjhjk

n
∑

i=1

hji(bi − ai) ≤
n
∑

k=1

akm(ak)(bk − bk+1). (7.6)

The left side of (7.6) is

u
∑

j=1

pj

n
∑

k=1

akhjk

n
∑

i=1

hji(bi − ai) =

u
∑

j=1

pj

n
∑

i=1

hji(bi − ai)

=

n
∑

i=1

(bi − ai)

u
∑

j=1

pjhji

=
n
∑

i=1

(bi − ai)m(ai).
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Thus,
n
∑

i=1

m(ai)(bi − ai) ≤
n
∑

k=1

akm(ak)(bk − bk+1). (7.7)

We now apply (7.7) with the measure M being dx/x. Then each m(ai) = 1/ai, so

that
n
∑

i=1

(bi/ai − 1) ≤
n
∑

k=1

(bk − bk+1) ≤ t. (7.8)

However, M((ai, bi)) = log(bi/ai) < bi/ai − 1. Hence, by (7.8),

Mb =
n
∑

i=1

log(bi/ai) < t.

Since Mb < t for each choice of b satisfying (7.3), it remains to handle the case of St

being the union of infinitely many disjoint open intervals. Suppose St =
⋃∞

i=1(ai, bi), where

the intervals are non-empty and disjoint. For each n, (7.8) implies that
∑n

i=1(bi/ai−1) ≤ t.

Thus,
∞
∑

i=1

(bi/ai − 1) ≤ t.

But

M(St) =
∞
∑

i=1

log(bi/ai) <
∞
∑

i=1

(bi/ai − 1) ≤ t,

so M(St) < t. This concludes the proof of the theorem.

Remarks. The inequality of the theorem is best possible. Indeed, suppose Sn is the addi-

tive semigroup generated by (1/(n+ 1), 1/n), where n is a positive integer. Then 1 is not

in Sn. Further, we have

M(Sn
t ) ≥

btnc
∑

j=1

log(1 + 1/n) = btnc(1/n+ O(1/n2)) ∼ t as n→ ∞.

We also remark that it is not difficult to obtain inequalities for Mα(St), where Mα is the

dx/xα measure and 0 ≤ α < 1. This may be done as a corollary of the result for the dx/x

measure, or as a consequence of (7.7).
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8. Proof of Theorem 4.1

Recall that D > (logn)11/6+ε. Let x = D6/11−ε/4 so that if n is sufficiently large, we have

x ≥ (logn)1+3/ log log log n. Let α = α(x) = 1/ log logx. For a prime r ≤ x, let Q(r) denote

the set of prime divisors q of r − 1 with

xα2

< q ≤ x1/2 and ord (n(r−1)/q mod r) = q.

We suppose that the sets Q(r) have been computed for each prime r ≤ x. Further, let

Q denote the union of the sets Q(r) over all primes r ≤ x. Finally, for each q ∈ Q, find

the least prime rq with q ∈ Q(rq). By using a modified sieve of Eratosthenes to find the

prime factorizations of every integer up to x, the time to do all of these calculations is

Õ(x logn) = Õ(D12/11).

We have, for n sufficiently large,

∑

q∈Q

1

q
>

3 − ε

11
. (8.1)

Indeed, suppose not. We apply Proposition 6.2 to Q, with the “ε” of that result being

the current ε/11. Thus, there is some δ > 0 such that for n sufficiently large we have at

least δx/(logx)2 primes r ≤ x such that every prime factor of r − 1 is below x1/2 and not

in Q. But, as remarked at the end of the proof of Proposition 4.1, the number of primes

r ≤ x that are not counted by R(x, n) is O(x/(logx)log log log x). Thus, for n sufficiently

large there is a prime r ≤ x such that r is counted by R(x, n) and such that r − 1 has

every prime factor below x1/2 and not in Q. But being in R(x, n) implies that there is a

prime factor q of r− 1 such that q > xα2

and ord (n(r−1)/q mod r) = q. As r− 1 has all of

its prime factors below x1/2, this prime q must be in Q. But this contradicts the fact that

r − 1 has no prime factors from Q. Hence (8.1) holds.

For a bounded interval I, let |I| denote the length of I. Let N = d3α−2 logxe, and let

Ii = [x(i−1)/N , xi/N) for i = 1, 2, . . . , N,

so that the intervals Ii partition [1, x). Note that the “expected” number of primes in Ii

is about |Ii|/ log(xi/N ). For each choice of i, let

k0
i = min{#(Ii ∩ Q), b|Ii|/ log(xi/N )c},
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and let

ki =

{

0, if k0
i ≤ 2α−2

k0
i , otherwise.

Further, let

Ji = (x(i−1)/N , x(i−1)/N + ki log(xi/N )),

and let Qi denote the set of the least ki primes in Q∩ Ii. Note that each Ji ⊂ Ii, and the

sets Qi are disjoint with their union contained in Q. Further, Ji = ∅ for i < α2N .

We now show that if n is sufficiently large we have

∑

i

∑

q∈Qi

1

q
>

3

11
− ε

10
. (8.2)

The difference between
∑

i

∑

q∈Qi

1
q

and
∑

q∈Q
1
q

comes from two sources: intervals Ii with

k0
i ≤ 2α−2 and intervals Ii with #(Ii ∩ Q) > b|Ii|/ log(xi/N )c. The sum of 1/q for primes

q involved in intervals Ii with k0
i ≤ 2α−2 is at most

2α−2
∑

i≥α2N

1

x(i−1)/N
<

2x2/N

α2xα2(x1/N − 1)
<

1

α4xα2

for n sufficiently large. Thus, this contribution is negligible. The sum of 1/q for the largest

#(Ii ∩ Q) − b|Ii|/ log(xi/N )c primes q in an interval Ii with #(Ii ∩ Q) > b|Ii|/ log(xi/N )c
is estimated as follows. By the prime number theorem, the total number of primes in Ii is

at most

b|Ii|/ log(xi/N )c +O

(

xi/N

(log(xi/N ))2

)

.

Thus, the contribution to the sum of 1/q for the possibly extra primes that have been

deleted from Ii ∩Q is

O

(

1

(log(xi/N ))2

)

= O

(

N2

i2(logx)2

)

.

Summing for i ≥ α2N , the contribution is

O

(

N

α2(logx)2

)

= O

(

1

α4 log x

)

,

so that for sufficiently large n, this contribution is negligible as well. This proves (8.2).
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Let Si be the image of Ji under the natural logarithm map. That is, if Ji = (ai, bi),

then Si = (log ai, log bi). We now show that if n is sufficiently large, then

∑

i

∫

Si

du

u
>

3

11
− ε

9
. (8.3)

Indeed, it follows from (8.2) that

∑

i

ki

x(i−1)/N
>

3

11
− ε

10
. (8.4)

Further, if Si 6= ∅, that is, if ki > 0, then

∫

Si

du

u
= log

(

log
(

x(i−1)/N + ki log(xi/N )
)

log
(

x(i−1)/N
)

)

.

Now,

log
(

x(i−1)/N + ki log(xi/N )
)

> log(x(i−1)/N ) +
ki log(xi/N )

x(i−1)/N
−
(

ki log(xi/N )

x(i−1)/N

)2

.

Hence,

∫

Si

du

u
>

ki log(xi/N )

x(i−1)/N log(x(i−1)/N )
− 2

log(x(i−1)/N )

(

ki log(xi/N )

x(i−1)/N

)2

=
ki log(xi/N )

x(i−1)/N log(x(i−1)/N )

(

1 − 2ki log(xi/N )

x(i−1)/N

)

>
ki

x(i−1)/N

(

1 − 2ki log(xi/N )

x(i−1)/N

)

.

Note that

ki log(xi/N ) ≤ xi/N − x(i−1)/N = x(i−1)/N (x1/N − 1) <
α2

2
x(i−1)/N .

Thus,
∫

Si

du

u
>

ki

x(i−1)/N
(1 − α2),

and so (8.3) follows from (8.4) for n sufficiently large.
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Now let S be the additive semigroup generated by

⋃

i

1

log(2D)
Si.

Note that if Si 6= ∅ we have x(i−1)/N ≤ x1/2, so that

log(xi/N )

log(2D)
≤
(

1

2
+

1

N

)

logx

logD
=

(

1

2
+

1

N

)(

6

11
− ε

4

)

<
3

11
− ε

9

for sufficiently large n. Thus, from (8.3), if n is sufficiently large,

∫ 3/11−ε/9

0

χS(u)

u
du =

∑

i

∫

Si

du

u
>

3

11
− ε

9
.

It thus follows from Proposition 7.1 that 1 ∈ S. Hence, there is a finite subset F of
⋃

i Si and positive integers κf for each f ∈ F such that

∑

f∈F

κff = log(2D).

Let Fi = F ∩ Si and let

κi =
∑

f∈Fi

κf .

Then, for sufficiently large n,

∑

i

κi =
∑

i

∑

f∈Fi

κf ≤
∑

i

1

log(x(i−1)/N )

∑

f∈Fi

κff

<
1

log
(

xα2−N−1
)

∑

f∈Fi

κff =
log(2D)

log
(

xα2−N−1
) < 2α−2,

where for the last inequality, we assumed, as we may, that ε < 1/10. Since for each i with

Si 6= ∅ we have ki > 2α−2, it follows that for each i with κi > 0 there are more than κi

distinct primes in Qi. Label the least such primes q1,i, q2,i, . . . , qκi,i. We have

∣

∣

∣

∣

∣

∣

∑

f∈F

κff −
∑

i

κi
∑

j=1

log(qj,i)

∣

∣

∣

∣

∣

∣

<
∑

i

κi(log(xi/N ) − log(x(i−1)/N )) <
2

α2N
logx ≤ 2

3
.
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Since 1 < e2/3 < 2, it follows that

D <
∏

i

κi
∏

j=1

qj,i < 4D.

We conclude that there is a squarefree integer Q in the interval (D, 4D) supported

solely on primes from Q. By sieving this interval with a modified version of the sieve of

Eratosthenes that produces complete prime factorizations for each integer in this interval,

we may find such an integer Q and with a running time of at most Õ(D). Once such an

integer Q is found, the pairs (rq, q), with q running over the prime factors of Q, form a

period system for n. This completes the proof of the theorem.

We now summarize our algorithm for the construction of a period system.

Algorithm 8.1. We are given an integers n > 1, D > (logn)11/6. This algorithm produces

a period system (r1, q1), (r2, q2), . . . , (rk, qk) for n.

1. Using a modified sieve of Eratosthenes, compute the prime factorizations of every

integer in [1, 4D].

2. For each prime r < D6/11 and prime q | r− 1 with exp((logD)/(log log(2D))2) < q <

D3/11, compute n(r−1)/q mod r.

3. Compute the set S of ordered pairs (r, q) where r, q are as in step 2 and n(r−1)/q 6≡
1 mod r.

4. Compute the set Q of primes q such that (r, q) ∈ S for some r.

5. If there is some integer in [D, 4D] which is squarefree and composed solely of primes

from Q, let d be the least one. If not, replace D with 4D and go to step 1.

6. Using the prime factorization q1q2 · · · qk of d, find for each qi some ri with (ri, qi) ∈ S.

7. Return the pairs (r1, q1), (r2, q2), . . . , (rk, qk).

The time for step 1 is Õ(D). The time for step 2 is Õ(D6/11 log n) = Õ(D12/11).

The remaining calculations take negligible time. Note that for each pair (r, q) ∈ S we have

ord (n(r−1)/q mod r) = q. If step 5 bounces us back to step 1 at least d 1
100

log log(2n)e times,

our D will be greater than (logn)11/6+1/100, and then at most O(1) further iterations will

ensure that D > D100, the notation as in Theorem 4.1. Building this sufficiently large point
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into the implied constant, we have that the running time for our algorithm is Õ(D12/11).

The implied constant is computable in principle. Further, if n is beyond some sufficiently

large point that is computable in principle and if D > (logn)11/6+1/100, the algorithm

produces a period system with d in [D, 4D]; that is, no iteration is required in step 5.

Another consequence is that if n > 1 and D > (logn)11/6+1/100, the algorithm produces a

period system with d ≥ D and d = O(D), the O-constant being computable in principle.

9. Period polynomials

In this section we discuss the construction of the polynomial corresponding to a particular

period system for n. So, we assume we are presented with an integer n > 1 and a period

system for n, that is, a list of ordered pairs (ri, qi) for i = 1, 2, . . . , k satisfying (a), (b),

(c) from section 4. We shall describe a deterministic procedure that either proves that n

is composite or constructs a monic polynomial f ∈ (Z/nZ)[x] of degree d = q1q2 · · · qk for

which (2.1), (2.2), and (2.3) hold. The time complexity for this procedure is

Õ

(

max
1≤i≤k

{

qiri logn+ q2i (logn)2
}

+ d3 logn

)

.

If we assume that the period system was produced by Algorithm 8.1, that is, we assume

that d > (logn)11/6, each qi < d3/11, and each ri < d6/11, this time complexity estimate

may be improved to Õ(d8/5 logn).

If ηi = ηri,qi
is the Gaussian period as discussed in section 3, and if η = η1η2 · · · ηk,

then the polynomial f that we hope to produce in this section is the reduction modulo n of

the minimum polynomial for η over Q. As η lives in the potentially very large cyclotomic

field of r1r2 · · · rk-th roots of unity, we shall not produce f by merely multiplying out using

the various conjugates of η. We in fact do this for the minimal polynomials of the various

ηi, but then use another more internal technique for the final assembly of f .

Our algorithm comes in three stages. In the first stage we compute monic polynomials

gi ∈ (Z/nZ)[x] for i = 1, 2, . . . , k with deg gi = qi. These polynomials will have the

property that if n is prime, then they are irreducible modulo n. In the second stage we

attempt to verify (2.1), (2.2), and (2.3) for g1, g2, . . . , gk. If we fail to be able to verify

one of these properties for one of these polynomials we declare n composite and do no
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further work. (Note that failing to be able to verify a property is not exactly the same

as showing the property fails. In the case of property (2.3), which is checked via Euclid’s

algorithm, one may be called to invert a nonzero non-unit in Z/nZ, in which case the

procedure is aborted with a declaration that n is composite. However, it is possible that

the property (2.3) nevertheless holds. Thus, intrinsic in the second stage is a description

of the subroutines used in our attempts to verify the various properties.) Assuming the

properties (2.1), (2.2), and (2.3) hold for each gi, in the third and final stage we assemble

the polynomial f of degree d. It is not necessary to then verify properties (2.1), (2.2), and

(2.3) for f ; we prove that f must satisfy these properties regardless of whether or not n is

prime.

In the case that n is known to be prime, the second stage of the procedure of this

section may be skipped. In this case, the algorithms of this section and the preceding one

may be used to construct an irreducible polynomial over the finite field Fn of close to a

given degree.

The first stage

We suppose that we have a pair (r, q) with r prime, q | r− 1, ord (n(r−1)/q mod r) = q and

q > 1. Let z be a primitive root for r, and for j = 0, 1, . . . , q − 1, let

Sj =

{

zj+lq mod r : l = 0, 1, . . . ,
r − 1

q
− 1

}

.

We can build up these sets altogether by running through z0 mod r, z1 mod r, . . . placing

each residue in its proper set. Or we can build up the sets Sj one at a time by computing

zj mod r and zq mod r, and then build zj+lq mod r from zj+(l−1)q mod r. With either

method, the time for building all of the sets Sj is Õ(r). Note that the time to find a

primitive root z for r is dominated by this same complexity. Indeed, the time to obtain

the complete prime factorization of r − 1 via trial division is Õ(r1/2), and then the time

to check each candidate z to see if it is a primitive root is (log r)O(1).

Now we are ready to compute g(x), the period polynomial for the degree q subfield

of the r-th cyclotomic field. Note that we will be reducing the coefficients of g modulo n,

and this reduction should be performed in all intermediate calculations. Let ζr = e2πi/r.
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Then g(x) is the product of the linear polynomials

x−
∑

m∈Sj

ζm
r , j = 0, 1, . . . , q − 1

in the ring (Z[ζr]/(n))[x]. A multiplication in Z[ζr]/(n) can be performed in time Õ(r log n).

We first take our q linear polynomials in pairs with one left out if q is odd. The products of

all of the pairs can be computed in time Õ(qr logn). We now take the degree 2 polynomials

that we have formed and multiply them in pairs, with at most one pair left out. Again the

total time is Õ(qr logn). We continue in this fashion until no more pairs of equal degree

can be assembled. At the top stage we are multiplying just two polynomials of degree 2t

where 2t+1 is the largest power of 2 not exceeding q. At each point the time to compute all

of the pair products is Õ(qr logn). Since there are O(log q) of these pair-assembly stages

and O(log q) extra polynomials left over at the end, the assembly of all of the factors into

one product g may be accomplished with the time complexity of Õ(qr logn).

We compute the corresponding polynomial gi for each pair (ri, qi) that we have been

given. Thus, the total time for the first stage is

Õ

((

k
∑

i=1

qiri

)

log n

)

.

Note that each gi is in (Z/nZ)[x], though intermediate calculations occur in the larger

ring (Z[ζri
]/(n))[x]. The element

ηi =
∑

m∈S0

ζm
ri

is a Gaussian period and is a root of gi in Z[ζri
]/(n). In subsequent stages of the procedure

of this section we shall not deal with roots explicitly, but only formally as cosets.
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The second stage

For (r, q) one of the pairs in the first stage and with g the polynomial in (Z/nZ)[x] that we

have constructed, let A = Z[x]/(n, g) and let α = x+ (n, g). The time for a multiplication

in the ring A is Õ(q logn). (The principal advantage for dealing with the formal root α

of g rather than the explicit root η is that there is no longer a dependence on r in the

arithmetic.) Thus the time to compute αn is Õ(q(logn)2). And the time to evaluate g(αn),

and so check condition (2.1), is Õ(q2 log n).

For (r, q) again standing for one of our pairs (ri, qi), and starting from αn, which has

already been computed, we compute αnq

via an addition chain that also computes each

αnq/s

for each prime s | q. (If q is prime, then the only choice for s is q itself.) The time

for this is Õ(q2(logn)2). We now can readily determine if condition (2.2) holds.

To check condition (2.3), let β = αnq/s − α for one of the primes s | q. As A is a

free Z/nZ-module with basis 1, α, . . . , αq−1, we have β = h(α) for some h ∈ (Z/nZ)[x]

with either h = 0 or deg h < q. (In fact this is how we represent every element of A

and is what we mean when we say that we have “computed” β—we have computed the

polynomial h.) If h = 0, that is, β = 0, then stop, condition (2.3) fails and n cannot be

prime. So assume h 6= 0. We perform Euclid’s algorithm on h(x), g(x) in (Z/nZ)[x]. After

each division with a nonzero remainder we multiply the remainder by the inverse in Z/nZ

of its leading coefficient so as to make it monic. If we encounter a non-unit in Z/nZ during

this procedure, we declare n composite and stop. Assuming we have not stopped, Euclid’s

algorithm will terminate at a nonzero monic polynomial h0 ∈ (Z/nZ)[x]. (In fact the ideal

(h, g) is equal to (h0).) If deg h0 > 0, then β is not a unit in A; declare n composite and

stop. Otherwise β ∈ A∗, that is, property (2.3) holds. The total time for this attempt to

determine if β is a unit is Õ(q2 logn).

We conclude that the total time for attempting to verify (2.1), (2.2), and (2.3) for

g1, g2, . . . , gk is

Õ

((

k
∑

i=1

q2i

)

(logn)2

)

.
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The third stage

Our goal is to create one polynomial f whose roots are k-fold products of the various roots

of g1, g2, . . . , gk. The principal ideas are already seen in the combination of just 2 polyno-

mials. Suppose f1, f2 are monic polynomials in (Z/nZ)[x] of degrees d1, d2, repsectively,

where d1, d2 > 1 and (d1, d2) = 1. For i = 1, 2 let Ai = Z[x]/(n, fi) and let αi = x+(n, fi).

Assume that properties (2.1), (2.2), and (2.3) hold for the pairs fi, αi for i = 1, 2. From

(2.3), α1 ∈ A∗
1. Let

M(f1, f2)(t) =

d1−1
∏

j=0

αd2nj

1 f2(tα
−nj

1 ),

so that M(f1, f2) is a polynomial in A1[t].

Proposition 9.1. With the above assumptions, M(f1, f2) is a polynomial in (Z/nZ)[t],

monic of degree d1d2, and satisfying properties (2.1), (2.2), and (2.3).

Proof. Let f = M(f1, f2), d = d1d2. It is clear that f is monic and has degree d. Let σ be

the automorphism of A1 that takes α1 to αn
1 as discussed in section 2. Note that σ leaves

the coefficients of f invariant. If β is one of these coefficients and β = h(α1) 6= 0, where

h ∈ (Z/nZ)[x] is 0 or has degree less than d1, then consider the polynomial h(x)−β ∈ A1[x].

It has the d1 roots σjα1 for j = 0, 1, . . . , d1 − 1. From (2.4) and the Easy Fact of section 2

it follows that h(x) − β is either 0 or has degree at least d1. The second cannot occur, so

it is 0, which implies that β = h(0) ∈ Z/nZ. Thus, f ∈ (Z/nZ)[t].

Let A′ = Z[t]/(n, f), α = t + (n, f). We are to show that (2.1), (2,2), and (2.3) all

hold for the pair f, α. We first show that these properties hold in a similar situation.

Let A = Z[x1, x2]/(n, f1(x1), f2(x2)). We have natural embeddings of A1, A2 into

A where αi is identified with xi + (n, f1(x1), f2(x2)) for i = 1, 2. As fi(α
n
i ) = 0 for

i = 1, 2, we have a well-defined endomorphism on A that sends αi to αn
i for i = 1, 2. We

continue to denote this endomorphism as σ. Note that restricted to the subrings A1, A2,

the endomorphism σ is our familiar automorphism from section 2. We now show that (2.1),

(2.2), and (2.3) hold for f, α1α2.
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Using Lemma 2.1, we have

f(t) =

d1−1
∏

j=0

d2−1
∏

l=0

(

t− σj(α1)σ
l(α2)

)

.

Thus, we have f(α1α2) = 0. It is clear either from this product formula for f or from the

fact that σ is an endomorphism of A that f(σ(α1α2)) = f((α1α2)
n) = 0. Thus (2.1) holds.

Further,

(α1α2)
nd

= σd1d2(α1)σ
d2d1(α2) = α1α2.

Thus, (2.2) holds. Say q is a prime factor of d. If q | d1, we have

(α1α2)
nd/q − α1α2 =

(

αnd/q

1 − α1

)

α2.

Note that using (2.3) for α2 we see that α2 ∈ A∗
2 ⊂ A∗. Now for any positive integer u

we have αnd/q

1 − α1 | αnud/q

1 − α1 in A1. Choose u ≡ d−1
2 (mod d1), so that αnud/q

1 − α1 =

αnd1/q

1 − α1, which is seen to be in A∗
1 by (2.3) applied to α1. As A∗

1 ⊂ A∗ we have

(α1α2)
nd/q − α1α2 ∈ A∗. This holds as well by a parallel argument in the case that q | d2,

so that we have (2.3) for α1α2. Note that we have also proved that σ is an automorphism

of A with order d.

To complete the proof of the proposition it will suffice to show that A′ ∼= A with

α ∈ A′ corresponding to α1α2 ∈ A. Consider the mapping φ : A′ → A where φ(α) = α1α2.

Then φ is well-defined, for if g(α) = h(α) with g, h ∈ (Z/nZ)[t], then g(t) = h(t)+u(t)f(t)

for some u ∈ (Z/nZ)[t], so that φg(α) = g(α1α2) = h(α1α2) = φh(α). Clearly φ is a

homomorphism. Suppose φg(α) = 0 where either g is 0 or has degree less than d. Then

g(α1α2) = 0. As σ is an automorphism of A, we have g(σj(α1α2)) = 0 for j = 0, 1, . . . , d−1.

By the fact that (2.3) holds for α1α2 we have (2.4) holding as well, so that the Easy Fact of

section 2 implies that f(t) | g(t) in A[t]. But then g cannot have degree less than d, so that

g = 0. We have shown that φ is injective. Since both A,A′ have nd elements it follows that

φ is also surjective. Thus A′ ∼= A as claimed. This completes the proof of Proposition 9.1.

Armed with Proposition 9.1 we are now ready to assemble our polynomial of degree

q1q2 · · · qk. It is the M -operator applied to g1, g2, . . . , gk. Since the M -operator only applies

40



to two polynomials at a time, we have several choices for applying it to the ensemble of

g’s. An appropriate choice is one where the overall time complexity is least. So we first

examine the time complexity of computing M(f1, f2) in Proposition 9.1.

The time to compute α−1
1 is Õ(d1 logn). The time to compute α−nj

1 from α−nj−1

1 is

Õ(d1(logn)2), so the time to compute all of them is Õ(d2
1(logn)2). We use Corollary 10.8

of [14] to evaluate f2 at the set points tα−nj

1 . If d1 > d2 this takes Õ(d1) operations in A1[t]

with polynomials of degree at most d2, so a total of Õ(d2
1d2 logn). If d1 < d2, the time

complexity is Õ(d1d
2
2 logn). Using our prior partial results, the time to compute αd2nj

1 for

each j and multiply it into f2(tα
−nj

1 ) is Õ(d1d2 logn). Finally we assemble M(f1, f2) by

multiplying the factors in pairs as we did with the assembly of each gi in the first stage of

this section. The time for this is Õ(d2
1d2 logn). Thus, the total time to assemble M(f1, f2)

is

Õ
(

d2
1(logn)2 + d1d2(d1 + d2) logn

)

. (9.1)

Since our time complexity estimate for applying M to two polynomials grows sig-

nificantly with the degrees of the polynomials, it will be advantageous for us to most

often be applying it to polynomials of low degree. Here is our strategy. Among all sets

S ⊂ {1, 2, . . . , k} with
∏

s∈S qs < d1/2 choose the one, call it S1, with this product

maximal, and let this product be denoted d1. Let d2 = d/d1. Say S1 = {s1, s2, . . . , sl}
and let f1 = M(gs1

, gs2
, . . . , gsl

) built up two at a time. By (9.1), the time for this is

Õ(d2
1(logn)2 + d3

1 log n). Let

S2 = {1, 2, . . . , k} \ S1 = {t1, t2, . . . , tk−l}.

We build up f2 = M(gt1, gt2 , . . . , gtk−l
} in the same way as with f1. Since d2/qti

< d1 for

each i by our choice of d1, the time complexity to build up f2 is dominated by the expression

in (9.1). Finally, we compute M(f1, f2). The time complexity is given by (9.1), so that this

expression stands as the total time complexity for the final stage of our procedure.

It remains now to estimate d1, d2. For this we shall assume that the period system

(r1, q1), (r2, q2), . . . , (rk, qk) was produced by Algorithm 8.1. In particular, we assume that

d > (logn)11/6, each qi is at most d3/11, and each ri is at most d6/11. We show that

d1 ≥ d2/5, d2 ≤ d3/5. If the product of the largest two qi’s is at least d2/5 then we choose d1
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as this product or the complementary product of the remaining qi’s, whichever is smaller.

This complementary product must be at least d5/11. So now assume that the product of the

largest two qi’s is smaller than d2/5. Then every remaining qi is smaller than d1/5. Hence

by multiplying them in one at at time to our product we may achieve a subset product

that is in (d2/5, d3/5). The smaller of this product and its complementary product may be

taken as d1.

As each ri is bounded by d6/11, the time complexity of the first stage of this section

is Õ(d6/11 logn). Further, the time complexity for second stage is Õ(d6/11(logn)2).

Using that d2/5 ≤ d1 < d1/2 < d2 ≤ d3/5 and that d > (logn)11/6 we find that the

time complexity for the entire procedure of this section is dominated by our estimate for

the third stage, which reduces to

Õ
(

d8/5 logn
)

.

In the case of primality testing when we shall choose d of order of magnitude (logn)2, the

time complexity for the procedure of this section is Õ((logn)21/5).

It may be useful at this point to highlight the case when we use the above methods

to construct an irreducible polynomial modulo a prime.

Algorithm 9.2. Let p be a prime and let D be an integer with D > (log p)1.84. This

deterministic algorithm constructs an irreducible polynomial f(x) ∈ Fp[x] of degree d,

where D ≤ d = O(D). Moreover, if p is larger than an effectively computable bound, we

have d ≤ 4D.

1. Using Algorithm 8.1, find a period system (r1, q1), (r2, q2), . . . , (rk, qk) for n = p with

d := q1q2 · · · qk ≥ D and d = O(D). (For p beyond an effectively computable bound,

this algorithm finds such a number d with d ≤ 4D.)

2. With the algorithm of this section, but skipping stage 2, construct a monic polynomial

f(x) ∈ Fp[x] of degree d.

3. Return f(x).

Algorithm 9.2 fulfills the conditions of Theorem B of the Introduction, and so we have

proved this theorem.
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10. The primality test

In this section we summarize our primality test.

Algorithm 10.1. We are given an integer n > 1. This deterministic algorithm determines

whether n is prime or composite.

1. Check if n is a power other than a first power. If it is, declare n composite and stop.

2. Let D = d(log2 n)2e. Using algorithm 8.1, find a period system (r1, q1), (r2, q2), . . . ,

(rk, qk) for n with d := q1q2 · · · qk ≥ D and d = O(D). (For n beyond an effectively

computable bound, we will have d ≤ 4D as discussed in section 8.)

3. Let B = bd1/2 log2 nc. Check to see if n has a prime factor in [1, B]. If n has such a

factor that is not equal to n, declare n composite and stop. If n itself is this prime

factor, then declare n prime and stop.

4. Using the algorithm of section 9, attempt to find a monic polynomial f in (Z/nZ)[x]

of degree d and for which (2.1), (2.2), (2.3) hold. It may be that the algorithm of

section 9 finds n to be composite, in which case no further work is required.

5. For each integer a, 1 ≤ a ≤ B, check if (x + a)n ≡ xn + a mod (n, f(x)). If one of

these congruences should fail, declare n composite and stop. Else, declare n prime and

stop.

We have seen in Theorem 2.5 and Lemma 3.1 that Algorithm 10.1 is correct. The time

for step 1 using a Newton iteration to approximate the k-th root of n for 2 ≤ k ≤ log2 n is

Õ((logn)3). As we have seen in section 8, the time for step 2 is O((logn)24/11), since D =

O((logn)2). The time for step 3 is Õ((logn)3). As we have seen in section 9, the time for

step 4 is Õ((logn)21/5). The time to verify one of the congruences in step 5 is Õ(d(logn)2),

so the total time for step 5 is bounded by Õ(d3/2(logn)3). Since d = O(D) = O((logn)2)

it follows that the time for step 5 is bounded by Õ((logn)6). So, in total, the time for

Algorithm 10.1 is Õ((logn)6).
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