ON CARMICHAEL'S CONJECTURE

CARL POMERANCE

ABSTRACT. A sufficient condition is given for a natural number x in order that the equation $\varphi(x) = \varphi(y)$ has only the solution y = x. It is conjectured that no natural numbers satisfy this sufficient condition.

Denote by N(m) the number of solutions x to the equation $\varphi(x)=m$, where φ is Euler's totient function. R. D. Carmichael [1] conjectured that for every m, $N(m) \neq 1$. V. L. Klee, Jr. [2] proved that if $N(\varphi(x))=1$, then x must necessarily satisfy a stringent set of conditions. In particular, these conditions led Klee to conclude that if $N(\varphi(x))=1$, then both x and $\varphi(x)$ are $>10^{400}$. It is an immediate consequence of Klee's work that if N(m)=1, then $m\equiv 0 \pmod{2^{42}}$ and $m\equiv 0 \pmod{3^{47}}$.

It is the purpose of this note to give a sufficient condition on x for $N(\varphi(x))=1$.

THEOREM. Suppose x is a natural number such that for every prime p, $(p-1)|\varphi(x)$ implies $p^2|x$. Then $N(\varphi(x))=1$.

If n is a natural number, denote by S(n) the set of primes dividing n. If p is a prime, denote by $v_p(n)$ the exponent (possibly zero) on p in the prime factorization of n. Hence

$$\begin{split} v_p(\varphi(n)) &= \sum_{q \in S(n)} v_p(q-1), & \text{if } p \nmid n, \\ &= v_p(n) - 1 + \sum_{q \in S(n)} v_p(q-1), & \text{if } p \mid n. \end{split}$$

Now suppose x satisfies the condition in the theorem, and let y be such that $\varphi(y) = \varphi(x)$. To prove the theorem it will be sufficient to show y = x. We first note that if $p \in S(y)$, then $(p-1)|\varphi(y) = \varphi(x)$, so by assumption $p^2|x$. That is, $S(y) \subseteq S(x)$. Now suppose $p \in S(x)$. Then $(p-1)|\varphi(x)$, so $p^2|x$. If $p \notin S(y)$, then

$$v_{p}(x) - 1 + \sum_{q \in S(x)} v_{p}(q - 1)$$

$$= v_{p}(\varphi(x)) = v_{p}(\varphi(y)) = \sum_{q \in S(y)} v_{p}(q - 1) \leq \sum_{q \in S(x)} v_{p}(q - 1)$$

Received by the editors July 2, 1973.

AMS (MOS) subject classifications (1970). Primary 10A20.

Key words and phrases. Euler φ -function.

@ American Mathematical Society 1974

(since $S(y) \subset S(x)$), contradicting $v_p(x) - 1 \ge 1$. Hence $p \in S(y)$ and in fact, S(x) = S(y). Now if $p \in S(x) = S(y)$, we have

$$\begin{split} v_p(x) &= v_p(\varphi(x)) + 1 - \sum_{q \in S(x)} v_p(q-1) \\ &= v_p(\varphi(y)) + 1 - \sum_{q \in S(y)} v_p(q-1) = v_p(y). \end{split}$$

This proves that x=y, and hence establishes the theorem.

However, it is likely that no number x exists having the property described in the theorem. Indeed if the following conjecture is true, no such number exists:

Conjecture. If $k \ge 2$, then $(p_k-1) | \prod_{i=1}^{k-1} p_i(p_i-1)$, where p_i denotes the *i*th prime.

If x has the property described in the theorem, then $2^2|x$. Hence if the conjecture is true, then $p_k^2|x$ whenever $p_1^2, p_2^2, \dots, p_{k-1}^2$ all divide x, and hence x is divisible by every prime.

Suppose there is a prime q such that the smallest prime $p \equiv 1 \pmod{q}$ is also $\equiv 1 \pmod{q^2}$. Then the conjecture fails for $p_k = p$. However we note that conjecture H_2 of Schinzel [3] would deny the existence of such a prime q.

REFERENCES

- 1. R. D. Carmichael, *Note on Euler's \varphi-function*, Bull. Amer. Math. Soc. 28 (1922), 109–110.
- 2. V. L. Klee, Jr., On a conjecture of Carmichael, Bull. Amer. Math. Soc. 53 (1947), 1183-1186. MR 9, 269.
- 3. A. Schinzel and W. Sierpiński, Sur certaines hypothèses concernant les nombres premiers, Acta Arith. 4 (1958), 185-208. MR 21 #4936.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF GEORGIA, ATHENS, GEORGIA 30602