= FLATIRON
ﬂ\ INSTITUTE

,,,,,,,,,,

Fast boundary integral solvers for Stokes flows:
quadrature, periodization, adaptivity

Alex Barnett!
ShelleyFest, U. Michigan, 6/14/19

Main collaborators in work shown:

Jun Wang (CCM), Ehssan Nazockdast (UNC) - rheology

Bowie Wu, Hai Zhu, Shravan Veerapaneni (UMich) - quadrature, adaptivity
L. Zhao (INTECH), G. Marple (UMich), SV - periodic no-slip

1Center for Computational Mathematics, Flatiron Institute, Simons Foundation, NYC




Rheology of spatially periodic suspensions

2D periodic mobility problem: ()
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“non-Brownian” (i.e. not microscopic) e

given shear rate v, skewing unit cell AOA AOA




2D periodic mobility problem:
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oo lattice of neutrally buoyant, smooth uhoel U

rigid bodies in Stokes fluid viscosity i O iei O

“non-Brownian” (i.e. not microscopic)

given shear rate 7, skewing unit cell ii O ii

NS
mean force/length -
-5 !

i) quasi-static p.¢ at current configuration

What is bulk viscosity i :=

ii) evolution of p.«(t) as bodies move under flow

statistical moments <u§fF>t, correlation decay in t, dependence on shape, vol. frac?
A homogenization problem. Applications:

e industrial processes, complex fluids (e.g. lattice of fibers into page),
modeling non-periodic random suspensions, electro-rheology devices



PIV and dye imaging, 3D spheres  dia ~ 2mm vol. frac. ¢ =0.35 Re ~ 10~*

Fure Fluid

» 0:00/0:15
=

(Souzy et al, '17)
observe: mixing, super-diffusion, turbulence, at Re ~ 0

Questions:
e time-evolution, 2-pt correlations of bodies, mixing. ..

transport: “rolling-coating” effect needs accurate numerical flow near surfaces

e effect of ¢, validation of low-¢ approx; shapes, jamming. ..

3 little accurate numerical simulation for general shapes (even ellipses)
Goal: high-order solver, efficient, linear scaling w/ complexity in unit cell



Non-periodic mobility problem

Recall: at x on surface w/ normal ny, traction T = T(u, p) := 0 - ny
where stress o(x) := —pl 4+ pu(Vu + (Vu)T), | means 2 x 2 id. matrix
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Non-periodic mobility problem

Recall: at x on surface w/ normal ny, traction T = T(u, p) := 0 - ny

where stress o(x) := —pl 4+ pu(Vu + (Vu)T), | means 2 x 2 id. matrix
Given background Stokes flow (ug, po), o o,
. 2
force- & torque-free bodies Qy, k=1,...,n v \
: v, 2
Find (u, p) change from bkgnd, and X
Vi,Wk body velocities & rotation rates
L
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Non-periodic mobility problem

Recall: at x on surface w/ normal ny, traction T = T(u, p) := 0 - ny

where stress o(x) := —pl 4+ pu(Vu + (Vu)T), I means 2 x 2 id. matrix

Given background Stokes flow (ug, po), o o,

force- & torque-free bodies Qi, k=1,...,n v 7 \
v, 2 2

Find (U, p) change from bkgnd, and 1

Vi,Wk body velocities & rotation rates

BVP: exists a unique solution to. .. b Qexe
—pAu+Vp=0 in Q.. fluid force balance
V-u=0 in Qext incompressible
I.I(X) + Uo(X) =v;+ wj(x - Xj-:)J' x ey rigid body motions

/ Tds=0 zero net fluid force on bodies k =1,...,n
Ik

/ T(X) : (X — Xi)Lde =0 zero net fluid torque, k =1,...,n
Ik Q™ FLATIRON
u(x)| =0 |x] = o0 N o




Boundary integral equations (BIE) for mobility

Re=0 (linear PDE) — BIE much more efficient than volume discr (FEM)
2D (free space) vel. Green's func,  ri=x—y, r:=r
G(x,y) :== ﬁ(llog% + 87y

shown: G(x,y)-f for some force vector f




Boundary integral equations (BIE) for mobility
Re=0 (linear PDE) — BIE much more efficient than volume discr (FEM)
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single-layer vel. potential
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2D (free space) vel. Green's func,
G(x,y) i(llog%%—%)

T A4rmp
shown: G(x,y)-f for some force vector f

ri=x-—y, r:=|r

Simplest case, one body Q (bdry I'):
u(x) = (Sp)(x) == [r G(x,y) - (y)dsy

force density “sprayed” onto I'; 3 sim. pressure pot. p(x)




Re=0 (linear PDE) — BIE much more efficient than volume discr (FEM)

2D (free space) vel. Green's func,  ri=x—y, r:=r
G(x,y) == ﬁ(l log 1 + )

shown: G(x,y)-f for some force vector f

Simplest case, one body Q (bdry IN):

single-layer vel. potential  u(x) = (S¢)(x) := [ G(x,y) - p(y)dsy
Combine 3 facts: force density “sprayed” onto I'; 3 sim. pressure pot. p(x)
a) resulting u cont. & (u, p) obeys Stokes both in Q... and inside Q.
b) jump relations: on I'_ (lim inside), T_(u, p) = ((3/ + K)¢)(x)

bdry integral operator (K¢)(x) := 7% Jr ("""r)(r+m)rdsy “ny - stresslet”

c) Tlu+ug,p+p)=0onT_ = u+ ug rigid body motion



Re=0 (linear PDE) — BIE much more efficient than volume discr (FEM)

2D (free space) vel. Green's func,  ri=x—y, r:=r
G(x,y) == ﬁ(l log 1 + )

shown: G(x,y)-f for some force vector f

Simplest case, one body Q (bdry IN):

single-layer vel. potential  u(x) = (S¢)(x) := [ G(x,y) - p(y)dsy
Combine 3 facts: force density “sprayed” onto I'; 3 sim. pressure pot. p(x)
a) resulting u cont. & (u, p) obeys Stokes both in Q... and inside Q.

b) jump relations: on I'_ (lim inside), T_(u, p) = ((3/ + K)¢)(x)

7% jr (nx-r)(rA-«P(y))

bdry integral operator (K¢)(x) := rdsy,  “ny - stresslet”

c) Tlu+ug,p+p)=0onT_ = u+ ug rigid body motion

Gives BIE on T: (31 + K)ep = —T(uo, po)

with constraints: Jreds=0 zero net force from ¢ on fluid
fr(X — XC)J‘ . L,D(X) dSX =0 zero net torque



Mobility BIE formulation. .. (non-periodic)
(3! +K)e = —T(uo,po)
But: BIE w/ 3 constraints Jreds =0
Jrx—x) - (x) ds, =
is equivalent to:

BIE on I (%I + K+ L)QO = —T(UO, po) L = rank-3, applies constraints
(Karrila—Kim '89; Rachh—Greengard '16)

o

What about n > 1 bodies €7 @ = {wk}{_s, nx nblocks {Ky ,/}, L block-diag.




Mobility BIE formulation. .. (non-periodic)
(3/ + K)e = —T(uo, po)
But: BIE w/ 3 constraints Jreds =0
Jrx—x) o) ds =
is equivalent to:

BIE on I (%I + K+ L)(p = —T(UO, po) L = rank-3, applies constraints
(Karrila—Kim '89; Rachh—Greengard '16)

o

What about n > 1 bodies €7 @ = {®k}?_,, n x nblocks {K, '}, L block-diag.
k=1 ,

Nystrom discretization (one bOdy)Z z(t), 2m-periodic global parameterization of I

T n quadr. rule: frg ds ~ ZJN:1 ng(yj) nodes y; = 1(2%)
: weights s = 312 ()
IN

Y1




(31 +K)e = —T(uo,po)
But: BIE w/ 3 constraints fr pds
(x —x)" - p(x)dsxy =

|
oo

is equivalent to:
BIE on I (%/ + K+ L QO UQ, po) L = rank-3, applies constraints
(Karrila—Kim '89; Rachh—Greengard '16)

What about n > 1 bodies Q.7 @ ={@k}i_;. nx nblocks {Ky s}, L block-diag.

Nystrom discretization (one bOdy)Z z(t), 2m-periodic global parameterization of I

N =
T n quadr. rule: [rgds~ > 7 wig(y;) nodesy, =2(%)
. weights w; = 27 |2/(2%)))|
3} enforce BIE at each node & apply quad. rule to integral
yll\I get N x N linear system Ap =f A=2I+K+L
. matrix els. ptwise samples of kernels, e.g. Kj; = K(y/,yj)vvj, i#j
e [ smooth — kernels smooth — spectrally accurate (Anselone, Kress)

e 2nd-kind BIE = well-cond. = rapid convergence of GMRES
So, for N > 103 use FMM to apply A in iter. solver — scaling O(N)



target X 7 K, Now have samples {¢(y;) szl, how eval u(x) near I ?

h{* > Similarly, how fill matrix els. Kj; between close curves?
Naive: same quadr. rule u(x) ~ Zszl wiG(x,y;) ¢(y;)
L I # correct digits = 2.7&;’” dist. < h bad

Demo: naive potential eval. interior to curve [

log, ,evaluation error in u due to quadrature with N nodes: convergence at target:

error atx

N =60 N =120 0 0 300

N

Thm: analytic I', exp. rate = imag. part of preimage z~1(x) of complexified param. (B '14)

Better: Stokes pots. in terms of Laplace pots, in terms of Cauchy ints. ..



Beautiful quadrature idea: barycentric Cauchy in C

Interior potential task: given samples v; = v(y;), r
_ i [ vly) i
eval. Cauchy v(x) = o /r mdy, xeQcc N

. . N
e plain quadr. rule fails close to I, as before




Beautiful quadrature idea: barycentric Cauchy in C

Interior potential task: given samples v; = v(y;), r
eval. Cauchy v(x) = L / Mdy, xeQcc y

2 Jrx—y yN

: . 1

e plain quadr. rule fails close to I, as before

Subtract the above from v(x) times the special case 1 = # Jr %dy:

0 = fl’ %}Mdy cancels singularity; integrand smooth even as x — I




Beautiful quadrature idea: barycentric Cauchy in C

Interior potential task: given samples v; = v(y;), r
eval. Cauchy v(x) = L / Mdy, xeQcc y

2 Jrx—y yN

: . 1

e plain quadr. rule fails close to I, as before

Subtract the above from v(x) times the special case 1 = # Jr %dy:

0 = fl’ %}‘f(}/)dy cancels singularity; integrand smooth even as x — I’

Apply periodic trap. rule. .. spectrally accurate for smooth integrands
~ SNV V)Y

0 =~ Zj:l x—y; wj now rearrange. . .




Beautiful quadrature idea: barycentric Cauchy in C

Interior potential task: given samples v; = v(y;), r
eval. Cauchy v(x) = o / vl z/dy, xeQcc %;)N

. 1

e plain quadr. rule fails close to I, as before

Subtract the above from v(x) times the special case 1 = # Jr %dy:

0 = fl’ Mdy cancels singularity; integrand smooth even as x — I’

Apply periodic trap. rule. .. spectrally accurate for smooth integrands
~ SNV V)Y

0 =~ Zj:l x—y; wj now rearrange. . .

N vj
—J -
Zj:l X—ijVJ
S v
J=1 x—y; "J

uniformly accurate in Q, if nodes resolved v on I (Ioakimidis '91, Helsing '08)

Gives V(X) S 2nd form barycentric interp, but complex nodes

e no such trick in 3D :( 3 schemes: radial patches, QBX, adaptive. ..




Apply barycentric to 2D Stokes potentials

Built close-evaluation Stokes global quadratures on Laplace on Cauchy
e Cauchy enables double-layer; we generalized to single-layer

Use close-eval. for mat. els. Kj; and for flow eval:

physical flow u + ug

-16

(B-Wu—Veerapaneni '14)

max u error over domain

50 150 250 350 450

ext. Stokes, no-slip BCs, SLP4+DLP formulation, n = 20 bodies, body separation § ~ 10—*

e density ¢ peak width O(5'/?) (eg. Sangani-Mo '94), good for § > h?

o for mobility prob: also traction of SLP (needs v")

(Wang-B, in prep.)

ahbarnett/BIE2D, dstein/pyBIE2D

e for 6 — 0, global quadr. scheme bad — need adaptive (later!)




Issues periodizing the BIE
recall discretized BIE on I': Ap = (31 + K+ L) = —T(uo, po)




Issues periodizing the BIE
recall discretized BIE on T': Ap = (31 + K+ L) = —T(uo, po)

could simply replace G by G, (x,y) := >, ez G(x,y + me1 + ney) ?
minor problem: G, =00 (logr — )
but can periodize stokeslets when sum = 0 : true since [ =0
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recall discretized BIE on T Ap = (31 + K+ L) = —T(uo, po)

could simply replace G by G, (X,y) := 3", ez G(x,y + me1 + ney) ?
minor problem: G, =00 (logr — )
but can periodize stokeslets when sum = 0 : true since [ =0

Two common ways to periodize (compatible with FMM to apply A):

Lattice sums  ~ Taylor coeffs of smooth sum > (mon)£(0,0) Gy + m, n))
(Rayleigh 1892; Hasimoto, Helsing, Greengard—Kropinski '04)
issues: e regularization: setting divergent sums to opaque values
e spherically symm. expansions — high aspect/skew, bad

Particle-Mesh Ewald can be spectrally accurate (Lindbo—Tornberg '10, '11)

split G,.: local (spatial) + decaying in Fourier (spectral) (Ewald '21)
issue: e non-adaptive FFT grid to apply spectral part



recall discretized BIE on T Ap = (31 + K+ L) = —T(uo, po)

could simply replace G by G, (X,y) := 3", ez G(x,y + me1 + ney) ?
minor problem: G, =00 (logr — )
but can periodize stokeslets when sum = 0 : true since [ =0

Two common ways to periodize (compatible with FMM to apply A):

Lattice sums  ~ Taylor coeffs of smooth sum > (mon)£(0,0) Gy + m, n))
(Rayleigh 1892; Hasimoto, Helsing, Greengard—Kropinski '04)
issues: e regularization: setting divergent sums to opaque values
e spherically symm. expansions — high aspect/skew, bad

Particle-Mesh Ewald can be spectrally accurate (Lindbo—Tornberg '10, '11)

split G,.: local (spatial) + decaying in Fourier (spectral) (Ewald '21)
issue: e non-adaptive FFT grid to apply spectral part



recall discretized BIE on T Ap = (31 + K+ L) = —T(uo, po)

could simply replace G by G, (X,y) := 3", ez G(x,y + me1 + ney) ?
minor problem: G, =00 (logr — )
but can periodize stokeslets when sum = 0 : true since [ =0

Two common ways to periodize (compatible with FMM to apply A):

Lattice sums  ~ Taylor coeffs of smooth sum > (mon)£(0,0) Gy + m, n))
(Rayleigh 1892; Hasimoto, Helsing, Greengard—Kropinski '04)
issues: e regularization: setting divergent sums to opaque values
e spherically symm. expansions — high aspect/skew, bad
Particle-Mesh Ewald can be spectrally accurate (Lindbo—Tornberg '10, '11)
split G,.: local (spatial) + decaying in Fourier (spectral) (Ewald '21)
issue: e non-adaptive FFT grid to apply spectral part

We believe have simpler general approach fixing issues ...



Periodize by solving BVP in one unit cell
Never think about sums! (technical, conditionally convergent, Ewald formulae. . . yuk)

Just augment lin. sys. with BCs you'd like on walls of single unit cell:




Periodize by solving BVP in one unit cell
Never think about sums! (technical, conditionally convergent, Ewald formulae. . . yuk)

Just augment lin. sys. with BCs you'd like on walls of single unit cell:

sum (FMM) only the near images: proxy sources account for the rest:

A o, ., " ;o

&4@,;% o

O O e s
DD

Here A is as before, but also sums nearby images to make proxies accurate

“ . " A B densit BCon I
Get “extended lin. sys: e | =
C Q proxy strengths mismatch btw 4 walls
stable & FMM-compat: tricky rank-2-pert. Schur compl. (B—Marple—Veerapaneni—Zhao '18)
e idea from Helmholtz (B-Greengard '10); implicit in (Larson-Higdon '80s)
e inspired cubical-unit-cell periodization of PVFMM (Yan-Shelley '18)




2D porous medium Stokes flow

I
37

given pressure drop

doubly-periodic
shown: one unit cell

n =103
close-to-touching
no-slip islands

error 1078
1 day CPU
2N =7 x 10°

(B-Marple—Veerapaneni—
Zhao '18)




Back to periodic mobility: quasi-static BVP
Fix bkgnd shear flow ug(x) = (7x2,0) physical flow will be ug + u

At time t: find {vk,wk}, and (u, p) periodic in current unit cell U(t), s.t.

—pAu+Vp=0 in U\{Q}
V-u=0 in U\{Qx}
)J_

U(X) + UO(X) =v;+ wj(x - XJ? x €[y rigid body motions

/ Tds=0 zero net fluid force on bodies k =1,...,n
Ik

/ T(X) . (X — Xi)LdSX =0 zero net fluid torque, k =1,...,n
Mk

Then extract:  pq(t) = ﬁ Jo T(ug+u,p)-tds

horiz. force on bottom wall; avoids cell avg (o), of (Brady, etc)




Other new ingredients

e G, issue: stokeslet force # 0, but periodic BCs = net traction =0
Propose generalized G:*(x,y) := [w(1,0)(X), W(0,1)(x)], where w¢ solves:

per

—puAw + Vq = foy in U\{Q}

V-w=0 in U\{Q}
Wp — W = 0 periodic
T(W, q)R — T(W, q)L = f/2|82| const leakage of net force
Wy —Wp = 0 periodic
T(W, q)U — T(W7 q)D = f/2|e1| const leakage of net force
unique up to consts; SF')\‘ee,“cp not periodic unless fr wds =0 “Neumann function”




e G, issue: stokeslet force # 0, but periodic BCs = net traction =0
Propose generalized G:*(x,y) := [w(1,0)(X), W(0,1)(x)], where w¢ solves:

per

—puAw + Vq = foy in U\{Q%}

V-w=0 in U\{Q}
Wp — W = 0 periodic
T(W, q)R — T(W, q)L = f/2|62’ const leakage of net force
Wy —Wp = 0 periodic
T(W, q)U — T(W, q)D = f/2’61’ const leakage of net force
unique up to consts; S,’,\‘eerucp not periodic unless .fr wds =0 “Neumann function”

e eval. traction of G fast, gives a stable mat-vec for GMRES:
FMM for near images + correction of wall mismatch via cheap “empty unit cell” BVP

“empty” BVP solved to 10~ '* via method of fundamental solutions (proxy pts)

e kd-tree to find close targets needing special quadratures
e extract . via cheap far-field contour integral



Results: quasi-static solve

n = 10? bodies, close-touching n = 103 bodies, close-touching:
pressure on the unit box, N=100, n=350, T=154s pressure on the unit box, N=1000, n=350, T=53min
04 01
02 02
0 0
a2 02
04 o
e er ez o e o e T w0 o os
2N = 7 x 10* unknowns, 2.5 mins 2N = 7 x 10° unknowns, 1 hr

8-digit accuracy N = 350 per body typ. < 100 GMRES iters.




Results: quasi-static solve

n = 102 bodies, close-touching n = 103 bodies, close-touching:

pressure on the unit box, N=100, n=350, T=154s pressure on the unit box, N=1000, n=350, T=53min
<y g
v & () o
)
g
o)

0z 3 © % 02
Hhhd

0.4 &%{)@D QOOO 0.4

02

e
=

o

0.6
-0.6 -0.4 -0.2 0

0.4 06 -0.4 -0.2 0 0.2 0.4

2N = 7 x 10* unknowns, 2.5 mins 2N = 7 x 10° unknowns, 1 hr
8-digit accuracy N = 350 per body typ. < 100 GMRES iters.

Evolution:  define body state vector z(t) := {x¢, 0} € R%"
wrap the quasi-static solve as evaluating  {vx,wi} = 9 = F(z(t))

autonomous ODE system

Feed to favorite t-stepper: fixed-At Euler, or high-order adaptive




Results: time-evolution

n = 25 ellipses, run for 100 shear-times, apparently equilbrium. . .

effective viscosity

3

H
VHW

I !

'\
lH M' J“ " i

M\

\
l u

w000
LOie oi~iNi0] I
S OOCM.
Moﬁoooo " 5
o000 = f
LOSOO0ON jﬂ
saosach:
0 05 1 )

e spatial solve error 10719, evolution typ. 10~*

20

40 60 80 100
t

~1s / step, FMM+GMRES

e we can run fwd-Euler, or adaptive RK4 (slows down)
e add short-range repulsive force, needed for higher ¢; in progress
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Panel quadratures and adaptivity

To best handle arbitrary geometries: need composite quadr. rules

Gauss—Legendre

rule on each panel
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Panel quadratures and adaptivity

To best handle arbitrary geometries: need composite quadr. rules

Gauss—Legendre

rule on each panel

far: Nystrom rule

Kij = K(thj)Wj

nei + self + close-eval: complex
interpolatory rules
(Helsing '08, Ojala—Tornberg '15)
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Panel quadratures and adaptivity

To best handle arbitrary geometries

need composite quadr. rules

Gauss—Legendre

rule on each panel

far: Nystrom rule

Kij = K(thj)Wj

nei + self + close-eval: complex
interpolatory rules

(Helsing '08, Ojala—Tornberg '15)

e No-slip Stokes flow in 2D . N |
vascular network model:

25 -2 15 -1

(Wu—Zhu-B-Veerapaneni, in prep.) 378 corners 2N :A3 X 105A 10 d{gits 2 hours
adaptivity: panels split until resolve geom to user-requested tolerance ¢
panel order p ~ log;,(1/€)

i_ FLATIRON
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Panel quadratures and adaptivity |l

microfluidic device design: “worm clamps” plus nearby particles

T T T T T T T -

~ ZIE |

flow speed shown 2N = 1.2 x 106 120 swimmer particles 6 digits 8 hrs

(Wu—-Zhu—B—Veerapaneni, in prep.)

e could factorize fixed walls via fast direct solver, cheap t-steps
(Marple—B-Gillman—Veerapaneni '16)




Flavor of efficient & accurate Stokes solvers, which need:

e special quadratures for close-evaluation
e new periodization tools for skewing unit cells
e adaptivity for complex devices

Numerical analysis philosophy: solve the actual BVP, to many digits

Software is harder, in progress at Flatiron for BIE in 2D, 3D
(Stein/Yan (CCB), Racch/Greengard/B (CCM), O'Neil/Malhotra (NYU)...)

* Special issue of Adv. Comput. Math. on BIE, submissions due 8/31/20

Although | haven't yet modeled swimming fish (Re > 1), thanks Mike
for help over the years and helping guide me into fun fluids!
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Jamming?

Two 4-pointed smooth stars per unit cell:
jamming stars 1

jamming stars 2

jamming stars 3
(we don't understand jamming yet. . .)
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Singly-periodic pipe with vesicles

Fast direct solver factorizes pipe solve once and for all, cheap to apply:

1000 vesicles N = 128000 1 min/timestep (Marple-B-Gillman—Veerapaneni '16)
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