
Nonuniform FFTs at Flatiron

— ∼ ∗ OR ∗ ∼ —

Lessons from developing a small numerical library

Alex Barnett1, with much help from: Jeremy Magland1, Ludvig af Klinteberg
(Mälardalen U.), Melody Shih (NVidia), Joakim Andén (KTH), Libin Lu1,
Robert Blackwell (SCC), Andrea Malleo (Bloomberg), and many others. . .

FWAM5 Friday, October 20, 2023

1Center for Computational Mathematics, Flatiron Institute



What is this non-uniform fast Fourier transform? (NUFFT)

1D case, “type 1” transform:

Given locations x1, . . . , xM , and their “strengths” c1, . . . , cM , return

fk =
∑M

j=1 e
ikxj cj , for k = −N

2 ,−
N
2 + 1, . . . , N2 − 2, N2 − 1

• Has N outputs, each a sum of M terms: naively O(NM) cost (flops)
• Off-grid version of fast Fourier transform (FFT) there M = N and xj = 2πj/N

• NUFFT does this fast in O(M + N logN) nearly linear cost

• approximates it to a user-requested ε ε = 10−1 (fastest) to ε = 10−14 (slowest)

“Type 2” is its adjoint (but not inverse!) gj =
∑

N fke
−ikxj U → NU

• evaluates a given Fourier series at arbitrary targets {xj}, fast

“Type 3” as type 1 but arbitrary target freqs. {sk}Nk=1: fk =
∑M

j=1 e
iskxj cj

NU → NU



What is this non-uniform fast Fourier transform? (NUFFT)

1D case, “type 1” transform:

Given locations x1, . . . , xM , and their “strengths” c1, . . . , cM , return

fk =
∑M

j=1 e
ikxj cj , for k = −N

2 ,−
N
2 + 1, . . . , N2 − 2, N2 − 1

• Has N outputs, each a sum of M terms: naively O(NM) cost (flops)
• Off-grid version of fast Fourier transform (FFT) there M = N and xj = 2πj/N

• NUFFT does this fast in O(M + N logN) nearly linear cost

• approximates it to a user-requested ε ε = 10−1 (fastest) to ε = 10−14 (slowest)

“Type 2” is its adjoint (but not inverse!) gj =
∑

N fke
−ikxj U → NU

• evaluates a given Fourier series at arbitrary targets {xj}, fast

“Type 3” as type 1 but arbitrary target freqs. {sk}Nk=1: fk =
∑M

j=1 e
iskxj cj

NU → NU



What is this non-uniform fast Fourier transform? (NUFFT)

1D case, “type 1” transform:

Given locations x1, . . . , xM , and their “strengths” c1, . . . , cM , return

fk =
∑M

j=1 e
ikxj cj , for k = −N

2 ,−
N
2 + 1, . . . , N2 − 2, N2 − 1

• Has N outputs, each a sum of M terms: naively O(NM) cost (flops)
• Off-grid version of fast Fourier transform (FFT) there M = N and xj = 2πj/N

• NUFFT does this fast in O(M + N logN) nearly linear cost

• approximates it to a user-requested ε ε = 10−1 (fastest) to ε = 10−14 (slowest)

“Type 2” is its adjoint (but not inverse!) gj =
∑

N fke
−ikxj U → NU

• evaluates a given Fourier series at arbitrary targets {xj}, fast

“Type 3” as type 1 but arbitrary target freqs. {sk}Nk=1: fk =
∑M

j=1 e
iskxj cj

NU → NU



What is this non-uniform fast Fourier transform? (NUFFT)

1D case, “type 1” transform:

Given locations x1, . . . , xM , and their “strengths” c1, . . . , cM , return

fk =
∑M

j=1 e
ikxj cj , for k = −N

2 ,−
N
2 + 1, . . . , N2 − 2, N2 − 1

• Has N outputs, each a sum of M terms: naively O(NM) cost (flops)
• Off-grid version of fast Fourier transform (FFT) there M = N and xj = 2πj/N

• NUFFT does this fast in O(M + N logN) nearly linear cost

• approximates it to a user-requested ε ε = 10−1 (fastest) to ε = 10−14 (slowest)

“Type 2” is its adjoint (but not inverse!) gj =
∑

N fke
−ikxj U → NU

• evaluates a given Fourier series at arbitrary targets {xj}, fast

“Type 3” as type 1 but arbitrary target freqs. {sk}Nk=1: fk =
∑M

j=1 e
iskxj cj

NU → NU



What is this non-uniform fast Fourier transform? (NUFFT)

1D case, “type 1” transform:

Given locations x1, . . . , xM , and their “strengths” c1, . . . , cM , return

fk =
∑M

j=1 e
ikxj cj , for k = −N

2 ,−
N
2 + 1, . . . , N2 − 2, N2 − 1

• Has N outputs, each a sum of M terms: naively O(NM) cost (flops)
• Off-grid version of fast Fourier transform (FFT) there M = N and xj = 2πj/N

• NUFFT does this fast in O(M + N logN) nearly linear cost

• approximates it to a user-requested ε ε = 10−1 (fastest) to ε = 10−14 (slowest)

“Type 2” is its adjoint (but not inverse!) gj =
∑

N fke
−ikxj U → NU

• evaluates a given Fourier series at arbitrary targets {xj}, fast

“Type 3” as type 1 but arbitrary target freqs. {sk}Nk=1: fk =
∑M

j=1 e
iskxj cj

NU → NU



Higher dimensions also needed

2D type 1: fk,ℓ =
∑M

j=1 e
i(kxj+ℓyj )cj for k , ℓ in a rectangle of modes

3D type 1: fk,ℓ,m =
∑M

j=1 e
i(kxj+ℓyj+mzj )cj

etc

• dimensions {1, 2, 3} × types {1, 2, 3} = 9 transforms
Software design: how to avoid code repetition?

• 9 transforms × {float,double} = 18 functions
How reduce number of functions to write and maintain?



Who uses such transforms?
1) Fourier image reconstruction: fk,ℓ is unknown pixel intensities
apparatus measures strengths cj at nonuniform frequency points (xj , yj)

• MRI (either 2D slice, or 3D)
• coherent diffraction/powder imaging (X-ray)
• very long baseline interferometry (VLBI)
• cryo electron microscopy

some 2D MRI points

2) Numerical forward solvers, simulation
• electrostatics or fluid problems in periodic box

spectral Ewald method: Poisson solve trivial in Fourier space

• numerical PDE eg, interpolating between overlapping grids

• eval Fourier transform by numerical quadrature (type 1)
• Fresnel diffraction (optics)

3) Spatial/temporal statistics
• power-spectrum of NU time-series, or point-masses galaxies

• fast kernel apply in Gaussian process regression



Who uses such transforms?
1) Fourier image reconstruction: fk,ℓ is unknown pixel intensities
apparatus measures strengths cj at nonuniform frequency points (xj , yj)

• MRI (either 2D slice, or 3D)
• coherent diffraction/powder imaging (X-ray)
• very long baseline interferometry (VLBI)
• cryo electron microscopy

some 2D MRI points

2) Numerical forward solvers, simulation
• electrostatics or fluid problems in periodic box

spectral Ewald method: Poisson solve trivial in Fourier space

• numerical PDE eg, interpolating between overlapping grids

• eval Fourier transform by numerical quadrature (type 1)
• Fresnel diffraction (optics)

3) Spatial/temporal statistics
• power-spectrum of NU time-series, or point-masses galaxies

• fast kernel apply in Gaussian process regression



Who uses such transforms?
1) Fourier image reconstruction: fk,ℓ is unknown pixel intensities
apparatus measures strengths cj at nonuniform frequency points (xj , yj)

• MRI (either 2D slice, or 3D)
• coherent diffraction/powder imaging (X-ray)
• very long baseline interferometry (VLBI)
• cryo electron microscopy

some 2D MRI points

2) Numerical forward solvers, simulation
• electrostatics or fluid problems in periodic box

spectral Ewald method: Poisson solve trivial in Fourier space

• numerical PDE eg, interpolating between overlapping grids

• eval Fourier transform by numerical quadrature (type 1)
• Fresnel diffraction (optics)

3) Spatial/temporal statistics
• power-spectrum of NU time-series, or point-masses galaxies

• fast kernel apply in Gaussian process regression



Fourier imaging example: black hole by VLBI

Probably the most famous astro image of 2019: 10−10 radian resolution!

2D type 2−→

uniform image grid fk,ℓ predicted signals {gj} at NU pts

• our library (FINUFFT) used by SMILI code for this image (K. Akiyama, ’19)

How? the above is a linear forward model: g = Af big dense matrix A

Iterative optimization of f until it best fits the detected signal:

frecon = argminf ∥Af − gdetected∥22 + λ1∥f ∥1 + λTV∥f ∥TV

• each iteration, A and A∗ applied fast by NUFFTs dominant cost, I think

• same idea in other 2D or 3D Fourier imaging (MRI, cryo-EM, etc)



Fourier imaging example: black hole by VLBI

Probably the most famous astro image of 2019: 10−10 radian resolution!

2D type 2−→

uniform image grid fk,ℓ predicted signals {gj} at NU pts

• our library (FINUFFT) used by SMILI code for this image (K. Akiyama, ’19)

How? the above is a linear forward model: g = Af big dense matrix A

Iterative optimization of f until it best fits the detected signal:

frecon = argminf ∥Af − gdetected∥22 + λ1∥f ∥1 + λTV∥f ∥TV

• each iteration, A and A∗ applied fast by NUFFTs dominant cost, I think

• same idea in other 2D or 3D Fourier imaging (MRI, cryo-EM, etc)



Fourier imaging example: black hole by VLBI

Probably the most famous astro image of 2019: 10−10 radian resolution!

2D type 2−→

uniform image grid fk,ℓ predicted signals {gj} at NU pts

• our library (FINUFFT) used by SMILI code for this image (K. Akiyama, ’19)

How? the above is a linear forward model: g = Af big dense matrix A

Iterative optimization of f until it best fits the detected signal:

frecon = argminf ∥Af − gdetected∥22 + λ1∥f ∥1 + λTV∥f ∥TV

• each iteration, A and A∗ applied fast by NUFFTs dominant cost, I think

• same idea in other 2D or 3D Fourier imaging (MRI, cryo-EM, etc)



Fourier imaging example: black hole by VLBI

Probably the most famous astro image of 2019: 10−10 radian resolution!

2D type 2−→

uniform image grid fk,ℓ predicted signals {gj} at NU pts

• our library (FINUFFT) used by SMILI code for this image (K. Akiyama, ’19)

How? the above is a linear forward model: g = Af big dense matrix A

Iterative optimization of f until it best fits the detected signal:

frecon = argminf ∥Af − gdetected∥22 + λ1∥f ∥1 + λTV∥f ∥TV

• each iteration, A and A∗ applied fast by NUFFTs dominant cost, I think

• same idea in other 2D or 3D Fourier imaging (MRI, cryo-EM, etc)



The most common NUFFT algorithm—and ours

(Dutt–Rokhlin ’93, Steidl ’98, Greengard–Lee ’04, Potts et al, . . . )

Eg, 1D Type 1: set up new grid on [0, 2π) with n = 2N points, say

Design a kernel ψ(x) fun math: small width (w grid-points) YET ε-small Fourier tails

1) Spread each spike cj onto grid bℓ =
∑M

j=1 cjψ(ℓh − xj) detail: 2π-periodize

O(wdM) flops

O(wdM) kernel evals

often dominates cost

2) Let {b̂k} = size-n FFT of {bl}
3) Correct for spreading: f̃k = 1

ψ̂(k)
b̂k keep only low modes −N/2 ≤ k < N/2

• Type 2 reverses the steps; Type 3 is “Type 2 wrapped inside a Type 1”



The most common NUFFT algorithm—and ours

(Dutt–Rokhlin ’93, Steidl ’98, Greengard–Lee ’04, Potts et al, . . . )

Eg, 1D Type 1: set up new grid on [0, 2π) with n = 2N points, say

Design a kernel ψ(x) fun math: small width (w grid-points) YET ε-small Fourier tails

1) Spread each spike cj onto grid bℓ =
∑M

j=1 cjψ(ℓh − xj) detail: 2π-periodize

O(wdM) flops

O(wdM) kernel evals

often dominates cost

2) Let {b̂k} = size-n FFT of {bl}
3) Correct for spreading: f̃k = 1

ψ̂(k)
b̂k keep only low modes −N/2 ≤ k < N/2

• Type 2 reverses the steps; Type 3 is “Type 2 wrapped inside a Type 1”



The most common NUFFT algorithm—and ours

(Dutt–Rokhlin ’93, Steidl ’98, Greengard–Lee ’04, Potts et al, . . . )

Eg, 1D Type 1: set up new grid on [0, 2π) with n = 2N points, say

Design a kernel ψ(x) fun math: small width (w grid-points) YET ε-small Fourier tails

1) Spread each spike cj onto grid bℓ =
∑M

j=1 cjψ(ℓh − xj) detail: 2π-periodize

O(wdM) flops

O(wdM) kernel evals

often dominates cost

2) Let {b̂k} = size-n FFT of {bl}
3) Correct for spreading: f̃k = 1

ψ̂(k)
b̂k keep only low modes −N/2 ≤ k < N/2

• Type 2 reverses the steps; Type 3 is “Type 2 wrapped inside a Type 1”



The most common NUFFT algorithm—and ours

(Dutt–Rokhlin ’93, Steidl ’98, Greengard–Lee ’04, Potts et al, . . . )

Eg, 1D Type 1: set up new grid on [0, 2π) with n = 2N points, say

Design a kernel ψ(x) fun math: small width (w grid-points) YET ε-small Fourier tails

1) Spread each spike cj onto grid bℓ =
∑M

j=1 cjψ(ℓh − xj) detail: 2π-periodize

O(wdM) flops

O(wdM) kernel evals

often dominates cost

2) Let {b̂k} = size-n FFT of {bl}

3) Correct for spreading: f̃k = 1
ψ̂(k)

b̂k keep only low modes −N/2 ≤ k < N/2

• Type 2 reverses the steps; Type 3 is “Type 2 wrapped inside a Type 1”



The most common NUFFT algorithm—and ours

(Dutt–Rokhlin ’93, Steidl ’98, Greengard–Lee ’04, Potts et al, . . . )

Eg, 1D Type 1: set up new grid on [0, 2π) with n = 2N points, say

Design a kernel ψ(x) fun math: small width (w grid-points) YET ε-small Fourier tails

1) Spread each spike cj onto grid bℓ =
∑M

j=1 cjψ(ℓh − xj) detail: 2π-periodize

O(wdM) flops

O(wdM) kernel evals

often dominates cost

2) Let {b̂k} = size-n FFT of {bl}
3) Correct for spreading: f̃k = 1

ψ̂(k)
b̂k keep only low modes −N/2 ≤ k < N/2

• Type 2 reverses the steps; Type 3 is “Type 2 wrapped inside a Type 1”



The most common NUFFT algorithm—and ours

(Dutt–Rokhlin ’93, Steidl ’98, Greengard–Lee ’04, Potts et al, . . . )

Eg, 1D Type 1: set up new grid on [0, 2π) with n = 2N points, say

Design a kernel ψ(x) fun math: small width (w grid-points) YET ε-small Fourier tails

1) Spread each spike cj onto grid bℓ =
∑M

j=1 cjψ(ℓh − xj) detail: 2π-periodize

O(wdM) flops

O(wdM) kernel evals

often dominates cost

2) Let {b̂k} = size-n FFT of {bl}
3) Correct for spreading: f̃k = 1

ψ̂(k)
b̂k keep only low modes −N/2 ≤ k < N/2

• Type 2 reverses the steps; Type 3 is “Type 2 wrapped inside a Type 1”



Story of our code: FINUFFT
Prehistory (2015): Leslie Greengard, Jeremy Magland,
Marina Spivak, myself, at SCDA NUFFT needed for imaging (cryo-EM, etc)

had: NYU single-threaded Fortran, Gaussian kernel ψ(x) too wide (Greengard–Lee ’09)

also: NFFT3 C++, multithreaded, hard to use, user chooses ψ(x) (Keiner et al ’06)

Wanted faster multithreaded code, easy-to-use from many languages

2015: Jeremy: a C++ multithreaded spreader, nufft comparison

[2016: Flatiron Institute founded]

2017: I got excited, wrote FINUFFT building on J’s ideas/code. Me: C/Fort/Matlab

I write C++ like “C plus pass-by-reference”, simple, no STL, no classes, no namespacing. . .

Fix nearly-optimal ψ(x) = eβ
√

1−x2 , think it’s faster to eval. than others (I was wrong)

2017-2020: Fortran, MATLAB/Octave, Python, Julia wrappers; GPU code

now: 212 GitHub stars, dozens of known users national labs, on 6000 GPUs, etc

Lesson: keep a CHANGELOG in your repo commit messages not enough ,

“Small” (lib = 3k lines of C++) Dive into some aspects. . .



Story of our code: FINUFFT
Prehistory (2015): Leslie Greengard, Jeremy Magland,
Marina Spivak, myself, at SCDA NUFFT needed for imaging (cryo-EM, etc)

had: NYU single-threaded Fortran, Gaussian kernel ψ(x) too wide (Greengard–Lee ’09)

also: NFFT3 C++, multithreaded, hard to use, user chooses ψ(x) (Keiner et al ’06)

Wanted faster multithreaded code, easy-to-use from many languages

2015: Jeremy: a C++ multithreaded spreader, nufft comparison

[2016: Flatiron Institute founded]

2017: I got excited, wrote FINUFFT building on J’s ideas/code. Me: C/Fort/Matlab

I write C++ like “C plus pass-by-reference”, simple, no STL, no classes, no namespacing. . .

Fix nearly-optimal ψ(x) = eβ
√

1−x2 , think it’s faster to eval. than others (I was wrong)

2017-2020: Fortran, MATLAB/Octave, Python, Julia wrappers; GPU code

now: 212 GitHub stars, dozens of known users national labs, on 6000 GPUs, etc

Lesson: keep a CHANGELOG in your repo commit messages not enough ,

“Small” (lib = 3k lines of C++) Dive into some aspects. . .



Story of our code: FINUFFT
Prehistory (2015): Leslie Greengard, Jeremy Magland,
Marina Spivak, myself, at SCDA NUFFT needed for imaging (cryo-EM, etc)

had: NYU single-threaded Fortran, Gaussian kernel ψ(x) too wide (Greengard–Lee ’09)

also: NFFT3 C++, multithreaded, hard to use, user chooses ψ(x) (Keiner et al ’06)

Wanted faster multithreaded code, easy-to-use from many languages

2015: Jeremy: a C++ multithreaded spreader, nufft comparison

[2016: Flatiron Institute founded]

2017: I got excited, wrote FINUFFT building on J’s ideas/code. Me: C/Fort/Matlab

I write C++ like “C plus pass-by-reference”, simple, no STL, no classes, no namespacing. . .

Fix nearly-optimal ψ(x) = eβ
√

1−x2 , think it’s faster to eval. than others (I was wrong)

2017-2020: Fortran, MATLAB/Octave, Python, Julia wrappers; GPU code

now: 212 GitHub stars, dozens of known users national labs, on 6000 GPUs, etc

Lesson: keep a CHANGELOG in your repo commit messages not enough ,

“Small” (lib = 3k lines of C++) Dive into some aspects. . .



Story of our code: FINUFFT
Prehistory (2015): Leslie Greengard, Jeremy Magland,
Marina Spivak, myself, at SCDA NUFFT needed for imaging (cryo-EM, etc)

had: NYU single-threaded Fortran, Gaussian kernel ψ(x) too wide (Greengard–Lee ’09)

also: NFFT3 C++, multithreaded, hard to use, user chooses ψ(x) (Keiner et al ’06)

Wanted faster multithreaded code, easy-to-use from many languages

2015: Jeremy: a C++ multithreaded spreader, nufft comparison

[2016: Flatiron Institute founded]

2017: I got excited, wrote FINUFFT building on J’s ideas/code. Me: C/Fort/Matlab

I write C++ like “C plus pass-by-reference”, simple, no STL, no classes, no namespacing. . .

Fix nearly-optimal ψ(x) = eβ
√

1−x2 , think it’s faster to eval. than others (I was wrong)

2017-2020: Fortran, MATLAB/Octave, Python, Julia wrappers; GPU code

now: 212 GitHub stars, dozens of known users national labs, on 6000 GPUs, etc

Lesson: keep a CHANGELOG in your repo commit messages not enough ,

“Small” (lib = 3k lines of C++) Dive into some aspects. . .



Story of our code: FINUFFT
Prehistory (2015): Leslie Greengard, Jeremy Magland,
Marina Spivak, myself, at SCDA NUFFT needed for imaging (cryo-EM, etc)

had: NYU single-threaded Fortran, Gaussian kernel ψ(x) too wide (Greengard–Lee ’09)

also: NFFT3 C++, multithreaded, hard to use, user chooses ψ(x) (Keiner et al ’06)

Wanted faster multithreaded code, easy-to-use from many languages

2015: Jeremy: a C++ multithreaded spreader, nufft comparison

[2016: Flatiron Institute founded]

2017: I got excited, wrote FINUFFT building on J’s ideas/code. Me: C/Fort/Matlab

I write C++ like “C plus pass-by-reference”, simple, no STL, no classes, no namespacing. . .

Fix nearly-optimal ψ(x) = eβ
√

1−x2 , think it’s faster to eval. than others (I was wrong)

2017-2020: Fortran, MATLAB/Octave, Python, Julia wrappers; GPU code

now: 212 GitHub stars, dozens of known users national labs, on 6000 GPUs, etc

Lesson: keep a CHANGELOG in your repo commit messages not enough ,

“Small” (lib = 3k lines of C++) Dive into some aspects. . .



Story of our code: FINUFFT
Prehistory (2015): Leslie Greengard, Jeremy Magland,
Marina Spivak, myself, at SCDA NUFFT needed for imaging (cryo-EM, etc)

had: NYU single-threaded Fortran, Gaussian kernel ψ(x) too wide (Greengard–Lee ’09)

also: NFFT3 C++, multithreaded, hard to use, user chooses ψ(x) (Keiner et al ’06)

Wanted faster multithreaded code, easy-to-use from many languages

2015: Jeremy: a C++ multithreaded spreader, nufft comparison

[2016: Flatiron Institute founded]

2017: I got excited, wrote FINUFFT building on J’s ideas/code. Me: C/Fort/Matlab

I write C++ like “C plus pass-by-reference”, simple, no STL, no classes, no namespacing. . .

Fix nearly-optimal ψ(x) = eβ
√

1−x2 , think it’s faster to eval. than others (I was wrong)

2017-2020: Fortran, MATLAB/Octave, Python, Julia wrappers; GPU code

now: 212 GitHub stars, dozens of known users national labs, on 6000 GPUs, etc

Lesson: keep a CHANGELOG in your repo commit messages not enough ,

“Small” (lib = 3k lines of C++) Dive into some aspects. . .



Story of our code: FINUFFT
Prehistory (2015): Leslie Greengard, Jeremy Magland,
Marina Spivak, myself, at SCDA NUFFT needed for imaging (cryo-EM, etc)

had: NYU single-threaded Fortran, Gaussian kernel ψ(x) too wide (Greengard–Lee ’09)

also: NFFT3 C++, multithreaded, hard to use, user chooses ψ(x) (Keiner et al ’06)

Wanted faster multithreaded code, easy-to-use from many languages

2015: Jeremy: a C++ multithreaded spreader, nufft comparison

[2016: Flatiron Institute founded]

2017: I got excited, wrote FINUFFT building on J’s ideas/code. Me: C/Fort/Matlab

I write C++ like “C plus pass-by-reference”, simple, no STL, no classes, no namespacing. . .

Fix nearly-optimal ψ(x) = eβ
√

1−x2 , think it’s faster to eval. than others (I was wrong)

2017-2020: Fortran, MATLAB/Octave, Python, Julia wrappers; GPU code

now: 212 GitHub stars, dozens of known users national labs, on 6000 GPUs, etc

Lesson: keep a CHANGELOG in your repo commit messages not enough ,

“Small” (lib = 3k lines of C++) Dive into some aspects. . .



Performance: kernel ψ(x) evaluation

Problem: for some chips & compilers, exp(x) slow (40 M evals/sec/core)
Fix: piecewise polynomial approx + Horner’s rule C gen. by MATLAB!

• GCC/ICC compilers SIMD-vectorize this; get 400-700 M evals/sec/core
• think hard re SIMD, but avoid maintaining intrinsics immintrin.h
• are exploring custom AVX512 (Wenda Zhou + R. Blackwell)



Performance: kernel ψ(x) evaluation

Problem: for some chips & compilers, exp(x) slow (40 M evals/sec/core)
Fix: piecewise polynomial approx + Horner’s rule C gen. by MATLAB!

• GCC/ICC compilers SIMD-vectorize this; get 400-700 M evals/sec/core
• think hard re SIMD, but avoid maintaining intrinsics immintrin.h
• are exploring custom AVX512 (Wenda Zhou + R. Blackwell)



Performance: spreading

The order in which NU points spread to grid has big effect on speed!
• bin-sort NU pts (into 16× 4× 4 cuboids of grid)
• process all pts in bin 1, then bin 2, . . . good for keeping grid in cache(J. Magland)

• multithreaded the bin-sort (2023: M. Reinecke speeds it up!)

Load-balanced multithreading (also collab with J. Magland)

Type-2 easy: OpenMP parallel over NU pts no collisons reading from U blocks

Type-1 not so: writes collide! load-balance via “subproblems” each of 104 NU pts

NU pts x
j

copy over

w

N f

subproblems: each own thread

2D case, type−1, spread to fine grid:

1D kernel evals

outer prod

spread



Performance: spreading

The order in which NU points spread to grid has big effect on speed!
• bin-sort NU pts (into 16× 4× 4 cuboids of grid)
• process all pts in bin 1, then bin 2, . . . good for keeping grid in cache(J. Magland)

• multithreaded the bin-sort (2023: M. Reinecke speeds it up!)

Load-balanced multithreading (also collab with J. Magland)

Type-2 easy: OpenMP parallel over NU pts no collisons reading from U blocks

Type-1 not so: writes collide! load-balance via “subproblems” each of 104 NU pts

NU pts x
j

copy over

w

N f

subproblems: each own thread

2D case, type−1, spread to fine grid:

1D kernel evals

outer prod

spread



Interface—how it evolved
2017: I wanted simple, familiar to users in C/Fortran and match NYU code

C-compatible: pass pointers, explicit array sizes, return value is error code. . .

int M = 1e8; // number of nonuniform points

vector<double> x(M); // NU pts

vector<complex<double> > c(M); // NU strengths

// (here user fills x and c as they like)

int N = 1e7; // number of output modes

vector<complex<double> > f(N); // allocate output array

int status = finufft1d1(M, &x[0], &c[0], +1, 1e-9, N, &f[0], NULL); // do it

• Why last arg NULL? it accepts ptr to options C-struct eg, opts.debug=2

2018: Batch transforms sharing NU pts: finufft1d1many(ntrans, M, ...)

batch FFTW often faster, sorting only done once

2020: maintaining 18× 2 functions too much pain → “guru” interface
4-function pattern: Create plan, Set the NU pts, Execute transform(s), Destroy plan.

finufft plan: “opaque” pointer to (private) C++ struct. (as in Brian’s talk)

Lesson: learn about public vs private headers, namespacing (as I had to)

Lesson: think hard about interface, break it VERY rarely!
help users: preserve all simple and batch interfaces (they call guru)



Interface—how it evolved
2017: I wanted simple, familiar to users in C/Fortran and match NYU code

C-compatible: pass pointers, explicit array sizes, return value is error code. . .

int M = 1e8; // number of nonuniform points

vector<double> x(M); // NU pts

vector<complex<double> > c(M); // NU strengths

// (here user fills x and c as they like)

int N = 1e7; // number of output modes

vector<complex<double> > f(N); // allocate output array

int status = finufft1d1(M, &x[0], &c[0], +1, 1e-9, N, &f[0], NULL); // do it

• Why last arg NULL? it accepts ptr to options C-struct eg, opts.debug=2

2018: Batch transforms sharing NU pts: finufft1d1many(ntrans, M, ...)

batch FFTW often faster, sorting only done once

2020: maintaining 18× 2 functions too much pain → “guru” interface
4-function pattern: Create plan, Set the NU pts, Execute transform(s), Destroy plan.

finufft plan: “opaque” pointer to (private) C++ struct. (as in Brian’s talk)

Lesson: learn about public vs private headers, namespacing (as I had to)

Lesson: think hard about interface, break it VERY rarely!
help users: preserve all simple and batch interfaces (they call guru)



Interface—how it evolved
2017: I wanted simple, familiar to users in C/Fortran and match NYU code

C-compatible: pass pointers, explicit array sizes, return value is error code. . .

int M = 1e8; // number of nonuniform points

vector<double> x(M); // NU pts

vector<complex<double> > c(M); // NU strengths

// (here user fills x and c as they like)

int N = 1e7; // number of output modes

vector<complex<double> > f(N); // allocate output array

int status = finufft1d1(M, &x[0], &c[0], +1, 1e-9, N, &f[0], NULL); // do it

• Why last arg NULL? it accepts ptr to options C-struct eg, opts.debug=2

2018: Batch transforms sharing NU pts: finufft1d1many(ntrans, M, ...)

batch FFTW often faster, sorting only done once

2020: maintaining 18× 2 functions too much pain → “guru” interface
4-function pattern: Create plan, Set the NU pts, Execute transform(s), Destroy plan.

finufft plan: “opaque” pointer to (private) C++ struct. (as in Brian’s talk)

Lesson: learn about public vs private headers, namespacing (as I had to)

Lesson: think hard about interface, break it VERY rarely!
help users: preserve all simple and batch interfaces (they call guru)



Interface—how it evolved
2017: I wanted simple, familiar to users in C/Fortran and match NYU code

C-compatible: pass pointers, explicit array sizes, return value is error code. . .

int M = 1e8; // number of nonuniform points

vector<double> x(M); // NU pts

vector<complex<double> > c(M); // NU strengths

// (here user fills x and c as they like)

int N = 1e7; // number of output modes

vector<complex<double> > f(N); // allocate output array

int status = finufft1d1(M, &x[0], &c[0], +1, 1e-9, N, &f[0], NULL); // do it

• Why last arg NULL? it accepts ptr to options C-struct eg, opts.debug=2

2018: Batch transforms sharing NU pts: finufft1d1many(ntrans, M, ...)

batch FFTW often faster, sorting only done once

2020: maintaining 18× 2 functions too much pain → “guru” interface
4-function pattern: Create plan, Set the NU pts, Execute transform(s), Destroy plan.

finufft plan: “opaque” pointer to (private) C++ struct. (as in Brian’s talk)

Lesson: learn about public vs private headers, namespacing (as I had to)

Lesson: think hard about interface, break it VERY rarely!
help users: preserve all simple and batch interfaces (they call guru)



Interface—how it evolved
2017: I wanted simple, familiar to users in C/Fortran and match NYU code

C-compatible: pass pointers, explicit array sizes, return value is error code. . .

int M = 1e8; // number of nonuniform points

vector<double> x(M); // NU pts

vector<complex<double> > c(M); // NU strengths

// (here user fills x and c as they like)

int N = 1e7; // number of output modes

vector<complex<double> > f(N); // allocate output array

int status = finufft1d1(M, &x[0], &c[0], +1, 1e-9, N, &f[0], NULL); // do it

• Why last arg NULL? it accepts ptr to options C-struct eg, opts.debug=2

2018: Batch transforms sharing NU pts: finufft1d1many(ntrans, M, ...)

batch FFTW often faster, sorting only done once

2020: maintaining 18× 2 functions too much pain → “guru” interface
4-function pattern: Create plan, Set the NU pts, Execute transform(s), Destroy plan.

finufft plan: “opaque” pointer to (private) C++ struct. (as in Brian’s talk)

Lesson: learn about public vs private headers, namespacing (as I had to)

Lesson: think hard about interface, break it VERY rarely!
help users: preserve all simple and batch interfaces (they call guru)



Wrappers to other languages: expands user base

Guru interface made wrapping easier: just wrap 4 funcs, pass opaque ptr
write the simple and batched functions via a few lines in each high-level language

MATLAB/Octave (Libin Lu)

simple for users f = finufft1d1(x,c,+1,1e-9,N);

• still recommend MWrap to auto-gen MEX code horror (Bindel ’09)

Python
2018: Dan Foreman-Mackey wrote a pybind11 wrapper to FINUFFT
• served well for a while. But eg forced recompile of libfinufft.so

2020: Joakim Andén switched us to ctypes nice, 1000 lines incl. auto-doc-gen

Others have wrapped (cu)FINUFFT in autodiff frameworks:
tensorflow-nufft, jax-finufft, pytorch-finufft

Julia wrapper is separate repo: helps separate concerns (L. af Klinteberg)

Lessons: each new language brings installation troubles linux/OSX/Windows



Wrappers to other languages: expands user base

Guru interface made wrapping easier: just wrap 4 funcs, pass opaque ptr
write the simple and batched functions via a few lines in each high-level language

MATLAB/Octave (Libin Lu)

simple for users f = finufft1d1(x,c,+1,1e-9,N);

• still recommend MWrap to auto-gen MEX code horror (Bindel ’09)

Python
2018: Dan Foreman-Mackey wrote a pybind11 wrapper to FINUFFT
• served well for a while. But eg forced recompile of libfinufft.so

2020: Joakim Andén switched us to ctypes nice, 1000 lines incl. auto-doc-gen

Others have wrapped (cu)FINUFFT in autodiff frameworks:
tensorflow-nufft, jax-finufft, pytorch-finufft

Julia wrapper is separate repo: helps separate concerns (L. af Klinteberg)

Lessons: each new language brings installation troubles linux/OSX/Windows



Wrappers to other languages: expands user base

Guru interface made wrapping easier: just wrap 4 funcs, pass opaque ptr
write the simple and batched functions via a few lines in each high-level language

MATLAB/Octave (Libin Lu)

simple for users f = finufft1d1(x,c,+1,1e-9,N);

• still recommend MWrap to auto-gen MEX code horror (Bindel ’09)

Python
2018: Dan Foreman-Mackey wrote a pybind11 wrapper to FINUFFT
• served well for a while. But eg forced recompile of libfinufft.so

2020: Joakim Andén switched us to ctypes nice, 1000 lines incl. auto-doc-gen

Others have wrapped (cu)FINUFFT in autodiff frameworks:
tensorflow-nufft, jax-finufft, pytorch-finufft

Julia wrapper is separate repo: helps separate concerns (L. af Klinteberg)

Lessons: each new language brings installation troubles linux/OSX/Windows



Testing

Need tests that check accuracy for all transforms fail if measured error ≥ 10ε ?

> make test [includes bunch of edge cases M=0, N=0, eps=0.0, etc...]

0 segfaults out of 8 tests done

0 fails out of 8 tests done

A story: I wrote finufft1d test, etc, writes to stdout for humans. . .

test 1d type 1:

1000000 NU pts to 1000000 modes in 0.0829 s 1.21e+07 NU pts/s

one mode: rel err in F[370000] is 6.59e-08

[...]
Such speed and accuracy testers are crucial for progress

To make a pass-fail test, wrote bash to pipe stdout to numdiff (linux tool)

3 years later: OSX, Windows users cannot find numdiff, ugh!

thus: each C++ test driver now uses exit code 0 for success, 1 for fail

Lesson: remove all nonessential dependencies. Use exit code as test result.

Lesson: make tests (and examples) for each wrapped language

Continuous Integration (CI) each GitHub push reruns tests:

Jenkins (was using makefile, now uses CMake)



Testing

Need tests that check accuracy for all transforms fail if measured error ≥ 10ε ?

> make test [includes bunch of edge cases M=0, N=0, eps=0.0, etc...]

0 segfaults out of 8 tests done

0 fails out of 8 tests done

A story: I wrote finufft1d test, etc, writes to stdout for humans. . .

test 1d type 1:

1000000 NU pts to 1000000 modes in 0.0829 s 1.21e+07 NU pts/s

one mode: rel err in F[370000] is 6.59e-08

[...]
Such speed and accuracy testers are crucial for progress

To make a pass-fail test, wrote bash to pipe stdout to numdiff (linux tool)

3 years later: OSX, Windows users cannot find numdiff, ugh!

thus: each C++ test driver now uses exit code 0 for success, 1 for fail

Lesson: remove all nonessential dependencies. Use exit code as test result.

Lesson: make tests (and examples) for each wrapped language

Continuous Integration (CI) each GitHub push reruns tests:

Jenkins (was using makefile, now uses CMake)



Testing

Need tests that check accuracy for all transforms fail if measured error ≥ 10ε ?

> make test [includes bunch of edge cases M=0, N=0, eps=0.0, etc...]

0 segfaults out of 8 tests done

0 fails out of 8 tests done

A story: I wrote finufft1d test, etc, writes to stdout for humans. . .

test 1d type 1:

1000000 NU pts to 1000000 modes in 0.0829 s 1.21e+07 NU pts/s

one mode: rel err in F[370000] is 6.59e-08

[...]
Such speed and accuracy testers are crucial for progress

To make a pass-fail test, wrote bash to pipe stdout to numdiff (linux tool)

3 years later: OSX, Windows users cannot find numdiff, ugh!

thus: each C++ test driver now uses exit code 0 for success, 1 for fail

Lesson: remove all nonessential dependencies. Use exit code as test result.

Lesson: make tests (and examples) for each wrapped language

Continuous Integration (CI) each GitHub push reruns tests:

Jenkins (was using makefile, now uses CMake)



Testing

Need tests that check accuracy for all transforms fail if measured error ≥ 10ε ?

> make test [includes bunch of edge cases M=0, N=0, eps=0.0, etc...]

0 segfaults out of 8 tests done

0 fails out of 8 tests done

A story: I wrote finufft1d test, etc, writes to stdout for humans. . .

test 1d type 1:

1000000 NU pts to 1000000 modes in 0.0829 s 1.21e+07 NU pts/s

one mode: rel err in F[370000] is 6.59e-08

[...]
Such speed and accuracy testers are crucial for progress

To make a pass-fail test, wrote bash to pipe stdout to numdiff (linux tool)

3 years later: OSX, Windows users cannot find numdiff, ugh!

thus: each C++ test driver now uses exit code 0 for success, 1 for fail

Lesson: remove all nonessential dependencies. Use exit code as test result.

Lesson: make tests (and examples) for each wrapped language

Continuous Integration (CI) each GitHub push reruns tests:

Jenkins (was using makefile, now uses CMake)



Testing

Need tests that check accuracy for all transforms fail if measured error ≥ 10ε ?

> make test [includes bunch of edge cases M=0, N=0, eps=0.0, etc...]

0 segfaults out of 8 tests done

0 fails out of 8 tests done

A story: I wrote finufft1d test, etc, writes to stdout for humans. . .

test 1d type 1:

1000000 NU pts to 1000000 modes in 0.0829 s 1.21e+07 NU pts/s

one mode: rel err in F[370000] is 6.59e-08

[...]
Such speed and accuracy testers are crucial for progress

To make a pass-fail test, wrote bash to pipe stdout to numdiff (linux tool)

3 years later: OSX, Windows users cannot find numdiff, ugh!

thus: each C++ test driver now uses exit code 0 for success, 1 for fail

Lesson: remove all nonessential dependencies. Use exit code as test result.

Lesson: make tests (and examples) for each wrapped language

Continuous Integration (CI) each GitHub push reruns tests:

Jenkins (was using makefile, now uses CMake)



Documentation
README.md, or a .tex file to PDF, fine for small project, but:

Web-facing
essential for
professionalism

• math definitions
• installation
• examples
• tutorial cases
• troubleshooting
• devnotes
. . .



Documentation: lessons
• Decent solution I recommend: sphinx, host at readthedocs.io

docs/*.rst ReStructuredText, in master branch (unlike GHpages)

LATEX math pretty good via mathjax, texext

• SSOT: avoid repetition, makes maintenance/changes easier
Eg: C++ source has no doc, refers user to docs/ (ie web)

But don’t get carried away with obscure doc build automation
eg: my bash script auto-generates C/C++ docs, now hard to understand

• Describe what your tool does in plain mathematical language
Don’t assume jargon from one science area (“wavefunction”, “k-space” etc)

Most MRI NUFFT codes fail to do this ⇒ unusable

• Always update docs at the time you change the source



Documentation: lessons
• Decent solution I recommend: sphinx, host at readthedocs.io

docs/*.rst ReStructuredText, in master branch (unlike GHpages)

LATEX math pretty good via mathjax, texext

• SSOT: avoid repetition, makes maintenance/changes easier
Eg: C++ source has no doc, refers user to docs/ (ie web)

But don’t get carried away with obscure doc build automation
eg: my bash script auto-generates C/C++ docs, now hard to understand

• Describe what your tool does in plain mathematical language
Don’t assume jargon from one science area (“wavefunction”, “k-space” etc)

Most MRI NUFFT codes fail to do this ⇒ unusable

• Always update docs at the time you change the source



Documentation: lessons
• Decent solution I recommend: sphinx, host at readthedocs.io

docs/*.rst ReStructuredText, in master branch (unlike GHpages)

LATEX math pretty good via mathjax, texext

• SSOT: avoid repetition, makes maintenance/changes easier
Eg: C++ source has no doc, refers user to docs/ (ie web)

But don’t get carried away with obscure doc build automation
eg: my bash script auto-generates C/C++ docs, now hard to understand

• Describe what your tool does in plain mathematical language
Don’t assume jargon from one science area (“wavefunction”, “k-space” etc)

Most MRI NUFFT codes fail to do this ⇒ unusable

• Always update docs at the time you change the source



Documentation: lessons
• Decent solution I recommend: sphinx, host at readthedocs.io

docs/*.rst ReStructuredText, in master branch (unlike GHpages)

LATEX math pretty good via mathjax, texext

• SSOT: avoid repetition, makes maintenance/changes easier
Eg: C++ source has no doc, refers user to docs/ (ie web)

But don’t get carried away with obscure doc build automation
eg: my bash script auto-generates C/C++ docs, now hard to understand

• Describe what your tool does in plain mathematical language
Don’t assume jargon from one science area (“wavefunction”, “k-space” etc)

Most MRI NUFFT codes fail to do this ⇒ unusable

• Always update docs at the time you change the source



GPU version
cuFINUFFT: CUDA called from C++ (Melody Shih, intern ’18, ’19 [NYU→NVidia])

• spreading done in shared memory (subproblems), not global memory
(Shih et al, PDSEC 2021, best paper prize)

2023: cleaned up GPU lib (+tests,. . . ) into FINUFFT repo (R. Blackwell)

Future: language interfaces auto-detect GPU arrays?



Conclusions: developing a small(ish) library

First identify a need + benchmark existing codes, on same task!

– can you perform task faster / more accurate?

Start small, but professionalizing a library involves learning!
– users find bugs you’d never thought of must respond (thanks Libin)

– users make improvement PRs, or beat your speed respond to some

– be conservative: one change at a time for your sanity (eg: no MPI)

– try to be somewhat idiomatic I won’t use #define FLT double in C++ again ,

Collect a great team: software engineers + interns + motivated users
– library becomes used , ⇒ more Issues / requests /
– quarterly(?) all-team meeting prioritize features, drop others

Installation, dependencies & language wrappers takes much of our time!
– helps users, but needs a team (linux,OSX,Windows). Your choice.

Eg: guess which language wrapper SMILI black hole astro code uses?

– still plenty of fun with math & floating-point speed hacking!

Thank-you!



Conclusions: developing a small(ish) library

First identify a need + benchmark existing codes, on same task!

– can you perform task faster / more accurate?

Start small, but professionalizing a library involves learning!
– users find bugs you’d never thought of must respond (thanks Libin)

– users make improvement PRs, or beat your speed respond to some

– be conservative: one change at a time for your sanity (eg: no MPI)

– try to be somewhat idiomatic I won’t use #define FLT double in C++ again ,

Collect a great team: software engineers + interns + motivated users
– library becomes used , ⇒ more Issues / requests /
– quarterly(?) all-team meeting prioritize features, drop others

Installation, dependencies & language wrappers takes much of our time!
– helps users, but needs a team (linux,OSX,Windows). Your choice.

Eg: guess which language wrapper SMILI black hole astro code uses?

– still plenty of fun with math & floating-point speed hacking!

Thank-you!



Conclusions: developing a small(ish) library

First identify a need + benchmark existing codes, on same task!

– can you perform task faster / more accurate?

Start small, but professionalizing a library involves learning!
– users find bugs you’d never thought of must respond (thanks Libin)

– users make improvement PRs, or beat your speed respond to some

– be conservative: one change at a time for your sanity (eg: no MPI)

– try to be somewhat idiomatic I won’t use #define FLT double in C++ again ,

Collect a great team: software engineers + interns + motivated users
– library becomes used , ⇒ more Issues / requests /
– quarterly(?) all-team meeting prioritize features, drop others

Installation, dependencies & language wrappers takes much of our time!
– helps users, but needs a team (linux,OSX,Windows). Your choice.

Eg: guess which language wrapper SMILI black hole astro code uses?

– still plenty of fun with math & floating-point speed hacking!

Thank-you!



Conclusions: developing a small(ish) library

First identify a need + benchmark existing codes, on same task!

– can you perform task faster / more accurate?

Start small, but professionalizing a library involves learning!
– users find bugs you’d never thought of must respond (thanks Libin)

– users make improvement PRs, or beat your speed respond to some

– be conservative: one change at a time for your sanity (eg: no MPI)

– try to be somewhat idiomatic I won’t use #define FLT double in C++ again ,

Collect a great team: software engineers + interns + motivated users
– library becomes used , ⇒ more Issues / requests /
– quarterly(?) all-team meeting prioritize features, drop others

Installation, dependencies & language wrappers takes much of our time!
– helps users, but needs a team (linux,OSX,Windows). Your choice.

Eg: guess which language wrapper SMILI black hole astro code uses?

– still plenty of fun with math & floating-point speed hacking!

Thank-you!


