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What on Earth is a starshade? (PS: it’s not!)

“Exoplanet” = planet∗ orbiting some distant sun ∗ that might have life!

Can’t image an exoplanet directly because it’s sun is 1010× brighter
and only ∼ 10−7 radians separated in apparent angle: detector dazzled!

Thus, plan is: block only the starlight via “occulter” floating in space. . .

• a lovely shape
optimization problem:
pointy “petals”
minimize starlight
diffraction into shadow
(kills Poisson spot)

(Vanderbei et al ’07)

• Big $ NASA/JPL

project: video

https://www.youtube.com/watch?v=426gWhH9TBY
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Crash course in diffraction approximations

The occulter is basically a lump R of conductive metal floating in R3

Light obeys a PDE: Maxwell’s equations relating six field components
(E ,B), with approx. conductor boundary conditions (transverse E = 0)

Scalar approximation to Maxwell applies for length-scales much larger
than the wavelength λ, would give acoustic scattering BVP:

(∆ + (2π/λ)2)u = 0 in R3\R Helmholtz PDE ∆ = Laplacian

u = −uincident on ∂R ← surface of R + radiation cond. at ∞
occulter 107λ across: � 1014 unknowns even using boundary integral equations :(

But R is a thin sheet lying in a plane, so Kirchhoff approximation gives
direct solution as Green’s integral (single-layer potential w/ unit density)
over the transmitting part Ω ⊂ R2 of this “source plane”:

utarget ≈
∫∫

Ω
e−2πiρ/λ

ρ dxdy ρ = distance from source plane point to target

Finally, Fresnel approx. truncates Taylor: ρ =
√
z2 + r2 ≈ z + r2

2z
Pythagoras: z = downstream distance (∼ 3e7 m), r = transverse distance (∼ 10 m)



Crash course in diffraction approximations

The occulter is basically a lump R of conductive metal floating in R3

Light obeys a PDE: Maxwell’s equations relating six field components
(E ,B), with approx. conductor boundary conditions (transverse E = 0)

Scalar approximation to Maxwell applies for length-scales much larger
than the wavelength λ, would give acoustic scattering BVP:

(∆ + (2π/λ)2)u = 0 in R3\R Helmholtz PDE ∆ = Laplacian

u = −uincident on ∂R ← surface of R + radiation cond. at ∞
occulter 107λ across: � 1014 unknowns even using boundary integral equations :(

But R is a thin sheet lying in a plane, so Kirchhoff approximation gives
direct solution as Green’s integral (single-layer potential w/ unit density)
over the transmitting part Ω ⊂ R2 of this “source plane”:

utarget ≈
∫∫

Ω
e−2πiρ/λ

ρ dxdy ρ = distance from source plane point to target

Finally, Fresnel approx. truncates Taylor: ρ =
√
z2 + r2 ≈ z + r2

2z
Pythagoras: z = downstream distance (∼ 3e7 m), r = transverse distance (∼ 10 m)



Crash course in diffraction approximations

The occulter is basically a lump R of conductive metal floating in R3

Light obeys a PDE: Maxwell’s equations relating six field components
(E ,B), with approx. conductor boundary conditions (transverse E = 0)

Scalar approximation to Maxwell applies for length-scales much larger
than the wavelength λ, would give acoustic scattering BVP:

(∆ + (2π/λ)2)u = 0 in R3\R Helmholtz PDE ∆ = Laplacian

u = −uincident on ∂R ← surface of R + radiation cond. at ∞
occulter 107λ across: � 1014 unknowns even using boundary integral equations :(

But R is a thin sheet lying in a plane, so Kirchhoff approximation gives
direct solution as Green’s integral (single-layer potential w/ unit density)
over the transmitting part Ω ⊂ R2 of this “source plane”:

utarget ≈
∫∫

Ω
e−2πiρ/λ

ρ dxdy ρ = distance from source plane point to target

Finally, Fresnel approx. truncates Taylor: ρ =
√
z2 + r2 ≈ z + r2

2z
Pythagoras: z = downstream distance (∼ 3e7 m), r = transverse distance (∼ 10 m)



Crash course in diffraction approximations

The occulter is basically a lump R of conductive metal floating in R3

Light obeys a PDE: Maxwell’s equations relating six field components
(E ,B), with approx. conductor boundary conditions (transverse E = 0)

Scalar approximation to Maxwell applies for length-scales much larger
than the wavelength λ, would give acoustic scattering BVP:

(∆ + (2π/λ)2)u = 0 in R3\R Helmholtz PDE ∆ = Laplacian

u = −uincident on ∂R ← surface of R + radiation cond. at ∞
occulter 107λ across: � 1014 unknowns even using boundary integral equations :(

But R is a thin sheet lying in a plane, so Kirchhoff approximation gives
direct solution as Green’s integral (single-layer potential w/ unit density)
over the transmitting part Ω ⊂ R2 of this “source plane”:

utarget ≈
∫∫

Ω
e−2πiρ/λ

ρ dxdy ρ = distance from source plane point to target

Finally, Fresnel approx. truncates Taylor: ρ =
√
z2 + r2 ≈ z + r2

2z
Pythagoras: z = downstream distance (∼ 3e7 m), r = transverse distance (∼ 10 m)



Fresnel scalar diffraction setup and task

Let Ω ⊂ R2 be occulter (eg, starshade) in plane z = 0
Incident plane wave e2πiz/λ along z-axis: seek field uoc in target plane

Write as aperture problem: (Babinet ∼1830)

uoc(ξ, η) = 1− uap(ξ, η) ,

uap(ξ, η) =
1

iλz

∫∫
Ω
e

iπ
λz [(ξ−x)2+(η−y)2] dxdy

λ = wavelength z = downstream dist.

• characteristic func. of aperture χΩ

convolved in 2D w/ complex Gaussian

Fresnel number f :=
R2

λz
∼ 5 to 20 for starshades R = aperture radius

Is scalar approx. good? yes for full scale; not perfect for scale models

Is Fresnel approx. good? yes! next term R4

λz3 ∼ 10−7 even for scale models

• Numerical tolerance? uap abs error < 10−6 to model shadow intensity 10−10
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Numerical methods for Fresnel diffraction
Seek uap on, say, n× n grid. Two existing methods; we propose a third. . .

(a) uniform 2D grid sampling (b) line integral quadrature (c) high-order areal quadrature
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fast O(n2 log n)
(Mas, Lo, Junchang et al)

low-order O(1/n)
gray-pixel at best O(1/n2)

direct summation
uap = 1

2π

∫
∂Ω

(
1−e

iπ
λz

r2)
r×ds

r2

slow O(n3)
(Miyamoto–Wolf, Dauger,

Cash, Cady, Barnett ’21)

high-order accurate

2D nonuniform FFT

fast O(n2 log n)

(Barnett ’21)

high-order accurate

• prior starshade design/modeling used slow method (b), since (a) inacc.
• JPL code (BDWF) (Cady ’12) also blows up for targets near ∂Ω
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We need areal quadrature (AQ) over aperture Ω

AQ is simply set of nodes (xj , yj), j = 1, . . . ,N, with weights wj , so

∫∫
Ω
f (x , y) dxdy ≈

N∑
j=1

f (xj , yj)wj

should be high-order accurate in N

Eg: Ω = rectangle:
tensor product Gauss–Legendre rule

AQ for “arbitrary” geometries?

• easy from existing line (edge) integral quadrature rule, via dilation
• unions of simple shapes + smooth transformations Jacobean scales wj

• auto-generate from CAD format (not yet)

Issues: geometry formats, precise (< 10−5) tolerances
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Areal quadrature for starshades

Easy to build AQ for “ideal” starshade N ∼ 104–106, err 10−6, 20 lines MATLAB

High-order interpolation from nodes giving petal apodization func A(r):
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issue: A from optim. design is rippled not smooth A ∈ C1, A′′ discontinuous!

Real starshade: defects, roughness, misalignments, thermal distortion. . .

• can add/subtract a variable-width strip region to an ideal one
• statistical shape sampling: many forward simulations, estim. p(failure)

Communicating precise geometries w/ engineers can be hard!
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The fast trick: factorization of quadratic exponential

For all targets k = 1, . . . ,M, eval. quadrature rule for Frensel integral:

uap

k ≈ 1

iλz

N∑
j=1

e
iπ
λz [(ξk−xj )2+(ηk−yj )2] wj

=
1

iλz
e

iπ
λz

(ξ2
k+η2

k ) ·
N∑
j=1

e
−2πi
λz

(ξkxj+ηkyj )

(
e

iπ
λz

(x2
j +y2

j ) wj

)
↗ ↑ ↖

iii) post-multiply ii) 2D “type 3 NUFFT” i) pre-multiply

Entire algorithm = three sequential steps very simple, < 10 lines of MATLAB

Cost O(N + M + f2 log f) In practice: 107 (sources+targets)/sec on laptop

If targets on regular grid, use (faster) type 1 NUFFT abbrev by “t3” and “t1”

Recommended software for NUFFTs on CPU: FINUFFT
http://finufft.readthedocs.io

C++/OpenMP; beats others heartily (B et al ’19)

http://finufft.readthedocs.io
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Results: target plane intensity pictures

Smooth kite test: “NI2” design ideal starshade:
f ≈ 13 (above), 130 (below): central deep shadow |uoc|2 ∼ 10−10, good!

spectral acc. < 10−12



Performance & validation for ideal starshades NI2, HG
Validation vs edge-integrals: (Cady ’12; BDWF, from JPL SISTER codebase)
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Speed against BDWF, for million-point target grid: i7 laptop

Conclusions: same accuracy reached, 3–5 orders of magnitude faster
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Wavelength λ sweep movie

M = 106 targets, computed at ∼10 frames/sec (close to real time):



Wavelength sweeps & modifications to JPL codes

Shadow depth study, 50 λ values, takes 6 seconds: including AQ gen; laptop

Replacing BDWF by t3 in “PSF basis” task: hack JPL’s code, proof-of-principle

• 3149 shifts of 16× 16 pupil grids → key: do all targets at once!
• reduces JPL’s MATLAB run-time from 6.5 hours to 2.6 seconds
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Fun demo of complicated aperture: Koch snowflake



Conclusions
Fast method for accurate (< 10−6) hard-edged Fresnel diffraction

∼ 107 pupil plane targets/sec, almost indep of starshade geom.

Excels when many targets: in practice 104× faster than previous methods

Simple: 2D NUFFT + high-order areal quadrature for occulter domain

Future:
• shape variation/roughness started (JPL users: Dumont, Shaklan, Harness)

• continuous phase variation? trivial
• “0-1” aperture design probs: coronagraphs, zone plates. . .
• Question: can apply NUFFT to edge-integral, bypassing AQ?

“Efficient high-order accurate Fresnel diffraction via areal quadrature and
the nonuniform FFT,” A. H. Barnett, J. Astron. Telesc. Instrum. Syst.
7(2), 021211 (21 pages), 2021. arxiv:2010.05978.

Code/docs: https://github.com/ahbarnett/fresnaq

https://github.com/ahbarnett/fresnaq

