

Fresnel Diffraction for Starshade Design using the Non-Uniform FFT

Alex Barnett¹

SIAM Annual Meeting, 7/21/21

Thanks to: David Hogg, Leslie Greengard, David Spergel, for introducing me to the problem Stuart Shaklan, Anthony Harness, Philip Dumont, for discussions

¹Center for Computational Mathematics, Flatiron Institute, Simons Foundation

What on Earth is a starshade? (PS: it's not!)

 $\hbox{``Exoplanet''} = \mathsf{planet}^* \ \mathsf{orbiting} \ \mathsf{some} \ \mathsf{distant} \ \mathsf{sun} \qquad * \ \mathsf{that} \ \mathsf{might} \ \mathsf{have} \ \mathsf{life!}$

Can't image an exoplanet directly because it's sun is $10^{10} \times$ brighter and only $\sim 10^{-7}$ radians separated in apparent angle: detector dazzled!

What on Earth is a starshade? (PS: it's not!)

"Exoplanet" = planet* orbiting some distant sun

* that might have life!

Can't image an exoplanet directly because it's sun is $10^{10} \times$ brighter and only $\sim 10^{-7}$ radians separated in apparent angle: detector dazzled!

Thus, plan is: block only the starlight via "occulter" floating in space. . .

 a lovely shape optimization problem: pointy "petals" minimize starlight diffraction into shadow (kills Poisson spot)

(Vanderbei et al '07)

• Big \$ NASA/JPL project: video

The occulter is basically a lump R of conductive metal floating in \mathbb{R}^3 Light obeys a PDE: Maxwell's equations relating six field components (E,B), with approx. conductor boundary conditions (transverse E=0)

The occulter is basically a lump R of conductive metal floating in \mathbb{R}^3 Light obeys a PDE: Maxwell's equations relating six field components (E,B), with approx. conductor boundary conditions (transverse E=0)

Scalar approximation to Maxwell applies for length-scales much larger than the wavelength λ , would give acoustic scattering BVP:

$$(\Delta + (2\pi/\lambda)^2)u = 0$$
 in $\mathbb{R}^3 \backslash \overline{R}$ Helmholtz PDE $\Delta =$ Laplacian $u = -u_{\mathsf{incident}}$ on $\partial R \leftarrow \mathsf{surface}$ of $R \rightarrow \mathsf{radiation}$ cond. at ∞ occulter $10^7 \lambda$ across: $\gg 10^{14}$ unknowns even using boundary integral equations :(

The occulter is basically a lump R of conductive metal floating in \mathbb{R}^3 Light obeys a PDE: Maxwell's equations relating six field components $(\boldsymbol{E},\boldsymbol{B})$, with approx. conductor boundary conditions (transverse $\boldsymbol{E}=\boldsymbol{0}$)

Scalar approximation to Maxwell applies for length-scales much larger than the wavelength λ , would give acoustic scattering BVP:

$$\begin{split} (\Delta + (2\pi/\lambda)^2)u &= 0 & \text{in } \mathbb{R}^3 \backslash \overline{R} & \text{Helmholtz PDE} \quad \Delta = \text{Laplacian} \\ u &= -u_{\text{incident}} & \text{on } \partial R & \leftarrow \text{surface of } R & + \text{radiation cond. at } \infty \\ & \text{occulter } 10^7 \lambda \text{ across: } \gg 10^{14} \text{ unknowns even using boundary integral equations :} (\end{split}$$

But R is a thin sheet lying in a plane, so *Kirchhoff approximation* gives direct solution as Green's integral (single-layer potential w/ unit density) over the transmitting part $\Omega \subset \mathbb{R}^2$ of this "source plane":

$$u_{\rm target} \approx \iint_{\Omega} \frac{{\rm e}^{-2\pi i
ho/\lambda}}{
ho} \, dx dy$$
 $ho = {\rm distance \ from \ source \ plane \ point \ to \ target}$

The occulter is basically a lump R of conductive metal floating in \mathbb{R}^3 Light obeys a PDE: Maxwell's equations relating six field components (E,B), with approx. conductor boundary conditions (transverse E=0)

Scalar approximation to Maxwell applies for length-scales much larger than the wavelength λ , would give acoustic scattering BVP:

$$(\Delta + (2\pi/\lambda)^2)u = 0 \qquad \text{in } \mathbb{R}^3 \backslash \overline{R} \qquad \text{Helmholtz PDE} \qquad \Delta = \text{Laplacian} \\ u = -u_{\text{incident}} \qquad \text{on } \partial R \qquad \leftarrow \text{surface of } R \qquad + \text{ radiation cond. at } \infty \\ \text{occulter } 10^7 \lambda \text{ across: } \gg 10^{14} \text{ unknowns even using boundary integral equations : (}$$

But R is a thin sheet lying in a plane, so *Kirchhoff approximation* gives direct solution as Green's integral (single-layer potential w/ unit density) over the transmitting part $\Omega \subset \mathbb{R}^2$ of this "source plane":

$$u_{\mathrm{target}} pprox \iint_{\Omega} \frac{\mathrm{e}^{-2\pi i
ho/\lambda}}{
ho} \, dx dy$$
 $ho = \mathrm{distance} \ \mathrm{from} \ \mathrm{source} \ \mathrm{plane} \ \mathrm{point} \ \mathrm{to} \ \mathrm{target}$

Finally, Fresnel approx. truncates Taylor:
$$\rho = \sqrt{z^2 + r^2} \approx z + \frac{r^2}{2z}$$

Pythagoras: z= downstream distance (\sim 3e7 m), r= transverse distance (\sim 10 m)

Fresnel scalar diffraction setup and task

Let $\Omega \subset \mathbb{R}^2$ be occulter (eg, starshade) in plane z=0Incident plane wave $e^{2\pi iz/\lambda}$ along z-axis: seek field $u^{\circ c}$ in target plane

Write as aperture problem: (Babinet \sim 1830)

$$u^{\text{oc}}(\xi,\eta) = 1 - u^{\text{ap}}(\xi,\eta)$$
,

$$u^{\mathsf{ap}}(\xi,\eta) = \frac{1}{i\lambda z} \iint_{\Omega} e^{\frac{i\pi}{\lambda z} \left[(\xi - x)^2 + (\eta - y)^2 \right]} dxdy$$

 $\lambda = {
m wavelength} \quad z = {
m downstream \ dist.}$

• characteristic func. of aperture χ_{Ω} convolved in 2D w/ complex Gaussian

Fresnel scalar diffraction setup and task

Let $\Omega \subset \mathbb{R}^2$ be occulter (eg, starshade) in plane z=0Incident plane wave $e^{2\pi iz/\lambda}$ along z-axis: seek field u^{oc} in target plane

Write as aperture problem: (Babinet ~1830)

$$u^{\operatorname{oc}}(\xi,\eta) = 1 - u^{\operatorname{ap}}(\xi,\eta)$$
,

$$u^{\mathrm{ap}}(\xi,\eta) = \frac{1}{i\lambda z} \iint_{\Omega} e^{\frac{i\pi}{\lambda z} \left[(\xi - x)^2 + (\eta - y)^2 \right]} dxdy$$

 $\lambda = \text{wavelength} \quad z = \text{downstream dist.}$

• characteristic func. of aperture χ_{Ω} convolved in 2D w/ complex Gaussian

Fresnel number
$$\mathfrak{f}:=\frac{R^2}{\lambda z}\sim 5$$
 to 20 for starshades

R = aperture radius

Is scalar approx. good? yes Is Fresnel approx. good? yes! next term $\frac{R^4}{\sqrt{r^3}} \sim 10^{-7}$ even for scale models

for full scale; not perfect for scale models

• Numerical tolerance? u^{ap} abs error $< 10^{-6}$ to model shadow intensity 10^{-10}

Seek u^{ap} on, say, $n \times n$ grid. Two existing methods; we propose a third...

(b) line integral quadrature

(c) high-order areal quadrature

2D FFT (or pair) convolution fast $\mathcal{O}(n^2 \log n)$ (Mas, Lo, Junchang et al) low-order $\mathcal{O}(1/n)$

gray-pixel at best $\mathcal{O}(1/n^2)$

Seek u^{ap} on, say, $n \times n$ grid. Two existing methods; we propose a third...

(a) uniform 2D grid sampling

2D FFT (or pair) convolution fast $\mathcal{O}(n^2 \log n)$ (Mas, Lo, Junchang et al) low-order $\mathcal{O}(1/n)$ gray-pixel at best $\mathcal{O}(1/n^2)$

direct summation $u^{\mathrm{ap}} = \frac{1}{2\pi} \int_{\partial\Omega} (1 - e^{\frac{i\pi}{\lambda^2} r^2}) \frac{r \times ds}{r^2}$ slow $\mathcal{O}(n^3)$ (Miyamoto–Wolf, Dauger, Cash, Cady, Barnett '21) high-order accurate

Seek u^{ap} on, say, $n \times n$ grid. Two existing methods; we propose a third...

(a) uniform 2D grid sampling

2D FFT (or pair) convolution fast $\mathcal{O}(n^2 \log n)$ (Mas, Lo, Junchang et al) low-order $\mathcal{O}(1/n)$ gray-pixel at best $\mathcal{O}(1/n^2)$ (b) line integral quadrature

direct summation $u^{ap} = \frac{1}{2\pi} \int_{\partial \Omega} \left(1 - e^{\frac{i\pi}{\lambda z}r^2} \right) \frac{r \times ds}{r^2}$ slow $\mathcal{O}(n^3)$ (Miyamoto-Wolf, Dauger, Cash, Cady, Barnett '21) high-order accurate

(c) high-order areal quadrature

2D nonuniform FFT

fast
$$\mathcal{O}(n^2 \log n)$$

(Barnett '21)

high-order accurate

Seek u^{ap} on, say, $n \times n$ grid. Two existing methods; we propose a third...

2D FFT (or pair) convolution fast $\mathcal{O}(n^2 \log n)$ (Mas, Lo, Junchang et al) low-order $\mathcal{O}(1/n)$ gray-pixel at best $\mathcal{O}(1/n^2)$

direct summation $u^{\mathrm{ap}} = \frac{1}{2\pi} \int_{\partial\Omega} (1 - \mathrm{e}^{\frac{i\pi}{\lambda z} r^2}) \frac{r \times ds}{r^2}$ slow $\mathcal{O}(n^3)$ (Miyamoto–Wolf, Dauger, Cash, Cady, Barnett '21) high-order accurate

2D nonuniform FFT fast $\mathcal{O}(n^2 \log n)$ (Barnett '21) high-order accurate

- prior starshade design/modeling used slow method (b), since (a) inacc.
- JPL code (BDWF) (Cady '12) also blows up for targets near $\partial\Omega$

We need areal quadrature (AQ) over aperture Ω

AQ is simply set of nodes (x_i, y_i) , j = 1, ..., N, with weights w_i , so

$$\iint_{\Omega} f(x,y) dxdy \approx \sum_{j=1}^{N} f(x_j,y_j)w_j$$

should be high-order accurate in N

We need areal quadrature (AQ) over aperture Ω

AQ is simply set of nodes (x_i, y_i) , j = 1, ..., N, with weights w_i , so

$$\iint_{\Omega} f(x,y) \, dx dy \approx \sum_{j=1}^{N} f(x_j, y_j) w_j$$

should be high-order accurate in N

Eg: $\Omega = \text{rectangle:}$ tensor product Gauss-Legendre rule

We need areal quadrature (AQ) over aperture Ω

AQ is simply set of nodes (x_j, y_j) , j = 1, ..., N, with weights w_j , so

$$\iint_{\Omega} f(x,y) \, dx dy \approx \sum_{j=1}^{N} f(x_j,y_j) w_j$$

should be high-order accurate in N

Eg: $\Omega = \text{rectangle:}$ tensor product Gauss-Legendre rule

(shown by color)

AQ for "arbitrary" geometries?

- easy from existing line (edge) integral quadrature rule, via dilation
- ullet unions of simple shapes + smooth transformations Jacobean scales w_j
- auto-generate from CAD format (not yet)

Issues: geometry formats, precise $(<10^{-5})$ tolerances

Areal quadrature for starshades

Easy to build AQ for "ideal" starshade $N \sim 10^4 - 10^6$, err 10^{-6} , 20 lines MATLAB High-order interpolation from nodes giving petal apodization func A(r):

issue: A from optim. design is rippled not smooth $A \in C^1$, A'' discontinuous!

Areal quadrature for starshades

Easy to build AQ for "ideal" starshade $N \sim 10^4 - 10^6$, err 10^{-6} , 20 lines MATLAB High-order interpolation from nodes giving petal apodization func A(r):

issue: A from optim. design is rippled not smooth $A \in C^1$, A'' discontinuous!

Real starshade: defects, roughness, misalignments, thermal distortion. . .

- can add/subtract a variable-width strip region to an ideal one
- statistical shape sampling: many forward simulations, estim. p(failure)

Communicating precise geometries w/ engineers can be hard!

The fast trick: factorization of quadratic exponential

For all targets k = 1, ..., M, eval. quadrature rule for Frensel integral:

$$u_k^{\rm ap} \approx \frac{1}{i\lambda z} \sum_{j=1}^N e^{\frac{i\pi}{\lambda z} \left[(\xi_k - x_j)^2 + (\eta_k - y_j)^2 \right]} w_j$$

$$= \frac{1}{i\lambda z} e^{\frac{i\pi}{\lambda z} (\xi_k^2 + \eta_k^2)} \cdot \sum_{j=1}^N e^{\frac{-2\pi i}{\lambda z} (\xi_k x_j + \eta_k y_j)} \left(e^{\frac{i\pi}{\lambda z} (x_j^2 + y_j^2)} w_j \right)$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$$
iii) post-multiply ii) 2D "type 3 NUFFT" i) pre-multiply

Cost
$$\mathcal{O}(N + M + \mathfrak{f}^2 \log \mathfrak{f})$$
 In practice: 10⁷ (sources+targets)/sec on laptop

The fast trick: factorization of quadratic exponential

For all targets k = 1, ..., M, eval. quadrature rule for Frensel integral:

$$u_k^{\rm ap} \approx \frac{1}{i\lambda z} \sum_{j=1}^N e^{\frac{i\pi}{\lambda z} \left[(\xi_k - x_j)^2 + (\eta_k - y_j)^2 \right]} w_j$$

$$= \frac{1}{i\lambda z} e^{\frac{i\pi}{\lambda z} (\xi_k^2 + \eta_k^2)} \cdot \sum_{j=1}^N e^{\frac{-2\pi i}{\lambda z} (\xi_k x_j + \eta_k y_j)} \left(e^{\frac{i\pi}{\lambda z} (x_j^2 + y_j^2)} w_j \right)$$
iii) post-multiply
ii) 2D "type 3 NUFFT"
i) pre-multiply

Entire algorithm = three sequential steps very simple, < 10 lines of MATLAB

Cost
$$\mathcal{O}(N+M+\mathfrak{f}^2\log\mathfrak{f})$$
 In practice: 10^7 (sources+targets)/sec on laptop

If targets on regular grid, use (faster) type 1 NUFFT abbrev by "t3" and "t1"

Recommended software for NUFFTs on CPU: FINUFFT http://finufft.readthedocs.io C++/OpenMP; beats others heartily (B et al '19)

fi NUFFT

Results: target plane intensity pictures

Smooth kite test:

 $f \approx 13$ (above), 130 (below): spectral acc. $< 10^{-12}$

"NI2" design ideal starshade:

central deep shadow $|u^{\rm oc}|^2 \sim 10^{-10}$, good!

Performance & validation for ideal starshades NI2, HG

Validation vs edge-integrals:

(Cady '12; BDWF, from JPL SISTER codebase)

Performance & validation for ideal starshades NI2, HG

Validation vs edge-integrals:

(Cady '12; BDWF, from JPL SISTER codebase)

Speed against BDWF, for million-point target grid:

i7 laptop

design	λ (m)	z (m)	f	m (petal)	total nodes	M (targets)	method	CPU time
NI2	5e-7	3.72e7	9.1	6000	n=192000	10 ⁶ , grid	BDWF	5361 s
				400	$N{=}499200$	_	NUFFT t1 (ε =10 ⁻⁸)	0.076 s
HG	5e-7	8e7	24	60	n=2048	10 ⁶ , grid	BDWF	80.5 s
				60	N = 37440		NUFFT t1 (ε =10 ⁻⁸)	0.042 s

Conclusions: same accuracy reached, 3-5 orders of magnitude faster

Wavelength λ sweep movie

 $M=10^6$ targets, computed at ${\sim}10$ frames/sec (close to real time):

Wavelength sweeps & modifications to JPL codes

Shadow depth study, 50 λ values, takes 6 seconds: including AQ gen; laptop

Fig 6 Intensity (on \log_{10} scale indicated on the right) as a function of wavelength and target radius ρ from the center, for the two starshade designs (NI2 and HG) of Fig. 5. At each of 200 ρ values, the maximum over 300 angles is taken. The indicent intensity is 1. The NUFFT t3 method is used. Vertical dotted lines show the designed λ range.

Wavelength sweeps & modifications to JPL codes

Shadow depth study, 50 λ values, takes 6 seconds: including AQ gen; laptop

Fig 6 Intensity (on \log_{10} scale indicated on the right) as a function of wavelength and target radius ρ from the center, for the two starshade designs (NI2 and HG) of Fig. 5. At each of $200~\rho$ values, the maximum over 300 angles is taken. The indicent intensity is 1. The NUFFT t3 method is used. Vertical dotted lines show the designed λ range.

Replacing BDWF by t3 in "PSF basis" task: hack JPL's code, proof-of-principle

- 3149 shifts of 16×16 pupil grids \rightarrow key: do all targets at once!
- reduces JPL's MATLAB run-time from 6.5 hours to 2.6 seconds

Fun demo of complicated aperture: Koch snowflake

Fig 7 Koch fractal aperture diffraction example from Sec. 3.3. (a) shows the areal quadrature constructed by a union of about 67 million triangles. The color of each node (x_j, y_j) indicates its weight w_j using the scale on the right. The inset shows a zoom into the region shown, resolving individual nodes. (b) shows intensity (on \log_{10} scale indicated on the right) computed on a million-point grid by the NUFFT t1 method in under 5 seconds.

Conclusions

Fast method for accurate ($< 10^{-6}$) hard-edged Fresnel diffraction

 $\sim 10^7$ pupil plane targets/sec, almost indep of starshade geom.

Excels when many targets: in practice $10^4 \times$ faster than previous methods

Simple: 2D NUFFT + high-order areal quadrature for occulter domain

Future:

- shape variation/roughness started (JPL users: Dumont, Shaklan, Harness)
- continuous phase variation? trivial
- "0-1" aperture design probs: coronagraphs, zone plates...
- Question: can apply NUFFT to edge-integral, bypassing AQ?

"Efficient high-order accurate Fresnel diffraction via areal quadrature and the nonuniform FFT," A. H. Barnett, *J. Astron. Telesc. Instrum. Syst.* **7**(2), 021211 (21 pages), 2021. arxiv:2010.05978.

Code/docs: https://github.com/ahbarnett/fresnaq

