

Quadrature by fundamental solutions: kernel-independent layer potential evaluation for large collections of simple objects

Alex H. Barnett¹ and David B. Stein²

MS27, ICOSAHOM, planet Earth, 7/12/21 "Fast and high order solution techniques for boundary integral equations"

¹Center for Computational Mathematics, Flatiron Institute, Simons Foundation ²Center for Computational Biology, Flatiron Institute, Simons Foundation

Motivations and goal

Many simulations using boundary integral equations (BIE) involve large number of simple bodies (inclusions, vesicles, swimmers ...)

"simple": N unknowns per body s.t. $\mathcal{O}(N^3)$ dense lin. alg. ok... N $\lesssim 10^3$ in 2D, 10^4 in 3D

Motivations and goal

Many simulations using boundary integral equations (BIE) involve large number of simple bodies (inclusions, vesicles, swimmers ...)

"simple": N unknowns per body s.t. $\mathcal{O}(N^3)$ dense lin. alg. ok. . . N $\lesssim 10^3$ in 2D, 10^4 in 3D

10⁴ active-fluid deformable drops (Stein–Shelley. Using tool I present: modified Helmholtz PDE for nematic tensor heat eqn)

Motivations and goal

Many simulations using boundary integral equations (BIE) involve large number of simple bodies (inclusions, vesicles, swimmers ...)

"simple": N unknowns per body s.t. $\mathcal{O}(N^3)$ dense lin. alg. ok... N $\lesssim 10^3$ in 2D, 10^4 in 3D

sheared rigid suspensions (Wang-Nazockdast-B '21)

10⁴ active-fluid deformable drops (Stein-Shelley. Using tool I present: modified Helmholtz PDE for nematic tensor heat eqn)

- other apps: multiple scattering (acoustic/EM), electrohydrodynamics
- dense / non-Newtonian / bdry layers: *many/most* targets near bdry!
- accurate evaluation near bdry often slow, complex, PDE-specific

Goal: new BIE quadrature/evaluator tool, simply FMM-able, PDE-indep.

Setup: solving linear BVPs (exterior Dirichlet case)

BVP:Lu = 0 in $\mathbb{R}^d \setminus \overline{\Omega}$ $\Omega =$ one or many bodiesu = f on $\partial \Omega$ decay/radiation condition on $u(\mathbf{x})$ as $r := \|\mathbf{x}\| \to \infty$ Laplace $L = \Delta$ Helmholtz $L = \Delta + k^2$ Stokes system for (\mathbf{u}, p) , vel. data \mathbf{u}

Setup: solving linear BVPs (exterior Dirichlet case)

Lu = 0 in $\mathbb{R}^d \setminus \overline{\Omega}$ BVP: $\Omega =$ one or many bodies u = f on $\partial \Omega$ decay/radiation condition on $u(\mathbf{x})$ as $r := \|\mathbf{x}\| \to \infty$ Laplace $L = \Delta$ Helmholtz $L = \Delta + k^2$ Stokes system for (\mathbf{u}, p) , vel. data \mathbf{u} Represent $u = (\alpha S + \beta D)\tau$ in $\mathbb{R}^d \setminus \overline{\Omega}$ (*) desired LP to eval τ "density" α, β mixing params, chosen for unique soln of indirect BIE Eg "completed" for Lap, Stokes $\alpha = \beta = 1$; CFIE for Helm $\alpha = ik$, $\beta = 1$. where $(S\tau)(\mathbf{x}) := \int_{\partial \Omega} G(\mathbf{x}, \mathbf{y}) \tau(\mathbf{y}) ds_{\mathbf{y}}$ G = fundamental soln for L $G(\mathbf{x}, \mathbf{y})$ convolutional for const-coeff. But: axisymm, layered media, etc, not so $(\mathcal{D}\tau)(\mathbf{x}) := \int_{\partial\Omega} \frac{\partial G(\mathbf{x},\mathbf{y})}{\partial n_{\mathbf{y}}} \tau(\mathbf{y}) ds_{\mathbf{y}}$ scalar only; not so for Stokes

Setup: solving linear BVPs (exterior Dirichlet case)

Lu = 0 in $\mathbb{R}^d \setminus \overline{\Omega}$ BVP: $\Omega =$ one or many bodies u = f on $\partial \Omega$ decay/radiation condition on $u(\mathbf{x})$ as $r := \|\mathbf{x}\| \to \infty$ Laplace $L = \Delta$ Helmholtz $L = \Delta + k^2$ Stokes system for (\mathbf{u}, p) , vel. data \mathbf{u} Represent $u = (\alpha S + \beta D)\tau$ in $\mathbb{R}^d \setminus \overline{\Omega}$ (*) desired LP to eval au "density" α, β mixing params, chosen for unique soln of indirect BIE Eg "completed" for Lap, Stokes $\alpha = \beta = 1$; CFIE for Helm $\alpha = ik$, $\beta = 1$. where $(\mathcal{S}\tau)(\mathbf{x}) := \int_{\partial \Omega} G(\mathbf{x}, \mathbf{y}) \tau(\mathbf{y}) ds_{\mathbf{y}}$ G = fundamental soln for L $G(\mathbf{x}, \mathbf{y})$ convolutional for const-coeff. But: axisymm, layered media, etc, not so $(\mathcal{D}\tau)(\mathbf{x}) := \int_{\partial\Omega} \frac{\partial G(\mathbf{x},\mathbf{y})}{\partial \mathbf{n}_{\mathbf{v}}} \tau(\mathbf{y}) ds_{\mathbf{y}}$ scalar only; not so for Stokes Take $\mathbf{x} \to \partial \Omega^+$ (ie exterior) and use *jump relations*, get BIE for τ : $\frac{\beta}{2}\tau + (\alpha S + \beta D)\tau = f$ Id + cpt if $\partial\Omega$ smooth \Rightarrow Fredholm 2nd kind By guadrature + Nyström on $\partial \Omega$, approx BIE by: $A\tau = f$ $f_i = f(\mathbf{x}_i), \mathbf{x}_i$ nodes on $\partial \Omega$ Tasks: A) Fill A matrix: equiv to on-surface LP evaluation

B) Eval (*) off-surf, given soln vec $\boldsymbol{\tau} := \{\tau_j\}_{i=1}^N$

Prior work on high-order Nyström quadratures

- task A) fill A: needs high-order weakly-singular quadr (except Lap 2D)
- task B) eval LP (*) for **x** arbitrarily close to $\partial \Omega$ ("close eval")

Prior work on high-order Nyström quadratures

- task A) fill A: needs high-order weakly-singular quadr (except Lap 2D)
- task B) eval LP (*) for **x** arbitrarily close to $\partial \Omega$ ("close eval")

Incomplete history: (also see my CSE19 review slides)	task B?	PDE-indep?
2D global product-quadr. analytic split (Kress '91)	Ν	Ν
2D panel analytic split, Lap+Helm (Helsing '08-'15)	Y	Ν
2D gen-Gauss. aux nodes (Rokhlin-Duan, Alpert, '99)	Ν	Υ
3D radial interp, <i>r dr</i> (Bruno–Kunyansky '01; Malhotra)	Ν	Υ
3D global spherical harmonics (Ganesh, Corona)	Ν	Ν
QBX+ (Klöckner–O'Neil–B–Greengard '12; Rachh, Wala, af K)	Y	if proxy
2D barycentric (loakimidis, Helsing, Wu–B–Veerapaneni '14)	Y	Ν
3D radial triangle-split gen-Gauss. (Bremer, Gimbutas)	Ν	Υ
3D adaptive off-surf panels (Rachh, Greengard, O'Neil)	Y	Υ
Density interpolation (2D,3D) (Perez-A., Turc, Faria '18)	Y	if proxy
off-surf radial + cancellation (Carvalho-Khatri-Kim '18)	Y	Ν
3D "hedgehog" extrapolation (Morse–Zorin '20)	Y	Υ
zeta functions for global (2D,3D) (Wu-Martinsson '20)	Ν	Ν
Lap 3D quaternion line-integral (Zhu-Veerapaneni '21)	Y	Ν

Our contribution

Many methods/pubs [academia], few usable codes we try to fix at Flatiron

All "close-evaluation" (task B) methods listed have an issue:

- need split targs into "near" (special method) vs far (plain Nyström)
- to couple to fast alg need: 1) apply FMM to all targs, 2) subtract near wrong parts, 3) add correct near
- issues: cancellations, per-target bookkeeping, slow

Our contribution

Many methods/pubs [academia], few usable codes we try to fix at Flatiron

All "close-evaluation" (task B) methods listed have an issue:

- need split targs into "near" (special method) vs far (plain Nyström)
- to couple to fast alg need: 1) apply FMM to all targs, 2) subtract near wrong parts, 3) add correct near
- issues: cancellations, per-target bookkeeping, slow

Beautiful idea: for exterior of $\partial\Omega$ =sphere, project LPs into (vector) spherical harmonics, eval those when close to $\partial\Omega$

(Corona–Veerapaneni, Yan, Shelley, etc)

Our plan: a global rep for general shape Ω , using point sources only, so plugs in to point FMM without per-target FMM bookkeepping?

- show 2D only, find useful for large # simple bodies
- we stick to global quadr each body separations $\gtrsim h^2$; ie not locally adapt.

Simplest QFS idea for (*) eval: 2D, one body, exterior

 $(u_{inc}+u)$, acoustic pressure

Here user supplies: $\ \ \, \bullet \ \,$ desired tolerance ϵ

- on-surface rule: \mathbf{x}_j nodes, w_j weights, s.t. $\int_{\partial\Omega} g(\mathbf{y}) ds_y - \sum_{j=1}^N w_j g(\mathbf{x}_j) = \mathcal{O}(\epsilon) \quad \text{quadr. error}$ for "relevant" smooth funcs $g \text{ (eg } \tau, \mathbf{n}, \text{geom...})$
- A (Nyström mat incl. 1/2 jump term) for now :)

Simplest QFS idea for (*) eval: 2D, one body, exterior

Here user supplies: • desired tolerance ϵ

• on-surface rule: \mathbf{x}_j nodes, w_j weights, s.t. $\int_{\partial\Omega} g(\mathbf{y}) ds_y - \sum_{j=1}^N w_j g(\mathbf{x}_j) = \mathcal{O}(\epsilon) \quad \text{quadr. error}$ for "relevant" smooth funcs $g \text{ (eg } \tau, \mathbf{n}, \text{geom}...)$

• A (Nyström mat incl. I/2 jump term) for now :)

Pick $P \approx N$ sources $\mathbf{y}_j \in \Omega$ near $\partial \Omega$ Simplest QFS rep. is: $\tilde{u}(\mathbf{x}) = \sum_{j=1}^{P} G(\mathbf{x}, \mathbf{y}_j) \sigma_j$ Fill $B \in \mathbb{C}^{N \times P}$ via $B_{ij} := G(\mathbf{x}_i, \mathbf{y}_j)$

When user gives us new density vec τ :

i) solve $B \sigma = A au$ ill-cond. $\kappa(B) \approx \epsilon^{-1/2} \leq 10^8$, need bkw. stab, $\mathcal{O}(N^3)$

meaning: match potentials on $\partial \Omega^+$, so by BVP uniqueness $\tilde{u} \approx u$ in $\mathbb{R}^2 \setminus \overline{\Omega}$

ii) eval. QFS rep at targets everywhere in $\mathbb{R}^2 \backslash \Omega$ via point FMM

Simplest QFS idea for (*) eval: 2D, one body, exterior

Here user supplies: • desired tolerance ϵ

• on-surface rule: \mathbf{x}_j nodes, w_j weights, s.t. $\int_{\partial\Omega} g(\mathbf{y}) ds_y - \sum_{j=1}^N w_j g(\mathbf{x}_j) = \mathcal{O}(\epsilon) \quad \text{quadr. error}$ for "relevant" smooth funcs $g \text{ (eg } \tau, \mathbf{n}, \text{geom}...)$

• A (Nyström mat incl. I/2 jump term) for now :)

Pick $P \approx N$ sources $\mathbf{y}_j \in \Omega$ near $\partial \Omega$ Simplest QFS rep. is: $\tilde{u}(\mathbf{x}) = \sum_{j=1}^{P} G(\mathbf{x}, \mathbf{y}_j) \sigma_j$ Fill $B \in \mathbb{C}^{N \times P}$ via $B_{ij} := G(\mathbf{x}_i, \mathbf{y}_j)$

When user gives us new density vec τ :

i) solve $B\sigma = A au$ ill-cond. $\kappa(B) \approx \epsilon^{-1/2} \leq 10^8$, need bkw. stab, $\mathcal{O}(N^3)$

meaning: match potentials on $\partial \Omega^+$, so by BVP uniqueness $\tilde{u} \approx u$ in $\mathbb{R}^2 \setminus \overline{\Omega}$

ii) eval. QFS rep at targets *everywhere* in $\mathbb{R}^2 \setminus \Omega$ via point FMM

Better: precompute $B = U\Sigma V^*$, then store $Y = V\Sigma^{-1}$ and $Z = U^*A$

• when user inputs au, two matvecs gives $\sigma = Y(Z\tau)$ bkw stab order!

Error convergence for SLP eval in 2D, three PDEs

Given $\tau \in \mathbb{R}^N$ sampling a density τ : QFS (black) vs gold-std (green):

gold-standards: "far" target = plain Nyström rule for (*)

"near" (dist $10^{-4})$ = adaptive Gauss on trig poly interp of au

Results: QFS similar to gold, then flattens at around ϵ ; DLP sim.

• exp. conv. *rate* \approx decay of Nyquist Fourier coeff $\hat{\tau}_{N/2}$ (red)

Raises qu's! Why stable? How choose \mathbf{y}_j ? Wouldn't it be nice not to have to supply A?

QFS Theory: continuous limit I

Recall: we approx $u = (\alpha S + \beta D)\tau$ (*) in ext. by $\tilde{u} = S_{\gamma}\sigma$ QFS lin sys $B\sigma = \mathbf{u}^+$ is discretization of 1st-kind IE For *analytic* data, it is not crazy to demand it works...

QFS Theory: continuous limit I

Recall: we approx $u = (\alpha S + \beta D)\tau$ (*) in ext. by $\tilde{u} = S_{\gamma}\sigma$ QFS lin sys $B\sigma = \mathbf{u}^+$ is discretization of 1st-kind IE For *analytic* data, it is not crazy to demand it works...

Thm. Let *u* be harmonic in $\mathbb{R}^d \setminus \overline{\Omega}$ with $u(\mathbf{x}) = C \log r + o(1)$ in d = 2 or o(1) in d = 3, and continue as regular PDE soln in the closed annulus (shell) btw $\partial\Omega$ and γ . Then 1st-kind IE

$$\int_{\gamma} G(\mathbf{x}, \mathbf{y}) \sigma(\mathbf{y}) ds_{\mathbf{y}} = u(\mathbf{x}) , \qquad \mathbf{x} \in \partial \Omega$$
 (†)

has a solution. If d = 3 or *logarithmic capacity* $C_{\Omega} \neq 1$, it's unique, and (†) recovers u throughout $\mathbb{R}^d \setminus \overline{\Omega}$.

QFS Theory: continuous limit I

Recall: we approx $u = (\alpha S + \beta D)\tau$ (*) in ext. by $\tilde{u} = S_{\gamma}\sigma$ QFS lin sys $B\sigma = \mathbf{u}^+$ is discretization of 1st-kind IE For *analytic* data, it is not crazy to demand it works...

Thm. Let *u* be harmonic in $\mathbb{R}^d \setminus \overline{\Omega}$ with $u(\mathbf{x}) = C \log r + o(1)$ in d = 2 or o(1) in d = 3, and continue as regular PDE soln in the closed annulus (shell) btw $\partial \Omega$ and γ . Then 1st-kind IE

$$\int_{\gamma} G(\mathbf{x}, \mathbf{y}) \sigma(\mathbf{y}) ds_{\mathbf{y}} = u(\mathbf{x}) , \qquad \mathbf{x} \in \partial \Omega$$
 (†)

has a solution. If d = 3 or *logarithmic capacity* $C_{\Omega} \neq 1$, it's unique, and (†) recovers u throughout $\mathbb{R}^d \setminus \overline{\Omega}$.

Pf: Let *v* solve the int Lap Dir BVP for v = u on γ Green's rep. formula exterior to γ : $u = -S_{\gamma}u_{n} + \mathcal{D}_{\gamma}u$ by const $u_{\infty}=0$ GRF (extinction) exterior to γ : $0 = S_{\gamma}v_{n} - \mathcal{D}_{\gamma}v$ Add them: $u = S_{\gamma}(v_{n} - u_{n})$ outside γ , in particular on $\partial\Omega \Rightarrow$ soln Uniqueness: jump relations & unique cont. from Cauchy data...

QFS Theory: continuous limit II

Summary: continuous QFS robust to evaluate (*) for analytic data if... i) Source curve (surf) γ "close enough" to $\partial\Omega$

 τ analytic \Rightarrow *u* cont. as PDE soln in some annulus (anal. theory of PDE, eg Colton; B'14) ii) Range of QFS rep $\tilde{u} = S_{\gamma}\sigma$ same as desired (*)

Lap 2D range of LPs: $C \log r + u_{\infty} + o(1)$, with const term $u_{\infty} = 0$

iii) Data type on $\partial \Omega$ must lead to unique ext BVP in this range

Here Dirichlet data u^+ . 2D subtelty: $C_\Omega = 1 \ \Rightarrow \ C$ undetermined by u^+

easy: also fix tot charge $\int_\gamma \sigma = \alpha \int_{\partial\Omega} \tau$, extra row of QFS lin sys

• Similar robustness thms for Stokes S_{γ} ; Helm $(\mathcal{D} + ikS)_{\gamma}$ (CFIE)

QFS Theory: continuous limit II

Summary: continuous QFS robust to evaluate (*) for analytic data if... i) Source curve (surf) γ "close enough" to $\partial\Omega$

 τ analytic \Rightarrow *u* cont. as PDE soln in some annulus (anal. theory of PDE, eg Colton; B'14) ii) Range of QFS rep $\tilde{u} = S_{\gamma}\sigma$ same as desired (*)

Lap 2D range of LPs: $C \log r + u_{\infty} + o(1)$, with const term $u_{\infty} = 0$

iii) Data type on $\partial\Omega$ must lead to unique ext BVP in this range

Here Dirichlet data $u^+.$ 2D subtelty: $\mathcal{C}_\Omega = 1 \ \Rightarrow \ \mathcal{C}$ undetermined by u^+

easy: also fix tot charge $\int_{\gamma} \sigma = \alpha \int_{\partial \Omega} \tau$, extra row of QFS lin sys

• Similar robustness thms for Stokes S_{γ} ; Helm $(D + ikS)_{\gamma}$ (CFIE)

How choose curve γ (2D)? $\partial \Omega$ param by $Z(t) \in \mathbb{C} \simeq \mathbb{R}^2$ $t \in [0, 2\pi)$ periodic, anal. in a strip $\mathbf{x}_j = Z(2\pi j/N)$ periodic trap. rule (PTR) User promised us N such that PTR achieves err ϵ for their τ **Thm** (Davis '59): If $\tau(t)$ anal. in $|\operatorname{Im} t| \leq \delta$, PTR error rate $\mathcal{O}(e^{-\delta N})$ Equate Davis to ϵ gives: $\delta \approx N^{-1} \log \epsilon^{-1}$ our rule for "close" Then choose $\gamma = \{Z(t + i\delta) : t \in [0, 2\pi)\}$ "imaginary translation" of $\partial \Omega$

Choice of source (proxy) points \mathbf{y}_j in 2D

Recipe: set imag. dist. param $\delta = N^{-1} \log \epsilon^{-1}$, and P = N, then $\mathbf{y}_j := \mathbf{x}(t_j) - \delta \|\mathbf{x}'(t_j)\| \mathbf{n}(t_j) + \delta^2 \mathbf{x}''(t_j)$ $t_j = \frac{2\pi j}{P}$, $j = 1, \dots, P$

nearly imag. transl. (2nd-order Taylor approx) $\epsilon = 10^{-14}$ gives dist. $\approx 5h$ (see B'14) Details: if γ self-intersects, reduce δ until doesn't, then grow P to match

Choice of source (proxy) points \mathbf{y}_j in 2D

Recipe: set imag. dist. param $\delta = N^{-1} \log \epsilon^{-1}$, and P = N, then $\mathbf{y}_j := \mathbf{x}(t_j) - \delta \|\mathbf{x}'(t_j)\| \mathbf{n}(t_j) + \delta^2 \mathbf{x}''(t_j)$ $t_j = \frac{2\pi j}{P}, \quad j = 1, \dots, P$ nearly imag. transl. (2nd-order Taylor approx) $\epsilon = 10^{-14}$ gives dist. $\approx 5h$ (see B'14)
Details: if γ self-intersects, reduce δ until doesn't, then grow P to match

Idea of solving PDE via 1st-kind IE is old & recurs: esp. in engineering! Method of Fundamental Solns (Kupradze '67, Bogomolny, Golberg–Chen, Eremin)

a.k.a. method of aux. sources, charge simulation method, ...

related to (not same as!) proxy points (Martinsson, Rokhlin, Gillman; Chow '19)

 \exists confusion, but: stable if *u* anal. cont. up to γ , bkw stab. lin. solve (B-Betcke '07)

Choice of source (proxy) points \mathbf{y}_j in 2D

Recipe: set imag. dist. param $\delta = N^{-1} \log \epsilon^{-1}$, and P = N, then $\mathbf{y}_j := \mathbf{x}(t_j) - \delta \|\mathbf{x}'(t_j)\| \mathbf{n}(t_j) + \delta^2 \mathbf{x}''(t_j)$ $t_j = \frac{2\pi j}{P}, \quad j = 1, \dots, P$ nearly imag. transl. (2nd-order Taylor approx) $\epsilon = 10^{-14}$ gives dist. $\approx 5h$ (see B'14) Details: if γ self-intersects, reduce δ until doesn't, then grow P to match

Idea of solving PDE via 1st-kind IE is old & recurs: esp. in engineering! Method of Fundamental Solns (Kupradze '67, Bogomolny, Golberg–Chen, Eremin)

a.k.a. method of aux. sources, charge simulation method, ...

related to (not same as!) proxy points (Martinsson, Rokhlin, Gillman; Chow '19)

 \exists confusion, but: stable if *u* anal. cont. up to γ , bkw stab. lin. solve (B-Betcke '07)

Thm (Katsurada '96 Laplace; Kangro '10 Helmholtz): Let Z(t) and Dirichlet data f(t) be analytic in a suff. wide strip. Choose N sources $\mathbf{y}_j = Z(2\pi j/N + i\delta)$. Then MFS err in solving the BVP for data f is, in exact arithmetic, up to algebraic factors, $\mathcal{O}(e^{-\delta N})$.

this is the smooth-data, annular conformal map case of various MFS thms

MFS analysis incomplete, technical: exp.-weighted Sobolev

• Note: MFS exponential rate matches our δ rule

Goal: also fill Nyström A (task A) recall until now user had to supply A :(Idea: match data u not on $\partial\Omega$, but on new exterior "check" curve γ_c

 $M \approx P$ chk pts \mathbf{z}_m on γ_c via imag displ by $-\delta_c$

Goal: also fill Nyström A (task A) recall until now user had to supply A :(Idea: match data u not on $\partial \Omega$, but on new exterior "check" curve γ_c

 $M \approx P$ chk pts \mathbf{z}_m on γ_c via imag displ by $-\delta_c$ fill $E_{mi} = G(\mathbf{z}_m, \mathbf{y}_i)$ upsample $\partial \Omega$ by factor ρ to get nodes $\tilde{\mathbf{x}}_i$ fill $\tilde{C}_{mi} = \alpha G(\mathbf{z}_m, \tilde{\mathbf{x}}_i) + \beta \frac{\partial G}{\partial \mathbf{n}_{\tilde{\mathbf{x}}_i}}(\mathbf{z}_m, \tilde{\mathbf{x}}_i)$ chk-eval. mat. $C = \tilde{C}L_{aN \times N}$ L = spectral upsampling Solve $E\sigma = C\tau$ for σ : as before take $E = U\Sigma V^*$ $Y = V\Sigma^{-1}$. $Z = U^*C$, then $\sigma = Y(Z\tau)$ Task B done, all off-surf! Finally $A \approx \tilde{A} = (BY)Z$ gives 1-sided lim

Goal: also fill Nyström A (task A) recall until now user had to supply A :(Idea: match data u not on $\partial \Omega$, but on new exterior "check" curve γ_c

 $M \approx P$ chk pts \mathbf{z}_m on γ_c via imag displ by $-\delta_c$ fill $E_{mi} = G(\mathbf{z}_m, \mathbf{y}_i)$ upsample $\partial \Omega$ by factor ρ to get nodes $\tilde{\mathbf{x}}_i$ fill $\tilde{C}_{mi} = \alpha G(\mathbf{z}_m, \tilde{\mathbf{x}}_i) + \beta \frac{\partial G}{\partial \mathbf{n}_{\tilde{\mathbf{x}}_i}}(\mathbf{z}_m, \tilde{\mathbf{x}}_i)$ chk-eval. mat. $C = \tilde{C}L_{aN \times N}$ L = spectral upsampling Solve $E\sigma = C\tau$ for σ : as before take $E = U\Sigma V^*$ $Y = V\Sigma^{-1}$, $Z = U^*C$, then $\sigma = Y(Z\tau)$ Task B done, all off-surf! Finally $A \approx \tilde{A} = (BY)Z$ gives 1-sided lim

• pick ρ upsampling (as in QBX, hedgehog) so C has err ϵ_{mach} at γ_c , via: **Thm** (B'14): At target **x**, LP eval via *N*-node plain PTR has err $\mathcal{O}(e^{-|\operatorname{Im} Z^{-1}(\mathbf{x})|N})$. rate is imag dist of preimage, so set $e^{-\delta_c
ho N}=\epsilon_{
m mach}$

Goal: also fill Nyström A (task A) recall until now user had to supply A :(Idea: match data u not on $\partial \Omega$, but on new exterior "check" curve γ_c

 $M \approx P$ chk pts \mathbf{z}_m on γ_c via imag displ by $-\delta_c$ fill $E_{mi} = G(\mathbf{z}_m, \mathbf{y}_i)$ upsample $\partial \Omega$ by factor ρ to get nodes $\tilde{\mathbf{x}}_i$ fill $\tilde{C}_{mi} = \alpha G(\mathbf{z}_m, \tilde{\mathbf{x}}_i) + \beta \frac{\partial G}{\partial \mathbf{n}_{\tilde{\mathbf{x}}_i}}(\mathbf{z}_m, \tilde{\mathbf{x}}_i)$ chk-eval. mat. $C = \tilde{C}L_{aN \times N}$ L = spectral upsampling Solve $E\sigma = C\tau$ for σ : as before take $E = U\Sigma V^*$ $Y = V\Sigma^{-1}$, $Z = U^*C$, then $\sigma = Y(Z\tau)$ Task B done, all off-surf! Finally $A \approx \tilde{A} = (BY)Z$ gives 1-sided lim

- pick ρ upsampling (as in QBX, hedgehog) so C has err ϵ_{mach} at γ_c , via: **Thm** (B'14): At target **x**, LP eval via *N*-node plain PTR has err $\mathcal{O}(e^{-|\operatorname{Im} Z^{-1}(\mathbf{x})|N})$. rate is imag dist of preimage, so set $e^{-\delta_c
 ho N}=\epsilon_{
 m mach}$
- upper bnd on chk dist: $\frac{\delta}{\delta + \delta_c} \geq \frac{\log \epsilon}{\log \epsilon_{\text{mark}}}$ err growth of mode M/2, heuristic

in practice: $\epsilon = 10^{-8}$: $\delta_c \approx \delta$, $\rho \approx 2$ $\epsilon = 10^{-12}$: $\delta_c \approx \delta/3$, $\rho \approx 4$

Error convergence for desingularized QFS, three PDEs

Again we compare QFS (black) vs gold-standard LP eval (green):

Results: QFS-D v. similar to gold, flattening around ϵ as expected

- Stokes: slight upsampling Ppprox 1.3N, Mpprox 1.2P, to get good spec $(ilde{A})$.
- unlike QBX or hedgehog, no 2-sided averaging needed
- no SVD truncation needed since $\kappa(E) = \mathcal{O}(\epsilon_{\text{mach}}^{-1/2})$ only

Fast solver for multi-body applications

Recall exterior BVP gives BIE $A\tau = f$ A = Nyström mat eg Lap. "completed" $A = \frac{1}{2} + D + S$ For K > 1 bodies, A has $K \times K$ block structure

• QFS-D fills dense diag blocks $A^{(k,k)}$ self-int, task A

- Apply all off-diag A^(j,k), j≠k, by a point FMM: QFS srcs {y_j} → bdry {x_j} task B: bundle close & far targets together, no bookkeepping/corrections each body's strength vector from its own QFS-D σ = Y(Zτ)
- To reduce iter count, block-diag right-precondition, so GMRES sees:

 $\begin{bmatrix} I & A^{(1,2)}(A^{(2,2)})^{-1} & \cdots \\ A^{(2,1)}(A^{(1,1)})^{-1} & I & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix} \begin{bmatrix} \tilde{\tau}^{(1)} \\ \tilde{\tau}^{(2)} \\ \vdots \end{bmatrix} = \begin{bmatrix} f^{(1)} \\ f^{(2)} \\ \vdots \end{bmatrix}$ Once solved, recover actual densities $\boldsymbol{\tau}^{(k)} = (A^{(k,k)})^{-1} \tilde{\boldsymbol{\tau}}^{(k)}$

• Eval solution *u* everywhere: again QFS-D task B

Application: multibody scattering (2D Helmholtz)

 $K = 10^3$ bodies $N \approx 190000$ 7e-10 est max err (2000² grid) 1e-11 diff vs Kress + upsampling need 1237 iters QFS, Kress same Solve: 13 min (AMD server)

- QFS setup: 0.14 core-hr
- 2 FMM: 9 core-hr FMM effort: 80%

Error for multibody scattering (2D Helmholtz)

- QFS similar convergence rate to Kress
- resonant (errors 1 digit worse inside "leaky cavity")

Application: multibody Stokes

 10^{-10}

Total n (thousands)

K = 200 bodies min. sep. = rad/20 $N \approx 56000 (2N \text{ unkn.})$ 451 iters to 1e-8

7 min (AMD server) \geq 90% FMM effort

Conclusions

QFS is a useful BIE quadrature tool when (many) "simple" bodies:

- one simple representation covers on-surface, near-surface, far-field
- fast & trivial to apply by point FMM, kills near-vs-far bookkeepping
- stably fills 1-body Nyström matrices w/o singular quadrature
- kernel-independent current: Laplace, Helmholtz, modified Helmholtz, Stokes
- as accurate (spectral) as slower gold-standard schemes Kress + adaptive

... PS: bkw. stab. apply of pseudoinv. needs *two* matvecs: $\sigma = Y(Z au)$

2D Py code/demos: https://github.com/dbstein/qfs

Future:

- dim-indep: works in 3D; smooth multi-body tests ongoing
- corners? Yes (MFS), but not full acc. (Hochman '07, Liu-B '16, Gopal-Tref.'20)
- more analysis for MFS/QFS (Stokes, disk, analytic domains, ...)

