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Motivations and goal

Many simulations using boundary integral equations (BIE) involve large
number of simple bodies (inclusions, vesicles, swimmers . . . )

“simple”: N unknowns per body s.t. O(N3) dense lin. alg. ok. . . N . 103 in 2D, 104 in 3D

sheared rigid suspensions
(Wang–Nazockdast–B ’21)

104 active-fluid deformable drops
(Stein–Shelley. Using tool I present: modified

Helmholtz PDE for nematic tensor heat eqn)

• other apps: multiple scattering (acoustic/EM), electrohydrodynamics
• dense / non-Newtonian / bdry layers: many/most targets near bdry!
• accurate evaluation near bdry often slow, complex, PDE-specific

Goal: new BIE quadrature/evaluator tool, simply FMM-able, PDE-indep.
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Setup: solving linear BVPs (exterior Dirichlet case)

BVP: Lu = 0 in Rd\Ω Ω = one or many bodies

u = f on ∂Ω
decay/radiation condition on u(x) as r := ‖x‖ → ∞

Laplace L = ∆ Helmholtz L = ∆ + k2 Stokes system for (u, p), vel. data u

Represent u = (αS + βD)τ in Rd\Ω (∗) desired LP to eval

τ “density” α, β mixing params, chosen for unique soln of indirect BIE

Eg “completed” for Lap, Stokes α = β = 1; CFIE for Helm α = ik, β = 1.

where (Sτ)(x) :=
∫
∂Ω G (x, y)τ(y)dsy G = fundamental soln for L

G(x, y) convolutional for const-coeff. But: axisymm, layered media, etc, not so

(Dτ)(x) :=
∫
∂Ω

∂G(x,y)
∂ny

τ(y)dsy scalar only; not so for Stokes

Take x→ ∂Ω+ (ie exterior) and use jump relations, get BIE for τ :
β
2 τ + (αS + βD)τ = f Id + cpt if ∂Ω smooth ⇒ Fredholm 2nd kind

By quadrature + Nyström on ∂Ω, approx BIE by: Aτ = f

fj = f (xj ), xj nodes on ∂ΩTasks:
A) Fill A matrix: equiv to on-surface LP evaluation
B) Eval (∗) off-surf, given soln vec τ := {τj}Nj=1
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Prior work on high-order Nyström quadratures

• task A) fill A: needs high-order weakly-singular quadr (except Lap 2D)

• task B) eval LP (∗) for x arbitrarily close to ∂Ω (“close eval”)

Incomplete history: (also see my CSE19 review slides) task B? PDE-indep?

2D global product-quadr. analytic split (Kress ’91) N N
2D panel analytic split, Lap+Helm (Helsing ’08–’15) Y N
2D gen-Gauss. aux nodes (Rokhlin–Duan, Alpert, ’99) N Y
3D radial interp, r dr (Bruno–Kunyansky ’01; Malhotra) N Y
3D global spherical harmonics (Ganesh, Corona. . . ) N N
QBX+ (Klöckner–O’Neil–B–Greengard ’12; Rachh, Wala, af K) Y if proxy
2D barycentric (Ioakimidis, Helsing, Wu–B–Veerapaneni ’14) Y N
3D radial triangle-split gen-Gauss. (Bremer, Gimbutas) N Y
3D adaptive off-surf panels (Rachh, Greengard, O’Neil) Y Y
Density interpolation (2D,3D) (Perez-A., Turc, Faria ’18) Y if proxy
off-surf radial + cancellation (Carvalho–Khatri–Kim ’18) Y N
3D “hedgehog” extrapolation (Morse–Zorin ’20) Y Y
zeta functions for global (2D,3D) (Wu–Martinsson ’20) N N
Lap 3D quaternion line-integral (Zhu–Veerapaneni ’21) Y N
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Our contribution
Many methods/pubs [academia], few usable codes we try to fix at Flatiron

All “close-evaluation” (task B) methods listed have an issue:
• need split targs into “near” (special method) vs far (plain Nyström)
• to couple to fast alg need: 1) apply FMM to all targs, 2) subtract near
wrong parts, 3) add correct near
• issues: cancellations, per-target bookkeeping, slow

Beautiful idea: for exterior of ∂Ω=sphere, project LPs into (vector)
spherical harmonics, eval those when close to ∂Ω

(Corona–Veerapaneni, Yan, Shelley, etc)

Our plan: a global rep for general shape Ω, using point sources only, so
plugs in to point FMM without per-target FMM bookkeepping?
• show 2D only, find useful for large # simple bodies
• we stick to global quadr each body separations & h2; ie not locally adapt.
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Simplest QFS idea for (∗) eval: 2D, one body, exterior

Here user supplies: • desired tolerance ε

• on-surface rule: xj nodes, wj weights, s.t.∫
∂Ω g(y)dsy −

∑N
j=1 wjg(xj) = O(ε) quadr. error

for “relevant” smooth funcs g (eg τ , n, geom. . . )

• A (Nyström mat incl. I/2 jump term) for now :)

Pick P ≈ N sources yj ∈ Ω near ∂Ω use ε to control dist

Simplest QFS rep. is: ũ(x) =
∑P

j=1 G (x, yj)σj σj = unknown charges

Fill B ∈ CN×P via Bij := G (xi , yj)

When user gives us new density vec τ :
i) solve Bσ = Aτ ill-cond. κ(B) ≈ ε−1/2 ≤ 108, need bkw. stab, O(N3)

meaning: match potentials on ∂Ω+, so by BVP uniqueness ũ ≈ u in R2\Ω
ii) eval. QFS rep at targets everywhere in R2\Ω via point FMM

Better: precompute B = UΣV ∗, then store Y = VΣ−1 and Z = U∗A
• when user inputs τ , two matvecs gives σ = Y (Zτ ) bkw stab order!
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ii) eval. QFS rep at targets everywhere in R2\Ω via point FMM

Better: precompute B = UΣV ∗, then store Y = VΣ−1 and Z = U∗A
• when user inputs τ , two matvecs gives σ = Y (Zτ ) bkw stab order!



Simplest QFS idea for (∗) eval: 2D, one body, exterior

Here user supplies: • desired tolerance ε

• on-surface rule: xj nodes, wj weights, s.t.∫
∂Ω g(y)dsy −

∑N
j=1 wjg(xj) = O(ε) quadr. error

for “relevant” smooth funcs g (eg τ , n, geom. . . )

• A (Nyström mat incl. I/2 jump term) for now :)

Pick P ≈ N sources yj ∈ Ω near ∂Ω use ε to control dist

Simplest QFS rep. is: ũ(x) =
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Error convergence for SLP eval in 2D, three PDEs

Given τ ∈ RN sampling a density τ : QFS (black) vs gold-std (green):
gold-standards: “far” target = plain Nyström rule for (∗)

“near” (dist 10−4) = adaptive Gauss on trig poly interp of τ

Results: QFS similar to gold, then flattens at around ε; DLP sim.
• exp. conv. rate ≈ decay of Nyquist Fourier coeff τ̂N/2 (red)

Raises qu’s! Why stable? How choose yj?
Wouldn’t it be nice not to have to supply A?



QFS Theory: continuous limit I

Recall: we approx u = (αS + βD)τ (∗) in ext. by ũ = Sγσ
QFS lin sys Bσ = u+ is discretization of 1st-kind IE
For analytic data, it is not crazy to demand it works. . .

Thm. Let u be harmonic in Rd\Ω with u(x) = C log r + o(1) in d = 2
or o(1) in d = 3, and continue as regular PDE soln in the closed annulus
(shell) btw ∂Ω and γ. Then 1st-kind IE∫

γ
G (x, y)σ(y)dsy = u(x) , x ∈ ∂Ω (†)

has a solution. If d = 3 or logarithmic capacity CΩ 6= 1, it’s unique, and
(†) recovers u throughout Rd\Ω.

Pf: Let v solve the int Lap Dir BVP for v = u on γ
Green’s rep. formula exterior to γ: u = −Sγun +Dγu by const u∞=0

GRF (extinction) exterior to γ: 0 = Sγvn −Dγv
Add them: u = Sγ(vn − un) outside γ, in particular on ∂Ω ⇒ soln
Uniqueness: jump relations & unique cont. from Cauchy data. . . �
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QFS lin sys Bσ = u+ is discretization of 1st-kind IE
For analytic data, it is not crazy to demand it works. . .

Thm. Let u be harmonic in Rd\Ω with u(x) = C log r + o(1) in d = 2
or o(1) in d = 3, and continue as regular PDE soln in the closed annulus
(shell) btw ∂Ω and γ. Then 1st-kind IE∫

γ
G (x, y)σ(y)dsy = u(x) , x ∈ ∂Ω (†)

has a solution. If d = 3 or logarithmic capacity CΩ 6= 1, it’s unique, and
(†) recovers u throughout Rd\Ω.

Pf: Let v solve the int Lap Dir BVP for v = u on γ
Green’s rep. formula exterior to γ: u = −Sγun +Dγu by const u∞=0

GRF (extinction) exterior to γ: 0 = Sγvn −Dγv
Add them: u = Sγ(vn − un) outside γ, in particular on ∂Ω ⇒ soln
Uniqueness: jump relations & unique cont. from Cauchy data. . . �



QFS Theory: continuous limit II
Summary: continuous QFS robust to evaluate (∗) for analytic data if. . .
i) Source curve (surf) γ “close enough” to ∂Ω
τ analytic ⇒ u cont. as PDE soln in some annulus (anal. theory of PDE, eg Colton; B’14)

ii) Range of QFS rep ũ = Sγσ same as desired (∗)
Lap 2D range of LPs: C log r + u∞ + o(1), with const term u∞ = 0

iii) Data type on ∂Ω must lead to unique ext BVP in this range
Here Dirichlet data u+. 2D subtelty: CΩ = 1 ⇒ C undetermined by u+

easy: also fix tot charge
∫
γ σ = α

∫
∂Ω τ , extra row of QFS lin sys

• Similar robustness thms for Stokes Sγ ; Helm (D + ikS)γ (CFIE)

How choose curve γ (2D)?

∂Ω param by Z (t) ∈ C ' R2

t ∈ [0, 2π) periodic, anal. in a strip

xj = Z (2πj/N) periodic trap. rule (PTR)

User promised us N such that PTR achieves err ε for their τ
Thm (Davis ’59): If τ(t) anal. in | Im t| ≤ δ, PTR error rate O(e−δN)
Equate Davis to ε gives: δ ≈ N−1 log ε−1 our rule for “close”

Then choose γ = {Z (t + iδ) : t ∈ [0, 2π)} “imaginary translation” of ∂Ω
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Choice of source (proxy) points yj in 2D

Recipe: set imag. dist. param δ = N−1 log ε−1, and P = N, then
yj := x(tj)− δ ‖x′(tj)‖n(tj) + δ2x′′(tj) tj = 2πj

P , j = 1, . . . ,P
nearly imag. transl. (2nd-order Taylor approx) ε = 10−14 gives dist. ≈ 5h (see B’14)

Details: if γ self-intersects, reduce δ until doesn’t, then grow P to match

Idea of solving PDE via 1st-kind IE is old & recurs: esp. in engineering!

Method of Fundamental Solns (Kupradze ’67, Bogomolny, Golberg–Chen, Eremin)

a.k.a. method of aux. sources, charge simulation method, . . .

related to (not same as!) proxy points (Martinsson, Rokhlin, Gillman; Chow ’19)

∃ confusion, but: stable if u anal. cont. up to γ, bkw stab. lin. solve (B–Betcke ’07)

Thm (Katsurada ’96 Laplace; Kangro ’10 Helmholtz): Let Z (t) and Dirichlet data
f (t) be analytic in a suff. wide strip. Choose N sources
yj = Z (2πj/N + iδ). Then MFS err in solving the BVP for data f is, in
exact arithmetic, up to algebraic factors, O(e−δN).

this is the smooth-data, annular conformal map case of various MFS thms

MFS analysis incomplete, technical: exp.-weighted Sobolev

• Note: MFS exponential rate matches our δ rule
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Desingularized QFS: goodbye singular quadrature

Goal: also fill Nyström A (task A) recall until now user had to supply A :(

Idea: match data u not on ∂Ω, but on new exterior “check” curve γc

M ≈ P chk pts zm on γc via imag displ by −δc

fill Emj = G (zm, yj)
upsample ∂Ω by factor ρ to get nodes x̃i
fill C̃mi = αG (zm, x̃i ) + β ∂G

∂nx̃i
(zm, x̃i )

chk-eval. mat. C = C̃LρN×N L = spectral upsampling

Solve Eσ = Cτ for σ: as before take E = UΣV ∗

Y = VΣ−1, Z = U∗C , then σ = Y (Zτ )

Task B done, all off-surf! Finally A ≈ Ã = (BY )Z gives 1-sided lim

• pick ρ upsampling (as in QBX, hedgehog) so C has err εmach at γc , via:
Thm (B’14): At target x, LP eval via N-node plain PTR has
err O(e−| ImZ−1(x)|N). rate is imag dist of preimage, so set e−δcρN = εmach
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Desingularized QFS: goodbye singular quadrature

Goal: also fill Nyström A (task A) recall until now user had to supply A :(

Idea: match data u not on ∂Ω, but on new exterior “check” curve γc
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Error convergence for desingularized QFS, three PDEs

Again we compare QFS (black) vs gold-standard LP eval (green):

Results: QFS-D v. similar to gold, flattening around ε as expected

• Stokes: slight upsampling P ≈ 1.3N, M ≈ 1.2P, to get good spec(Ã).
• unlike QBX or hedgehog, no 2-sided averaging needed

• no SVD truncation needed since κ(E ) = O(ε
−1/2
mach ) only



Fast solver for multi-body applications

Recall exterior BVP gives BIE Aτ = f
A = Nyström mat eg Lap. “completed” A = I

2
+ D + S

For K > 1 bodies, A has K × K block structure

• QFS-D fills dense diag blocks A(k,k) self-int, task A

• Apply all off-diag A(j ,k), j 6=k , by a point FMM: QFS srcs {yj} → bdry {xj}
task B: bundle close & far targets together, no bookkeepping/corrections

each body’s strength vector from its own QFS-D σ = Y (Zτ )

• To reduce iter count, block-diag right-precondition, so GMRES sees: I A(1,2)(A(2,2))−1 . . .

A(2,1)(A(1,1))−1 I . . .
...

...
. . .


τ̃

(1)

τ̃ (2)

...

 =

f
(1)

f (2)

...


Once solved, recover actual densities τ (k) = (A(k,k))−1τ̃ (k)

• Eval solution u everywhere: again QFS-D task B



Application: multibody scattering (2D Helmholtz)

K = 103 bodies

N ≈ 190000

7e-10 est max err
(20002 grid)

1e-11 diff vs Kress
+ upsampling

need 1237 iters
QFS, Kress same

Solve: 13 min
(AMD server)

QFS setup:
0.14 core-hr

FMM: 9 core-hr

FMM effort: 80%



Error for multibody scattering (2D Helmholtz)
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• QFS similar convergence rate to Kress
• resonant (errors 1 digit worse inside “leaky cavity”)



Application: multibody Stokes

|u| solution (fluid speed): p solution (fluid pressure):

Estim pointwise error:

10 20 30 40 50 60
Total n (thousands)

10−9

10−8

10−7

10−6
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10−3

E
rr

or

QFS Auto-refinement, U

QFS Auto-refinement, p

QFS/Kress Difference, U

QFS/Kress Difference, p
K = 200 bodies
min. sep. = rad/20
N ≈ 56000 (2N unkn.)
451 iters to 1e-8

7 min (AMD server)

≥ 90% FMM effort



Conclusions

QFS is a useful BIE quadrature tool when (many) “simple” bodies:

• one simple representation covers on-surface, near-surface, far-field
• fast & trivial to apply by point FMM, kills near-vs-far bookkeepping
• stably fills 1-body Nyström matrices w/o singular quadrature
• kernel-independent current: Laplace, Helmholtz, modified Helmholtz, Stokes

• as accurate (spectral) as slower gold-standard schemes Kress + adaptive

. . . PS: bkw. stab. apply of pseudoinv. needs two matvecs: σ = Y (Zτ )

2D Py code/demos: https://github.com/dbstein/qfs

Future:
• dim-indep: works in 3D; smooth multi-body tests ongoing
• corners? Yes (MFS), but not full acc. (Hochman ’07, Liu–B ’16, Gopal–Tref.’20)

• more analysis for MFS/QFS (Stokes, disk, analytic domains, . . . )

https://github.com/dbstein/qfs

