Quadrature by fundamental solutions:

kernel-independent layer potential evaluation for large collections of simple objects

Alex H. Barnett ${ }^{1}$ and David B. Stein ${ }^{2}$
MS27, ICOSAHOM, planet Earth, 7/12/21
"Fast and high order solution techniques for boundary integral equations"
${ }^{1}$ Center for Computational Mathematics, Flatiron Institute, Simons Foundation
${ }^{2}$ Center for Computational Biology, Flatiron Institute, Simons Foundation

Motivations and goal

Many simulations using boundary integral equations (BIE) involve large number of simple bodies (inclusions, vesicles, swimmers ...)
"simple": N unknowns per body s.t. $\mathcal{O}\left(N^{3}\right)$ dense lin. alg. ok..$N \lesssim 10^{3}$ in 2D 10^{4} in 3D

Motivations and goal

Many simulations using boundary integral equations (BIE) involve large number of simple bodies (inclusions, vesicles, swimmers ...)
"simple": N unknowns per body s.t. $\mathcal{O}\left(N^{3}\right)$ dense lin. alg. ok..$N \lesssim 10^{3}$ in 2D, 10^{4} in 3D

sheared rigid suspensions
(Wang-Nazockdast-B '21)

10^{4} active-fluid deformable drops
(Stein-Shelley. Using tool I present: modified Helmholtz PDE for nematic tensor heat eqn)

Motivations and goal

Many simulations using boundary integral equations (BIE) involve large number of simple bodies (inclusions, vesicles, swimmers ...)
"simple": N unknowns per body s.t. $\mathcal{O}\left(N^{3}\right)$ dense lin. alg. ok..$N \lesssim 10^{3}$ in 2D, 10^{4} in 3D

sheared rigid suspensions
(Wang-Nazockdast-B '21)

10^{4} active-fluid deformable drops
(Stein-Shelley. Using tool I present: modified Helmholtz PDE for nematic tensor heat eqn)

- other apps: multiple scattering (acoustic/EM), electrohydrodynamics
- dense / non-Newtonian / bdry layers: many/most targets near bdry!
- accurate evaluation near bdry often slow, complex, PDE-specific

Goal: new BIE quadrature/evaluator tool, simply FMM-able, PDE-indep.

Setup: solving linear BVPs (exterior Dirichlet case)

 BVP:$$
\begin{array}{clc}
L u=0 & \text { in } \mathbb{R}^{d} \backslash \bar{\Omega} & \Omega=\text { one or many bodi } \\
u=f & \text { on } \partial \Omega & \\
\text { decay } / \text { radiation condition on } u(\mathbf{x}) \text { as } r:=\|\mathbf{x}\| \rightarrow \infty
\end{array}
$$

Laplace $L=\Delta \quad$ Helmholtz $L=\Delta+k^{2} \quad$ Stokes system for (\mathbf{u}, p), vel. data \mathbf{u}

Setup: solving linear BVPs (exterior Dirichlet case)

 BVP:$$
\begin{aligned}
L u & =0 & & \text { in } \mathbb{R}^{d} \backslash \bar{\Omega} \\
u & =f & & \text { on } \partial \Omega
\end{aligned}
$$

$$
\text { decay/radiation condition on } u(\mathbf{x}) \text { as } r:=\|\mathbf{x}\| \rightarrow \infty
$$

Laplace $L=\Delta \quad$ Helmholtz $L=\Delta+k^{2} \quad$ Stokes system for (\mathbf{u}, p), vel. data \mathbf{u}
Represent $u=(\alpha \mathcal{S}+\beta \mathcal{D}) \tau \quad$ in $\mathbb{R}^{d} \backslash \bar{\Omega} \quad(*)$ desired LP to eval
τ "density" $\quad \alpha, \beta$ mixing params, chosen for unique soln of indirect BIE
Eg "completed" for Lap, Stokes $\alpha=\beta=1$; CFIE for Helm $\alpha=i k, \beta=1$.
where $(\mathcal{S} \tau)(\mathbf{x}):=\int_{\partial \Omega} G(\mathbf{x}, \mathbf{y}) \tau(\mathbf{y}) d s_{\mathbf{y}} \quad G=$ fundamental soln for L $G(\mathbf{x}, \mathbf{y})$ convolutional for const-coeff. But: axisymm, layered media, etc, not so
$(\mathcal{D} \tau)(\mathbf{x}):=\int_{\partial \Omega} \frac{\partial G(\mathbf{x}, \mathbf{y})}{\partial \mathbf{n}_{\mathbf{y}}} \tau(\mathbf{y}) d s_{\mathbf{y}}$ scalar only; not so for Stokes

Setup: solving linear BVPs (exterior Dirichlet case)

 BVP:$$
\begin{aligned}
L u & =0 & & \text { in } \mathbb{R}^{d} \backslash \bar{\Omega} \\
u & =f & & \text { on } \partial \Omega
\end{aligned}
$$

decay/radiation condition on $u(\mathbf{x})$ as $r:=\|\mathbf{x}\| \rightarrow \infty$
Laplace $L=\Delta \quad$ Helmholtz $L=\Delta+k^{2} \quad$ Stokes system for (\mathbf{u}, p), vel. data \mathbf{u}
Represent $u=(\alpha \mathcal{S}+\beta \mathcal{D}) \tau \quad$ in $\mathbb{R}^{d} \backslash \bar{\Omega} \quad(*)$ desired LP to eval
τ "density" $\quad \alpha, \beta$ mixing params, chosen for unique soln of indirect BIE
Eg "completed" for Lap, Stokes $\alpha=\beta=1$; CFIE for Helm $\alpha=i k, \beta=1$.
where $(\mathcal{S} \tau)(\mathbf{x}):=\int_{\partial \Omega} G(\mathbf{x}, \mathbf{y}) \tau(\mathbf{y}) d S_{\mathbf{y}} \quad G=$ fundamental soln for L $G(\mathbf{x}, \mathbf{y})$ convolutional for const-coeff. But: axisymm, layered media, etc, not so
$(\mathcal{D} \tau)(\mathbf{x}):=\int_{\partial \Omega} \frac{\partial G(\mathbf{x}, \mathbf{y})}{\partial \mathbf{n}_{\mathbf{y}}} \tau(\mathbf{y}) d s_{\mathbf{y}}$ scalar only; not so for Stokes
Take $\mathbf{x} \rightarrow \partial \Omega^{+}$(ie exterior) and use jump relations, get BIE for τ :

$$
\frac{\beta}{2} \tau+(\alpha S+\beta D) \tau=f \quad \text { Id }+ \text { cpt if } \partial \Omega \text { smooth } \Rightarrow \text { Fredholm 2nd kind }
$$

By quadrature + Nyström on $\partial \Omega$, approx BIE by: $A \boldsymbol{\tau}=\boldsymbol{f}$
Tasks:
$f_{j}=f\left(\mathbf{x}_{j}\right), \mathbf{x}_{j}$ nodes on $\partial \Omega$
A) Fill A matrix: equiv to on-surface LP evaluation
B) Eval ($*$) off-surf, given soln vec $\boldsymbol{\tau}:=\left\{\tau_{j}\right\}_{j=1}^{N}$

Prior work on high-order Nyström quadratures

- task A) fill A : needs high-order weakly-singular quadr
- task B) eval LP (*) for \mathbf{x} arbitrarily close to $\partial \Omega$ ("close eval")

Prior work on high-order Nyström quadratures

- task A) fill A : needs high-order weakly-singular quadr
- task B) eval LP (*) for \mathbf{x} arbitrarily close to $\partial \Omega$ ("close eval") Incomplete history: (also see my CSE19 review slides) task B? PDE-indep?
2D global product-quadr. analytic split (Kress '91)
2D panel analytic split, Lap+Helm (Helsing '08-'15)
2D gen-Gauss. aux nodes (Rokhlin-Duan, Alpert, '99)
3D radial interp, $r d r$ (Bruno-Kunyansky '01; Malhotra)
3D global spherical harmonics (Ganesh, Corona...)
QBX + (Klöckner-O'Neil-B-Greengard '12; Rachh, Wala, af K)
2D barycentric (loakimidis, Helsing, Wu-B-Veerapaneni '14)
3D radial triangle-split gen-Gauss. (Bremer, Gimbutas)
3D adaptive off-surf panels (Rachh, Greengard, O'Neil) Density interpolation (2D,3D) (Perez-A., Turc, Faria '18) off-surf radial + cancellation (Carvalho-Khatri-Kim '18) 3D "hedgehog" extrapolation (Morse-Zorin '20) zeta functions for global (2D,3D) (Wu-Martinsson '20) Lap 3D quaternion line-integral (Zhu-Veerapaneni '21)

N	N
Y	N
N	Y
N	Y
N	N
Y	if proxy
Y	N
N	Y
Y	Y
Y	if proxy
Y	N
Y	Y
N	N
Y	N

Our contribution

Many methods/pubs [academia], few usable codes we try to fix at Flatiron
All "close-evaluation" (task B) methods listed have an issue:

- need split targs into "near" (special method) vs far (plain Nyström)
- to couple to fast alg need: 1) apply FMM to all targs, 2) subtract near wrong parts, 3) add correct near
- issues: cancellations, per-target bookkeeping, slow

All "close-evaluation" (task B) methods listed have an issue:

- need split targs into "near" (special method) vs far (plain Nyström)
- to couple to fast alg need: 1) apply FMM to all targs, 2) subtract near wrong parts, 3) add correct near
- issues: cancellations, per-target bookkeeping, slow

Beautiful idea: for exterior of $\partial \Omega=$ sphere, project LPs into (vector) spherical harmonics, eval those when close to $\partial \Omega$
(Corona-Veerapaneni, Yan, Shelley, etc)
Our plan: a global rep for general shape Ω, using point sources only, so plugs in to point FMM without per-target FMM bookkeepping?

- show 2D only, find useful for large \# simple bodies
- we stick to global quadr each body
separations $\gtrsim h^{2}$; ie not locally adapt.

Simplest QFS idea for $(*)$ eval: 2D, one body, exterior

$\left(u_{\text {inc }}+u\right)$, acoustic pressure

Here user supplies: - desired tolerance ϵ

- on-surface rule: \mathbf{x}_{j} nodes, w_{j} weights, s.t. $\int_{\partial \Omega} g(\mathbf{y}) d s_{y}-\sum_{j=1}^{N} w_{j} g\left(\mathbf{x}_{j}\right)=\mathcal{O}(\epsilon) \quad$ quadr. error for "relevant" smooth funcs g (eg τ, n, geom...)
- A (Nyström mat incl. I/2 jump term) for now :)

Simplest QFS idea for $(*)$ eval: 2D, one body, exterior

 Here user supplies: - desired tolerance ϵ

- on-surface rule: \mathbf{x}_{j} nodes, w_{j} weights, s.t. $\int_{\partial \Omega} g(\mathbf{y}) d s_{y}-\sum_{j=1}^{N} w_{j} g\left(\mathbf{x}_{j}\right)=\mathcal{O}(\epsilon) \quad$ quadr. error for "relevant" smooth funcs g (eg τ, \mathbf{n}, geom...)
- A (Nyström mat incl. I/2 jump term) for now :)

Pick $P \approx N$ sources $\mathbf{y}_{j} \in \Omega$ near $\partial \Omega$
Simplest QFS rep. is: $\tilde{u}(\mathbf{x})=\sum_{j=1}^{P} G\left(\mathbf{x}, \mathbf{y}_{j}\right) \sigma_{j}$
use ϵ to control dist
$\sigma_{j}=$ unknown charges

Fill $B \in \mathbb{C}^{N \times P}$ via $B_{i j}:=G\left(\mathbf{x}_{i}, \mathbf{y}_{j}\right)$
When user gives us new density vec $\boldsymbol{\tau}$:
i) solve $\boldsymbol{B} \boldsymbol{\sigma}=\boldsymbol{A} \boldsymbol{\tau} \quad$ ill-cond. $\kappa(B) \approx \epsilon^{-1 / 2} \leq 10^{8}$, need bkw. stab, $\mathcal{O}\left(N^{3}\right)$ meaning: match potentials on $\partial \Omega^{+}$, so by BVP uniqueness $\tilde{u} \approx u$ in $\mathbb{R}^{2} \backslash \bar{\Omega}$
ii) eval. QFS rep at targets everywhere in $\mathbb{R}^{2} \backslash \Omega$ via point FMM

Simplest QFS idea for $(*)$ eval: 2D, one body, exterior

Here user supplies: - desired tolerance ϵ

- on-surface rule: \mathbf{x}_{j} nodes, w_{j} weights, s.t. $\int_{\partial \Omega} g(\mathbf{y}) d s_{y}-\sum_{j=1}^{N} w_{j} g\left(\mathbf{x}_{j}\right)=\mathcal{O}(\epsilon) \quad$ quadr. error for "relevant" smooth funcs g (eg τ, \mathbf{n}, geom...)
- A (Nyström mat incl. I/2 jump term) for now :)

Pick $P \approx N$ sources $\mathbf{y}_{j} \in \Omega$ near $\partial \Omega$
use ϵ to control dist
Simplest QFS rep. is: $\tilde{u}(\mathbf{x})=\sum_{j=1}^{P} G\left(\mathbf{x}, \mathbf{y}_{j}\right) \sigma_{j}$
$\sigma_{j}=$ unknown charges
Fill $B \in \mathbb{C}^{N \times P}$ via $B_{i j}:=G\left(\mathbf{x}_{i}, \mathbf{y}_{j}\right)$
When user gives us new density vec $\boldsymbol{\tau}$:
i) solve $\boldsymbol{B} \boldsymbol{\sigma}=\boldsymbol{A} \boldsymbol{\tau} \quad$ ill-cond. $\kappa(B) \approx \epsilon^{-1 / 2} \leq 10^{8}$, need bkw. stab, $\mathcal{O}\left(N^{3}\right)$ meaning: match potentials on $\partial \Omega^{+}$, so by BVP uniqueness $\tilde{u} \approx u$ in $\mathbb{R}^{2} \backslash \bar{\Omega}$
ii) eval. QFS rep at targets everywhere in $\mathbb{R}^{2} \backslash \Omega$ via point FMM

Better: precompute $B=U \Sigma V^{*}$, then store $Y=V \Sigma^{-1}$ and $Z=U^{*} A$

- when user inputs τ, two matvecs gives $\sigma=Y(Z \boldsymbol{\tau}) \quad$ bkw stab order!

Error convergence for SLP eval in 2D, three PDEs

Given $\tau \in \mathbb{R}^{N}$ sampling a density τ : QFS (black) vs gold-std (green):
gold-standards: "far" target $=$ plain Nyström rule for $(*)$ "near" (dist 10^{-4}) $=$ adaptive Gauss on trig poly interp of τ

Results: QFS similar to gold, then flattens at around ϵ; DLP sim.

- exp. conv. rate \approx decay of Nyquist Fourier coeff $\hat{\tau}_{N / 2}$ (red)

Raises qu's! Why stable? How choose \mathbf{y}_{j} ? Wouldn't it be nice not to have to supply A ?

QFS Theory: continuous limit I

Recall: we approx $u=(\alpha \mathcal{S}+\beta \mathcal{D}) \tau(*)$ in ext. by $\tilde{u}=\mathcal{S}_{\gamma} \sigma$ QFS lin sys $B \boldsymbol{\sigma}=\mathbf{u}^{+}$is discretization of 1st-kind IE For analytic data, it is not crazy to demand it works. . .

QFS Theory: continuous limit I

Recall: we approx $u=(\alpha \mathcal{S}+\beta \mathcal{D}) \tau(*)$ in ext. by $\tilde{u}=\mathcal{S}_{\gamma} \sigma$ QFS lin sys $B \sigma=\mathbf{u}^{+}$is discretization of 1st-kind IE For analytic data, it is not crazy to demand it works...

Thm. Let u be harmonic in $\mathbb{R}^{d} \backslash \bar{\Omega}$ with $u(\mathbf{x})=C \log r+o(1)$ in $d=2$ or $o(1)$ in $d=3$, and continue as regular PDE soln in the closed annulus (shell) btw $\partial \Omega$ and γ. Then 1st-kind IE

$$
\int_{\gamma} G(\mathbf{x}, \mathbf{y}) \sigma(\mathbf{y}) d s_{\mathbf{y}}=u(\mathbf{x}), \quad \mathbf{x} \in \partial \Omega
$$

has a solution. If $d=3$ or logarithmic capacity $C_{\Omega} \neq 1$, it's unique, and (\dagger) recovers u throughout $\mathbb{R}^{d} \backslash \bar{\Omega}$.

QFS Theory: continuous limit I

Recall: we approx $u=(\alpha \mathcal{S}+\beta \mathcal{D}) \tau(*)$ in ext. by $\tilde{u}=\mathcal{S}_{\gamma} \sigma$ QFS lin sys $B \boldsymbol{\sigma}=\mathbf{u}^{+}$is discretization of 1st-kind IE For analytic data, it is not crazy to demand it works...

Thm. Let u be harmonic in $\mathbb{R}^{d} \backslash \bar{\Omega}$ with $u(\mathbf{x})=C \log r+o(1)$ in $d=2$ or $o(1)$ in $d=3$, and continue as regular PDE soln in the closed annulus (shell) btw $\partial \Omega$ and γ. Then 1st-kind IE

$$
\int_{\gamma} G(\mathbf{x}, \mathbf{y}) \sigma(\mathbf{y}) d s_{\mathbf{y}}=u(\mathbf{x}), \quad \mathbf{x} \in \partial \Omega
$$

has a solution. If $d=3$ or logarithmic capacity $C_{\Omega} \neq 1$, it's unique, and (\dagger) recovers u throughout $\mathbb{R}^{d} \backslash \bar{\Omega}$.

Pf: Let v solve the int Lap Dir BVP for $v=u$ on γ
Green's rep. formula exterior to γ : $u=-\mathcal{S}_{\gamma} u_{\mathbf{n}}+\mathcal{D}_{\gamma} u$ by const $u_{\infty}=0$
GRF (extinction) exterior to γ : $0=\mathcal{S}_{\gamma} v_{\mathbf{n}}-\mathcal{D}_{\gamma} v$
Add them: $u=\mathcal{S}_{\gamma}\left(v_{\mathbf{n}}-u_{\mathbf{n}}\right)$ outside γ, in particular on $\partial \Omega \Rightarrow$ soln Uniqueness: jump relations \& unique cont. from Cauchy data...

QFS Theory: continuous limit II

Summary: continuous QFS robust to evaluate (*) for analytic data if...
i) Source curve (surf) γ "close enough" to $\partial \Omega$
τ analytic $\Rightarrow u$ cont. as PDE soln in some annulus (anal. theory of PDE, eg Colton; B'14)
ii) Range of QFS rep $\tilde{u}=\mathcal{S}_{\gamma} \sigma$ same as desired (*)

Lap 2D range of LPs: $C \log r+u_{\infty}+o(1)$, with const term $u_{\infty}=0$
iii) Data type on $\partial \Omega$ must lead to unique ext BVP in this range Here Dirichlet data u^{+}. 2D subtelty: $C_{\Omega}=1 \Rightarrow C$ undetermined by u^{+} easy: also fix tot charge $\int_{\gamma} \sigma=\alpha \int_{\partial \Omega} \tau$, extra row of QFS lin sys

- Similar robustness thms for Stokes $\mathcal{S}_{\gamma} ; \operatorname{Helm}(\mathcal{D}+i k \mathcal{S})_{\gamma}$ (CFIE)

QFS Theory: continuous limit II

Summary: continuous QFS robust to evaluate ($*$) for analytic data if...
i) Source curve (surf) γ "close enough" to $\partial \Omega$
τ analytic $\Rightarrow u$ cont. as PDE soln in some annulus (anal. theory of PDE, eg Colton; B'14)
ii) Range of QFS rep $\tilde{u}=\mathcal{S}_{\gamma} \sigma$ same as desired ($*$)

Lap 2D range of LPs: $C \log r+u_{\infty}+o(1)$, with const term $u_{\infty}=0$
iii) Data type on $\partial \Omega$ must lead to unique ext BVP in this range Here Dirichlet data u^{+}. 2D subtelty: $C_{\Omega}=1 \Rightarrow C$ undetermined by u^{+} easy: also fix tot charge $\int_{\gamma} \sigma=\alpha \int_{\partial \Omega} \tau$, extra row of QFS lin sys

- Similar robustness thms for Stokes \mathcal{S}_{γ}; $\operatorname{Helm}(\mathcal{D}+i k \mathcal{S})_{\gamma}$ (CFIE) How choose curve γ (2D)?
$\partial \Omega$ param by $Z(t) \in \mathbb{C} \simeq \mathbb{R}^{2}$
$t \in[0,2 \pi)$ periodic, anal. in a strip
$\mathbf{x}_{j}=Z(2 \pi j / N)$ periodic trap. rule (PTR)

User promised us N such that PTR achieves err ϵ for their τ
Thm (Davis '59): If $\tau(t)$ anal. in $|\operatorname{Im} t| \leq \delta$, PTR error rate $\mathcal{O}\left(e^{-\delta N}\right)$
Equate Davis to ϵ gives: $\quad \delta \approx N^{-1} \log \epsilon^{-1}$ our rule for "close"
Then choose $\gamma=\{Z(t+i \delta): t \in[0,2 \pi)\}$ "imaginary translation" of $\partial \Omega$

Choice of source (proxy) points \mathbf{y}_{j} in 2D

Recipe: set imag. dist. param $\delta=N^{-1} \log \epsilon^{-1}$, and $P=N$, then
$\mathbf{y}_{j}:=\mathbf{x}\left(t_{j}\right)-\delta\left\|\mathbf{x}^{\prime}\left(t_{j}\right)\right\| \mathbf{n}\left(t_{j}\right)+\delta^{2} \mathbf{x}^{\prime \prime}\left(t_{j}\right) \quad t_{j}=\frac{2 \pi j}{P}, \quad j=1, \ldots, P$ nearly imag. transl. (2nd-order Taylor approx) $\quad \epsilon=10^{-14}$ gives dist. $\approx 5 h$ (see $B^{\prime} 14$)
Details: if γ self-intersects, reduce δ until doesn't, then grow P to match

Choice of source (proxy) points \mathbf{y}_{j} in 2D

Recipe: set imag. dist. param $\delta=N^{-1} \log \epsilon^{-1}$, and $P=N$, then
$\mathbf{y}_{j}:=\mathbf{x}\left(t_{j}\right)-\delta\left\|\mathbf{x}^{\prime}\left(t_{j}\right)\right\| \mathbf{n}\left(t_{j}\right)+\delta^{2} \mathbf{x}^{\prime \prime}\left(t_{j}\right) \quad t_{j}=\frac{2 \pi j}{P}, \quad j=1, \ldots, P$
nearly imag. transl. (2nd-order Taylor approx) $\quad \epsilon=10^{-14}$ gives dist. $\approx 5 h$ (see $B^{\prime} 14$)
Details: if γ self-intersects, reduce δ until doesn't, then grow P to match
Idea of solving PDE via 1st-kind IE is old \& recurs: esp. in engineering!
Method of Fundamental Solns (Kupradze '67, Bogomolny, Golberg-Chen, Eremin)
a.k.a. method of aux. sources, charge simulation method,
related to (not same as!) proxy points (Martinsson, Rokhlin, Gillman; Chow '19)
\exists confusion, but: stable if u anal. cont. up to γ, bkw stab. lin. solve (B-Betcke '07)

Choice of source (proxy) points \mathbf{y}_{j} in 2D

Recipe: set imag. dist. param $\delta=N^{-1} \log \epsilon^{-1}$, and $P=N$, then

$$
\mathbf{y}_{j}:=\mathbf{x}\left(t_{j}\right)-\delta\left\|\mathbf{x}^{\prime}\left(t_{j}\right)\right\| \mathbf{n}\left(t_{j}\right)+\delta^{2} \mathbf{x}^{\prime \prime}\left(t_{j}\right) \quad t_{j}=\frac{2 \pi j}{P}, \quad j=1, \ldots, P
$$

nearly imag. transl. (2nd-order Taylor approx) $\quad \epsilon=10^{-14}$ gives dist. $\approx 5 h$ (see B'14)
Details: if γ self-intersects, reduce δ until doesn't, then grow P to match
Idea of solving PDE via 1st-kind IE is old \& recurs:
esp. in engineering!
Method of Fundamental Solns (Kupradze '67, Bogomolny, Golberg-Chen, Eremin)
a.k.a. method of aux. sources, charge simulation method, ...
related to (not same as!) proxy points (Martinsson, Rokhlin, Gillman; Chow '19)
\exists confusion, but: stable if u anal. cont. up to γ, bkw stab. lin. solve (B-Betcke '07)
Thm (Katsurada '96 Laplace; Kangro '10 Helmholtz): Let $Z(t)$ and Dirichlet data $f(t)$ be analytic in a suff. wide strip. Choose N sources $\mathbf{y}_{j}=Z(2 \pi j / N+i \delta)$. Then MFS err in solving the BVP for data f is, in exact arithmetic, up to algebraic factors, $\mathcal{O}\left(e^{-\delta N}\right)$.
this is the smooth-data, annular conformal map case of various MFS thms
MFS analysis incomplete, technical: exp.-weighted Sobolev

- Note: MFS exponential rate matches our δ rule

FLATIRON
INSTITUTE Center for Computational Mathematics

Desingularized QFS: goodbye singular quadrature

Goal: also fill Nyström A (task A) recall until now user had to supply A :(Idea: match data u not on $\partial \Omega$, but on new exterior "check" curve γ_{c}
 $M \approx P$ chk pts \mathbf{z}_{m} on γ_{c} via imag displ by $-\delta_{c}$

Desingularized QFS: goodbye singular quadrature

Goal: also fill Nyström A (task A) recall until now user had to supply A :(Idea: match data u not on $\partial \Omega$, but on new exterior "check" curve γ_{c}
 $M \approx P$ chk pts \mathbf{z}_{m} on γ_{c} via imag displ by $-\delta_{c}$ fill $E_{m j}=G\left(\mathbf{z}_{m}, \mathbf{y}_{j}\right)$
upsample $\partial \Omega$ by factor ρ to get nodes $\tilde{\mathbf{x}}_{i}$
fill $\tilde{C}_{m i}=\alpha G\left(\mathbf{z}_{m}, \tilde{\mathbf{x}}_{i}\right)+\beta \frac{\partial G}{\partial \mathbf{n}_{\tilde{x}_{i}}}\left(\mathbf{z}_{m}, \tilde{\mathbf{x}}_{i}\right)$
chk-eval. mat. $C=\tilde{C} L_{\rho N \times N} \quad L=$ spectral upsampling
Solve $E \boldsymbol{\sigma}=C \boldsymbol{\tau}$ for $\boldsymbol{\sigma}$: as before take $E=U \Sigma V^{*}$ $Y=V \Sigma^{-1}, Z=U^{*} C$, then $\sigma=Y(Z \tau)$
Task B done, all off-surf! Finally $A \approx \tilde{A}=(B Y) Z$

Desingularized QFS: goodbye singular quadrature

Goal: also fill Nyström A (task A) recall until now user had to supply A :(Idea: match data u not on $\partial \Omega$, but on new exterior "check" curve γ_{c}
 $M \approx P$ chk pts \mathbf{z}_{m} on γ_{c} via imag displ by $-\delta_{c}$ fill $E_{m j}=G\left(\mathbf{z}_{m}, \mathbf{y}_{j}\right)$
upsample $\partial \Omega$ by factor ρ to get nodes $\tilde{\mathbf{x}}_{i}$
fill $\tilde{C}_{m i}=\alpha G\left(\mathbf{z}_{m}, \tilde{\mathbf{x}}_{i}\right)+\beta \frac{\partial G}{\partial \mathbf{n}_{\tilde{x}_{i}}}\left(\mathbf{z}_{m}, \tilde{\mathbf{x}}_{i}\right)$
chk-eval. mat. $C=\tilde{C} L_{\rho N \times N} \quad L=$ spectral upsampling
Solve $E \boldsymbol{\sigma}=C \boldsymbol{\tau}$ for $\boldsymbol{\sigma}$: as before take $E=U \Sigma V^{*}$
$Y=V \Sigma^{-1}, Z=U^{*} C$, then $\sigma=Y(Z \tau)$
Task B done, all off-surf! Finally $A \approx \tilde{A}=(B Y) Z$
gives 1 -sided lim

- pick ρ upsampling (as in QBX, hedgehog) so C has err $\epsilon_{\text {mach }}$ at γ_{c}, via: Thm (B'14): At target \mathbf{x}, LP eval via N-node plain PTR has $\operatorname{err} \mathcal{O}\left(e^{-\left|\operatorname{lm} Z^{-1}(\mathbf{x})\right| N}\right)$.
rate is imag dist of preimage, so set $e^{-\delta_{c} \rho N}=\epsilon_{\text {mach }}$

Desingularized QFS: goodbye singular quadrature

Goal: also fill Nyström A (task A) recall until now user had to supply A :(Idea: match data u not on $\partial \Omega$, but on new exterior "check" curve γ_{c}
 $M \approx P$ chk pts \mathbf{z}_{m} on γ_{c} via imag displ by $-\delta_{c}$ fill $E_{m j}=G\left(\mathbf{z}_{m}, \mathbf{y}_{j}\right)$
upsample $\partial \Omega$ by factor ρ to get nodes $\tilde{\mathbf{x}}_{i}$
fill $\tilde{C}_{m i}=\alpha G\left(\mathbf{z}_{m}, \tilde{\mathbf{x}}_{i}\right)+\beta \frac{\partial G}{\partial \mathbf{n}_{\tilde{x}_{i}}}\left(\mathbf{z}_{m}, \tilde{\mathbf{x}}_{i}\right)$ chk-eval. mat. $C=\tilde{C} L_{\rho N \times N} \quad L=$ spectral upsampling
Solve $E \boldsymbol{\sigma}=C \boldsymbol{\tau}$ for $\boldsymbol{\sigma}$: as before take $E=U \Sigma V^{*}$ $Y=V \Sigma^{-1}, Z=U^{*} C$, then $\sigma=Y(Z \tau)$
Task B done, all off-surf! Finally $A \approx \tilde{A}=(B Y) Z$
gives 1 -sided lim

- pick ρ upsampling (as in QBX, hedgehog) so C has err $\epsilon_{\text {mach }}$ at γ_{c}, via: Thm (B'14): At target \mathbf{x}, LP eval via N-node plain PTR has $\operatorname{err} \mathcal{O}\left(e^{-\left|\operatorname{Im} Z^{-1}(\mathbf{x})\right| N}\right)$.
rate is imag dist of preimage, so set $e^{-\delta_{c} \rho N}=\epsilon_{\text {mach }}$
- upper bnd on chk dist: $\frac{\delta}{\delta+\delta_{c}} \geq \frac{\log \epsilon}{\log \epsilon_{\text {mach }}} \quad$ err growth of mode $M / 2$, heuristic in practice: $\quad \epsilon=10^{-8}: \delta_{c} \approx \delta, \rho \approx 2 \quad \epsilon=10^{-12}: \delta_{c} \approx \delta / 3, \rho \approx 4$

Error convergence for desingularized QFS, three PDEs

Again we compare QFS (black) vs gold-standard LP eval (green):

Results: QFS-D v. similar to gold, flattening around ϵ as expected

- Stokes: slight upsampling $P \approx 1.3 N, M \approx 1.2 P$, to get $\operatorname{good} \operatorname{spec}(\tilde{A})$.
- unlike QBX or hedgehog, no 2-sided averaging needed
- no SVD truncation needed since $\kappa(E)=\mathcal{O}\left(\epsilon_{\text {mach }}^{-1 / 2}\right)$ only

Fast solver for multi-body applications

Recall exterior BVP gives BIE $\quad A \tau=f$

$$
A=\text { Nyström mat eg Lap. "completed" } A=\frac{1}{2}+D+S
$$

For $K>1$ bodies, A has $K \times K$ block structure

- QFS-D fills dense diag blocks $A^{(k, k)}$ self-int, task A
- Apply all off-diag $A^{(j, k)}, j \neq k$, by a point FMM: QFS srcs $\left\{\mathrm{y}_{j}\right\} \rightarrow$ bdry $\left\{\mathrm{x}_{j}\right\}$ task B: bundle close \& far targets together, no bookkeepping/corrections each body's strength vector from its own QFS-D $\sigma=Y(Z \tau)$
- To reduce iter count, block-diag right-precondition, so GMRES sees:

$$
\left[\begin{array}{ccc}
l & A^{(1,2)}\left(A^{(2,2)}\right)^{-1} & \ldots \\
A^{(2,1)}\left(A^{(1,1)}\right)^{-1} & I & \ldots \\
\vdots & \vdots & \ddots
\end{array}\right]\left[\begin{array}{c}
\tilde{\tau}^{(1)} \\
\tilde{\tau}^{(2)} \\
\vdots
\end{array}\right]=\left[\begin{array}{c}
f^{(1)} \\
f^{(2)} \\
\vdots
\end{array}\right]
$$

Once solved, recover actual densities $\tau^{(k)}=\left(A^{(k, k)}\right)^{-1} \tilde{\boldsymbol{\tau}}^{(k)}$

- Eval solution u everywhere: again QFS-D task B

Application: multibody scattering (2D Helmholtz)

Error for multibody scattering (2D Helmholtz)

Max err convergence vs $n:=\frac{N}{K}$

- QFS similar convergence rate to Kress
- resonant (errors 1 digit worse inside "leaky cavity")

Application: multibody Stokes

p solution (fluid pressure):

Estim pointwise error:

$K=200$ bodies \min. sep. $=\mathrm{rad} / 20$ $N \approx 56000$ ($2 N$ unkn.) 451 iters to $1 \mathrm{e}-8$

7 min (AMD server)
$\geq 90 \%$ FMM effort

Conclusions

QFS is a useful BIE quadrature tool when (many) "simple" bodies:

- one simple representation covers on-surface, near-surface, far-field
- fast \& trivial to apply by point FMM, kills near-vs-far bookkeepping
- stably fills 1-body Nyström matrices w/o singular quadrature
- kernel-independent current: Laplace, Helmholtz, modified Helmholtz, Stokes
- as accurate (spectral) as slower gold-standard schemes Kress + adaptive
...PS: bkw. stab. apply of pseudoinv. needs two matvecs: $\sigma=Y(Z \tau)$
2D Py code/demos: https://github.com/dbstein/qfs
Future:
- dim-indep: works in 3D; smooth multi-body tests ongoing
- corners? Yes (MFS), but not full acc. (Hochman '07, Liu-B '16, Gopal-Tref.'20)
- more analysis for MFS/QFS (Stokes, disk, analytic domains, ...)

