

Joys and pitfalls of numerical computing

Alex H. Barnett¹

10/14/21 FWAM Episode III — Revenge of the Sithngular Value Decomposition

¹Center for Computational Mathematics, Flatiron Institute, Simons Foundation

Goals/outline

Crucial practical advice & good habits, examples, further reading

- how does accuracy improve with effort? rate of convergence
- finite-precision ("rounding error") considerations
- what accuracy is reasonable to demand? conditioning of a problem
- did you mess up getting such accuracy? stability of an algorithm

Goals/outline

Crucial practical advice & good habits, examples, further reading

- how does accuracy improve with effort? rate of convergence
- finite-precision ("rounding error") considerations
- what accuracy is *reasonable* to demand? conditioning of a *problem*
- did you mess up getting such accuracy? stability of an *algorithm*

Please ask questions*

* with finite time-frequency product ©

PS I will ask YOU questions ©

Accuracy: how much to you need? have?

Accuracy: how much to you need? have?

Usually care about *relative* error: $\varepsilon := \frac{\text{size of error of thing}}{\text{size of thing}} = \frac{|y_{\text{computed}} - y_{\text{true}}|}{|y_{\text{true}}|}$ eg 0.00123 ± 0.00001 is not "correct to 5 digits", rather, 2 digits, rel. err. 10⁻², ie 1% err.

Interesting things take a while to compute \rightarrow is $\varepsilon = 10^{-1}$ ok, or need 10^{-10} ?

Accuracy: how much to you need? have?

Usually care about *relative* error: $\varepsilon := \frac{\text{size of error of thing}}{\text{size of thing}} = \frac{|y_{\text{computed}} - y_{\text{true}}|}{|y_{\text{true}}|}$ eg 0.00123 ± 0.00001 is not "correct to 5 digits", rather, 2 digits, rel. err. 10⁻², ie 1% err. Interesting things take a while to compute \rightarrow is $\varepsilon = 10^{-1}$ ok, or need 10⁻¹⁰ ? In our line of work there is really only one graph that matters:

- useful to measure and/or understand this even for simple tasks
- is crucial for larger tasks! methods differ in graph shapes (rates)

Often a routine has one (usually many) convergence parameters: "dials"

- eg how many iterations you run an iterative method, resolution h=1/N in discretization,
 - number of terms in summing a series, depth/width of a neural net, # of input data,
 - # independent samples you average, size of box (or # particles) in a random simulation,
 - ... and convergence parameters of any sub-functions called inside your beast

Often a routine has one (usually many) convergence parameters: "dials" eg how many iterations you run an iterative method, resolution h = 1/N in discretization, number of terms in summing a series, depth/width of a neural net, # of input data, # independent samples you average, size of box (or # particles) in a random simulation, ...and convergence parameters of any sub-functions called inside your beast

Let's simplify: 1 such param, call it N, with $\lim_{N\to\infty}$ giving true answer

Often a routine has one (usually many) convergence parameters: "dials" eg how many iterations you run an iterative method, resolution h = 1/N in discretization, number of terms in summing a series, depth/width of a neural net, # of input data, # independent samples you average, size of box (or # particles) in a random simulation, ...and convergence parameters of any sub-functions called inside your beast

Let's simplify: 1 such param, call it N, with $\lim_{N\to\infty} \text{giving true answer}$ **Defn.** convergence of a method is $\varepsilon(N)$: how rel. err. ε drops as N grows

Often a routine has one (usually many) convergence parameters: "dials" eg how many iterations you run an iterative method, resolution h = 1/N in discretization, number of terms in summing a series, depth/width of a neural net, # of input data, # independent samples you average, size of box (or # particles) in a random simulation, ... and convergence parameters of any sub-functions called inside your beast

Let's simplify: 1 such param, call it N, with $\lim_{N\to\infty} 0$ giving true answer **Defn.** convergence of a method is $\varepsilon(N)$: how rel. err. ε drops as N grows

Often a routine has one (usually many) convergence parameters: "dials" eg how many iterations you run an iterative method, resolution h = 1/N in discretization, number of terms in summing a series, depth/width of a neural net, # of input data, # independent samples you average, size of box (or # particles) in a random simulation, ... and convergence parameters of any sub-functions called inside your beast

Let's simplify: 1 such param, call it N, with $\lim_{N\to\infty} 0$ giving true answer **Defn.** convergence of a method is $\varepsilon(N)$: how rel. err. ε drops as N grows

Eg. say $\varepsilon(N) = cN^{-2}$ ("2nd-order"), but complexity $\mathcal{O}(N^3)$. Qu: cost for 1 *extra* digit?

Often a routine has one (usually many) convergence parameters: "dials" eg how many iterations you run an iterative method, resolution h = 1/N in discretization, number of terms in summing a series, depth/width of a neural net, # of input data, # independent samples you average, size of box (or # particles) in a random simulation, ... and convergence parameters of any sub-functions called inside your beast

Let's simplify: 1 such param, call it N, with $\lim_{N\to\infty} 0$ giving true answer **Defn.** convergence of a method is $\varepsilon(N)$: how rel. err. ε drops as N grows

Eg. say $\varepsilon(N) = cN^{-2}$ ("2nd-order"), but complexity $\mathcal{O}(N^3)$. Qu: cost for 1 *extra* digit? Ans: $\varepsilon \to \varepsilon/10$ needs $N \to \sqrt{10}N$,

Often a routine has one (usually many) convergence parameters: "dials" eg how many iterations you run an iterative method, resolution h = 1/N in discretization, number of terms in summing a series, depth/width of a neural net, # of input data, # independent samples you average, size of box (or # particles) in a random simulation, ... and convergence parameters of any sub-functions called inside your beast

Let's simplify: 1 such param, call it N, with $\lim_{N\to\infty} 0$ giving true answer **Defn.** convergence of a method is $\varepsilon(N)$: how rel. err. ε drops as N grows

Eg. say $\varepsilon(N) = cN^{-2}$ ("2nd-order"), but complexity $\mathcal{O}(N^3)$. Qu: cost for 1 *extra* digit? Ans: $\varepsilon \to \varepsilon/10$ needs $N \to \sqrt{10}N$, which needs effort mult. by $10^{3/2} \approx 32$ times longer run

Often a routine has one (usually many) convergence parameters: "dials" eg how many iterations you run an iterative method, resolution h = 1/N in discretization, number of terms in summing a series, depth/width of a neural net, # of input data, # independent samples you average, size of box (or # particles) in a random simulation, ...and convergence parameters of any sub-functions called inside your beast

Let's simplify: 1 such param, call it N, with $\lim_{N\to\infty} \text{giving true answer}$ **Defn.** convergence of a method is $\varepsilon(N)$: how rel. err. ε drops as N grows

Eg. say $\varepsilon(N) = cN^{-2}$ ("2nd-order"), but complexity $\mathcal{O}(N^3)$. Qu: cost for 1 extra digit? Ans: $\varepsilon \to \varepsilon/10$ needs $N \to \sqrt{10}N$, which needs effort mult. by $10^{3/2} \approx 32$ times longer run some useful methods do *not* converge, eg asymptotic methods $(\sqrt{\pi}/2) \operatorname{erfc}(x) := \int_x^{\infty} e^{-t^2} dt = e^{-x^2} (1/2x - 1/4x^3 + ...)$ please don't use $N \to \infty$ terms!

Convergence $\varepsilon(N)$: EXAMPLE I (series)

```
Toy example: goal compute y := 1 + \frac{1}{4} + \frac{1}{9} + \dots = \sum_{k=1}^{\infty} k^{-2}
function y = truncsum(N)
y = 0;
for k=1:N
y = y + 1/k^2;
end
```

Expected accuracy $\varepsilon(N)$?

Convergence $\varepsilon(N)$: EXAMPLE I (series) Toy example: goal compute $y := 1 + \frac{1}{4} + \frac{1}{9} + \cdots = \sum_{k=1}^{\infty} k^{-2}$ Ν function y = truncsum(N)УN 10^{2} 1.63498390018489 = 0; v 10^{3} 1.64393456668156 for k=1:N 10^{4} 1.64483407184807 $y = y + 1/k^2;$ 10^{5} 1.64492406689824 end 10^{6} 1.64493306684877 Expected accuracy $\varepsilon(N)$? 10^{7} 1.64493396684726 10^{8}

- Quick to experiment with your func:
- "self-convergence" to unknown y_{true} digits "freeze"

1.64493405783458

Convergence $\varepsilon(N)$: EXAMPLE I (series)

Toy example: goal compute $y:=1+rac{1}{4}+rac{1}{9}+\dots=\sum_{k=1}^{\infty}k^{-2}$			
<pre>function y = truncsum(N)</pre>	Ν	УN	
y = 0;	10 ²	1.63498390018489	
for k=1:N	10 ³	1.64393456668156	
$y = y + 1/k^2;$	10^{4}	1.64483407184807	
end	10 ⁵	1.6449 <mark>240668982</mark> 4	
	10 ⁶	1.64493 <mark>306684877</mark>	
Expected accuracy $\varepsilon(N)$?	10^{7}	1.64493396684726	
Quick to experiment with your func:	10 ⁸	1.64493405783458	

to experiment with your func.

- "self-convergence" to unknown y_{true} digits "freeze"
- Rate? Use your best y as y_{true} , plot errors relative to it.

see $\varepsilon(N) \sim cN^{-1}$ 1st-order, algebraic \rightarrow use loglog plot:

math: rigorous tail bnds $\varepsilon(N) \leq \int_{N}^{\infty} k^{-2} dk = N^{-1}$

rigor unusual; but think, read, measure the rate, compare!

slow! accelerate? Richardson (etc) extrapolation

Given $M \times N$ dense matrix A big, eg M = 40000 genes, N = 20000 samples, 7 GB Seek $\sigma_1(A) = \sqrt{\lambda_{max}(A^T A)}$, and assoc. singular vec. \mathbf{v}_1 1st cmpnt, PCA

Given $M \times N$ dense matrix A big, eg M = 40000 genes, N = 20000 samples, 7 GB Seek $\sigma_1(A) = \sqrt{\lambda_{\max}(A^T A)}$, and assoc. singular vec. \mathbf{v}_1 1st cmpnt, PCA Simple method: power iteration on $A^T A$ takes 14 s; svd(A) would be ~ 1 hr

```
v = randn(N,1); v = v/norm(v);
for k=1:30
  v = A'*(A*v);
  vnrm = norm(v); v = v/vnrm;
  siglest(k) = sqrt(vnrm);
end
```


Given $M \times N$ dense matrix A big, eg M = 40000 genes, N = 20000 samples, 7 GB Seek $\sigma_1(A) = \sqrt{\lambda_{\max}(A^T A)}$, and assoc. singular vec. \mathbf{v}_1 1st cmpnt, PCA Simple method: power iteration on $A^T A$ takes 14 s; svd(A) would be ~ 1 hr

• fast (beats any algebraic order) unless $a \approx 1 \otimes$. Plenty of theory; we skip

```
v = randn(N,1); v = v/norm(v);
for k=1:30
  v = A'*(A*v);
  vnrm = norm(v); v = v/vnrm;
  sig1est(k) = sqrt(vnrm);
end
```

plot abs(sig1est/sig1est(end)-1) vs param. k:

• See $\varepsilon \sim ca^k = ce^{-\alpha k}$

FLATIRON INSTITUTE Center for Computational Mathematics

Given $M \times N$ dense matrix A big, eg M = 40000 genes, N = 20000 samples, 7 GB Seek $\sigma_1(A) = \sqrt{\lambda_{\max}(A^T A)}$, and assoc. singular vec. \mathbf{v}_1 1st cmpnt, PCA Simple method: power iteration on $A^T A$ takes 14 s; svd(A) would be ~ 1 hr

```
v = randn(N,1); v = v/norm(v);
for k=1:30
  v = A'*(A*v);
  vnrm = norm(v); v = v/vnrm;
  sig1est(k) = sqrt(vnrm);
end
```

plot abs(sig1est/sig1est(end)-1) vs param. k:

• See $\varepsilon \sim ca^k = ce^{-\alpha k}$ \rightarrow use log-lin. plot. Called geometric/exponential conv.

• fast (beats any algebraic order) unless $a \approx 1$ ©. Plenty of theory; we skip

But much better methods exist: Randomized SVD, Lanczos $(A^T A)_{ATIRON}$ \rightarrow lesson is not "code your own methods", rather "test convergence" ITUTE

Monte Carlo: iid samples y_j drawn from a pdf p simple task: estimate $\mu := \int yp(y)dy$?

usual estimator $\hat{\mu} = \frac{1}{N} \sum_{j=1}^{N} y_j$ sam

sample mean

Monte Carlo: iid samples y_j drawn from a pdf p simple task: estimate $\mu := \int yp(y)dy$?

usual estimator $\hat{\mu} = \frac{1}{N} \sum_{j=1}^{N} y_j$ sample mean

- convergence $\frac{1}{2}$ -order (theory: CLT) \rightarrow v. slow!
- error ε stochastic \rightarrow now conv. accel. not poss.

Monte Carlo: iid samples y_j drawn from a pdf p simple task: estimate $\mu := \int yp(y)dy$?

usual estimator $\hat{\mu} = rac{1}{N}\sum_{j=1}^N y_j$

- convergence $\frac{1}{2}$ -order (theory: CLT) \rightarrow v. slow!
- error ε stochastic \rightarrow now conv. accel. not poss.

OTHER CONVERGENCE EXAMPLES

• Taylor series, poly interpolants: exponential $\varepsilon \sim e^{-\alpha N}$ if func analytic once you have them, integrate/differentiate *analytically*: spectral methods (Dan, Fri 11:30am)

sample mean

• Newton methods (root-find in $\mathbb R$, or min in $\mathbb R^d$): $arepsilon \sim e^{-c \mathcal N^2}$ "quadratic"

Monte Carlo: iid samples y_j drawn from a pdf p simple task: estimate $\mu := \int yp(y)dy$?

usual estimator $\hat{\mu} = rac{1}{N}\sum_{j=1}^{N}y_j$

- convergence $\frac{1}{2}$ -order (theory: CLT) \rightarrow v. slow!
- error ε stochastic \rightarrow now conv. accel. not poss.

OTHER CONVERGENCE EXAMPLES

 Taylor series, poly interpolants: exponential ε ~ e^{-αN} if func analytic once you have them, integrate/differentiate analytically: spectral methods (Dan, Fri 11:30am)

sample mean

• Newton methods (root-find in \mathbb{R} , or min in \mathbb{R}^d): $\varepsilon \sim e^{-cN^2}$ "quadratic"

Point isn't to memorize rates of methods: rather *measure* them (type & prefactor) by habit in any routine you use/write

Then you can pick a good N to get acceptable ε , trust results

So far rounding error basically irrelevant. Now let's face its consequences:

Emach The 25 much AEmail 0 1/4 1/2 1 1 ger 2 Stoating ptrop.ofy yer

$$\begin{split} & \varepsilon_{mach} \approx \texttt{1.1e-16} \text{ double (64bit)} \\ & \varepsilon_{mach} \approx \texttt{6e-8} \text{ single (32bit), GPU/TPU} \\ & \varepsilon_{mach} \approx \texttt{5e-4} \text{ "half" (16bit), GPU/TPU} \end{split}$$

So far rounding error basically irrelevant. Now let's face its consequences:

 $\varepsilon_{mach} \approx$ 1.1e-16 double (64bit) $\varepsilon_{mach} \approx$ 6e-8 single (32bit), GPU/TPU $\varepsilon_{mach} \approx$ 5e-4 "half" (16bit), GPU/TPU

Represents any real to rel. err. $\varepsilon \leq \varepsilon_{mach}$; all arith. done to rel. err. $\varepsilon \leq \varepsilon_{mach}$

So far rounding error basically irrelevant. Now let's face its consequences:

 $\varepsilon_{mach} \approx$ 1.1e-16 double (64bit) $\varepsilon_{mach} \approx$ 6e-8 single (32bit), GPU/TPU $\varepsilon_{mach} \approx$ 5e-4 "half" (16bit), GPU/TPU

Represents any real to rel. err. $\varepsilon \leq \varepsilon_{mach}$; all arith. done to rel. err. $\varepsilon \leq \varepsilon_{mach}$

eg, in double: (1 + 1e-16) - 1 = ?

So far rounding error basically irrelevant. Now let's face its consequences:

 $\varepsilon_{mach} \approx$ 1.1e-16 double (64bit) $\varepsilon_{mach} \approx$ 6e-8 single (32bit), GPU/TPU $\varepsilon_{mach} \approx$ 5e-4 "half" (16bit), GPU/TPU

Represents any real to rel. err. $\varepsilon \leq \varepsilon_{mach}$; all arith. done to rel. err. $\varepsilon \leq \varepsilon_{mach}$

eg, in double: (1 + 1e-16) - 1 = ? 0 And: (1 - 1e-16) - 1 = ?

So far rounding error basically irrelevant. Now let's face its consequences:

 $\varepsilon_{mach} \approx$ 1.1e-16 double (64bit) $\varepsilon_{mach} \approx$ 6e-8 single (32bit), GPU/TPU $\varepsilon_{mach} \approx$ 5e-4 "half" (16bit), GPU/TPU

Represents any real to rel. err. $\varepsilon \leq \varepsilon_{mach}$; all arith. done to rel. err. $\varepsilon \leq \varepsilon_{mach}$

eg, in double: (1 + 1e-16) - 1 = ? 0 And: (1 - 1e-16) - 1 = ? -1.11022302462516e-16

So far rounding error basically irrelevant. Now let's face its consequences:

 $\varepsilon_{\rm mach} \approx$ 1.1e-16 double (64bit) $\varepsilon_{\rm mach} \approx$ 6e-8 single (32bit), GPU/TPU $\varepsilon_{\rm mach} \approx$ 5e-4 "half" (16bit), GPU/TPU

Represents any real to rel. err. $\varepsilon \leq \varepsilon_{mach}$; all arith. done to rel. err. $\varepsilon \leq \varepsilon_{mach}$

eg, in double: (1 + 1e-16) - 1 = ? 0 And: (1 - 1e-16) - 1 = ? -1.11022302462516e-16

A) Most common way ε_{mach} amplified is subtraction "catastrophic cancellation"

	h	err. in f'	dominant cause?
eg, by querying values of $f(x)$, estim. $f'(x)$?	10^{-4}	10^{-4}	1st-order conv.
let's use simplest formula $\frac{f(x+h)-f(x)}{h}$:	10^{-8} 10^{-12}	10	(balanced causes) $2arepsilon_{ m mach}/h$ "CC" $©$

So far rounding error basically irrelevant. Now let's face its consequences:

 $\varepsilon_{mach} \approx$ 1.1e-16 double (64bit) $\varepsilon_{mach} \approx$ 6e-8 single (32bit), GPU/TPU $\varepsilon_{mach} \approx$ 5e-4 "half" (16bit), GPU/TPU

Represents any real to rel. err. $\varepsilon \leq \varepsilon_{mach}$; all arith. done to rel. err. $\varepsilon \leq \varepsilon_{mach}$

eg, in double: (1 + 1e-16) - 1 = ? 0 And: (1 - 1e-16) - 1 = ? -1.11022302462516e-16

A) Most common way ε_{mach} amplified is subtraction "catastrophic cancellation"

eg, by querying values of $f(x)$, estim. $f'(x)$?	h	err. in <i>f'</i>	dominant cause?
	10^{-4}	10^{-4}	1st-order conv.
let's use simplest formula $\frac{f(x+h)-f(x)}{h}$:	10^{-8}	10^{-8}	(balanced causes)
Better: use several $p > 2$ values to get p th order!	10^{-12}	10^{-4}	$2\varepsilon_{ m mach}/h$ "CC" \odot

So far rounding error basically irrelevant. Now let's face its consequences:

 $\varepsilon_{mach} \approx$ 1.1e-16 double (64bit) $\varepsilon_{mach} \approx$ 6e-8 single (32bit), GPU/TPU $\varepsilon_{mach} \approx$ 5e-4 "half" (16bit), GPU/TPU

Represents any real to rel. err. $\varepsilon \leq \varepsilon_{mach}$; all arith. done to rel. err. $\varepsilon \leq \varepsilon_{mach}$

eg, in double: (1 + 1e-16) - 1 = ? 0 And: (1 - 1e-16) - 1 = ? -1.11022302462516e-16

A) Most common way ε_{mach} amplified is subtraction "catastrophic cancellation"

eg, by querying values of $f(x)$, estim. $f'(x)$?	h	err. in f'	dominant cause?
let's use simplest formula $\frac{f(x+h)-f(x)}{h}$:	10^{-4}	10	1st-order conv.
let s use simplest formula $\frac{h}{h}$:	10^{-8}	10^{-8}	(balanced causes)
Better: use several $p > 2$ values to get p th order!	10^{-12}	10^{-4}	$2\varepsilon_{ m mach}/h$ "CC" \odot

B) Even without subtraction (or equiv), err. can accumulate:

eg recall $\sum_{k=1}^{N} k^{-2} : \frac{N \quad y_N}{10^8 \quad 1.64493405783458}$ 10⁹ ?

So far rounding error basically irrelevant. Now let's face its consequences:

 $\varepsilon_{mach} \approx$ 1.1e-16 double (64bit) $\varepsilon_{mach} \approx$ 6e-8 single (32bit), GPU/TPU $\varepsilon_{mach} \approx$ 5e-4 "half" (16bit), GPU/TPU

Represents any real to rel. err. $\varepsilon \leq \varepsilon_{mach}$; all arith. done to rel. err. $\varepsilon \leq \varepsilon_{mach}$

eg, in double: (1 + 1e-16) - 1 = ? 0 And: (1 - 1e-16) - 1 = ? -1.11022302462516e-16

A) Most common way ε_{mach} amplified is subtraction "catastrophic cancellation"

eg, by querying values of $f(x)$, estim. $f'(x)$?	h	err. in f'	dominant cause?
let's use simplest formula $\frac{f(x+h)-f(x)}{h}$: Better: use several $p > 2$ values to get p th order!	$ 10^{-4} \\ 10^{-8} \\ 10^{-12} $		1st-order conv. (balanced causes) $2\varepsilon_{mach}/h$ "CC" \odot

B) Even without subtraction (or equiv), err. can accumulate: $\begin{array}{c} \underset{\sum_{k=1}^{N} k^{-2}}{\text{eg recall}} & \underbrace{N \quad y_{N}}{10^{8} \quad 1.64493405783458} & \text{Here } \varepsilon \approx \sqrt{\varepsilon_{\text{mach}}}, \text{ bad! } \textcircled{\text{:}} \\ \underset{\text{fix?}}{\text{fix?}} \end{array}$

So far rounding error basically irrelevant. Now let's face its consequences:

 $\varepsilon_{\rm mach} \approx 1.1 \text{e}{-16}$ double (64bit) $\varepsilon_{\rm mach} \approx$ 6e-8 single (32bit), GPU/TPU $\varepsilon_{\rm mach} \approx$ 5e-4 "half" (16bit), GPU/TPU

Represents any real to rel. err. $\varepsilon \leq \varepsilon_{mach}$; all arith. done to rel. err. $\varepsilon \leq \varepsilon_{mach}$

eg, in double: (1 + 1e-16) - 1 = ? 0 And: (1 - 1e-16) - 1 = ? -1.11022302462516e-16

A) Most common way ε_{mach} amplified is subtraction "catastrophic cancellation"

eg, by querying values of $f(x)$, estim. $f'(x)$?	h		dominant cause?
let's use simplest formula $\frac{f(x+h)-f(x)}{h}$:	10^{-4} 10^{-8}	10^{-4} 10^{-8}	1st-order conv. (balanced causes)
Better: use several $p > 2$ values to get p th order!	10^{-12}	10^{-4}	$2arepsilon_{mach}/h$ "CC" \odot

B) Even without subtraction (or equiv), err. can accumulate: Here $\varepsilon \approx \sqrt{\varepsilon_{\text{mach}}}$, bad! \odot eg recall $\sum_{k=1}^{N} k^{-2} : \frac{N}{10^8} \frac{y_N}{1.64493405783458}$ 10⁹ 1.64493405783458

1.64493405783458

fix? sum small to large, most stable

So far rounding error basically irrelevant. Now let's face its consequences:

 $\varepsilon_{mach} \approx$ 1.1e-16 double (64bit) $\varepsilon_{mach} \approx$ 6e-8 single (32bit), GPU/TPU $\varepsilon_{mach} \approx$ 5e-4 "half" (16bit), GPU/TPU

Represents any real to rel. err. $\varepsilon \leq \varepsilon_{mach}$; all arith. done to rel. err. $\varepsilon \leq \varepsilon_{mach}$

eg, in double: (1 + 1e-16) - 1 = ? 0 And: (1 - 1e-16) - 1 = ? -1.11022302462516e-16

A) Most common way ε_{mach} amplified is subtraction "catastrophic cancellation"

eg, by querying values of $I(X)$, estim. $I(X)$:		dominant cause?
let's use simplest formula $\frac{f(x+h)-f(x)}{h}$: Better: use several $p > 2$ values to get p th order! 10^{-4} 10^{-8} 10^{-12}	10^{-8}	1st-order conv. (balanced causes) $2\varepsilon_{mach}/h$ "CC" \odot

B) Even without subtraction (or equiv), err. can accumulate:

 $\begin{array}{c} \text{eg recall} \\ \sum_{k=1}^{N} k^{-2} : \begin{array}{c} N & y_{N} \\ \hline 10^{8} & 1.64493405783458 \\ 10^{9} & 1.64493405783458 \end{array}$

 $\begin{array}{ccc} 10^{-12} & 10^{-4} & 2\varepsilon_{\rm mach}/h \ "{\rm CC"} \ \odot \\ \\ \mbox{err. can accumulate:} \\ \mbox{Here } \varepsilon \approx \sqrt{\varepsilon_{\rm mach}}, \ {\rm bad!} \ \odot \end{array}$

fix? sum small to large, most stable

Usually stoch. $\varepsilon \sim \sqrt{\# \text{ flops}} \varepsilon_{\text{mach}}$

Qu: is sin(1e16) reasonable to compute accurately (in double prec.)?

Qu: is sin(1e16) reasonable to compute accurately (in double prec.)?

femor f(A = sinx xem NS

Ans: no! $x = 10^{16}$, floating rel. err. ε_{mach} \rightarrow abs. err. $10^{16}\varepsilon_{mach} \approx 1.1 = \mathcal{O}(1)$ wiggle \rightarrow result garbage, just via *input variation*

Qu: is sin(1e16) reasonable to compute accurately (in double prec.)?

Ans: no! $x = 10^{16}$, floating rel. err. ε_{mach} \rightarrow abs. err. $10^{16}\varepsilon_{mach} \approx 1.1 = \mathcal{O}(1)$ wiggle

 \rightarrow result garbage, just via *input variation*

Defn. (relative) condition number of task "eval. f(x)" is $\kappa(x) := \left| \frac{xf'(x)}{f(x)} \right| \qquad \leftarrow \text{ sensitivity to rel. change in } x \\ \leftarrow \text{ converts abs. to rel. error}$

Qu: is sin(1e16) reasonable to compute accurately (in double prec.)?

Ans: no! $x = 10^{16}$, floating rel. err. ε_{mach} \rightarrow abs. err. $10^{16}\varepsilon_{mach} \approx 1.1 = \mathcal{O}(1)$ wiggle

 \rightarrow result garbage, just via input variation

Defn. (relative) condition number of *task* "eval. f(x)" is $\kappa(x) := \left| \frac{xf'(x)}{f(x)} \right| \qquad \leftarrow \text{ sensitivity to rel. change in } x \\ \leftarrow \text{ converts abs. to rel. error}$

gives Rule: for this task, can only demand rel. err. at best $\varepsilon \approx \kappa \varepsilon_{\text{mach}}$

why? look at picture: ε must exceed change in f due to ε_{mach} rel. err. in input x

Qu: is sin(1e16) reasonable to compute accurately (in double prec.)?

Ans: no! $x = 10^{16}$, floating rel. err. ε_{mach} \rightarrow abs. err. $10^{16}\varepsilon_{mach} \approx 1.1 = \mathcal{O}(1)$ wiggle

 \rightarrow result garbage, just via input variation

Defn. (relative) condition number of *task* "eval. f(x)" is $\kappa(x) := \left| \frac{xf'(x)}{f(x)} \right| \qquad \leftarrow \text{ sensitivity to rel. change in } x \\ \leftarrow \text{ converts abs. to rel. error}$

gives **Rule:** for this task, can only demand rel. err. at best $\varepsilon \approx \kappa \varepsilon_{mach}$ why? look at picture: ε must exceed change in f due to ε_{mach} rel. err. in input x

Eg
$$f(x) = \sin(x)$$
, $\kappa(x) = |x \cot x|$ $x = 10^{16} \Rightarrow \kappa$ typ. $\ge 10^{16}$

the problem is ill-conditioned: meaningless to demand any digits in double-prec!

Qu: is sin(1e16) reasonable to compute accurately (in double prec.)?

Ans: no! $x = 10^{16}$, floating rel. err. ε_{mach} \rightarrow abs. err. $10^{16}\varepsilon_{mach} \approx 1.1 = \mathcal{O}(1)$ wiggle

 \rightarrow result garbage, just via input variation

Defn. (relative) condition number of *task* "eval. f(x)" is $\kappa(x) := \left| \frac{xf'(x)}{f(x)} \right| \qquad \leftarrow \text{ sensitivity to rel. change in } x \\ \leftarrow \text{ converts abs. to rel. error}$

gives **Rule:** for this task, can only demand rel. err. at best $\varepsilon \approx \kappa \varepsilon_{mach}$ why? look at picture: ε must exceed change in f due to ε_{mach} rel. err. in input x

Eg $f(x) = \sin(x)$, $\kappa(x) = |x \cot x|$ $x = 10^{16} \Rightarrow \kappa$ typ. $\geq 10^{16}$

the problem is ill-conditioned: meaningless to demand any digits in double-prec!

eg $x = 10^5 \ \Rightarrow \ \kappa \ {
m typ.} \ \geq 10^5 \ \ \Rightarrow \ {
m expect} \ \varepsilon \sim \ ?$

Qu: is sin(1e16) reasonable to compute accurately (in double prec.)?

Ans: no! $x = 10^{16}$, floating rel. err. ε_{mach} \rightarrow abs. err. $10^{16}\varepsilon_{mach} \approx 1.1 = \mathcal{O}(1)$ wiggle

 \rightarrow result garbage, just via *input variation*

Defn. (relative) condition number of *task* "eval. f(x)" is $\kappa(x) := \left| \frac{xf'(x)}{f(x)} \right| \quad \xleftarrow{} \text{ sensitivity to rel. change in } x \\ \xleftarrow{} \text{ converts abs. to rel. error}$

gives **Rule:** for this task, can only demand rel. err. at best $\varepsilon \approx \kappa \varepsilon_{mach}$ why? look at picture: ε must exceed change in f due to ε_{mach} rel. err. in input x

Eg
$$f(x) = \sin(x)$$
, $\kappa(x) = |x \cot x|$ $x = 10^{16} \Rightarrow \kappa$ typ. $\geq 10^{16}$

the problem is ill-conditioned: meaningless to demand any digits in double-prec!

eg x = 10⁵ \Rightarrow κ typ. \geq 10⁵ \Rightarrow expect ε \sim ? 10⁻¹¹

Qu: is sin(1e16) reasonable to compute accurately (in double prec.)?

 $\begin{array}{c} & \text{Ans: no!} \quad x = 10^{16}, \text{ floating rel. err. } \varepsilon_{\text{mach}} \\ & \rightarrow \text{ abs. err. } 10^{16} \varepsilon_{\text{mach}} \approx 1.1 = \mathcal{O}(1) \text{ wiggle} \end{array}$

 \rightarrow result garbage, just via input variation

Defn. (relative) condition number of *task* "eval. f(x)" is $\kappa(x) := \left| \frac{xf'(x)}{f(x)} \right| \qquad \leftarrow \text{ sensitivity to rel. change in } x \\ \leftarrow \text{ converts abs. to rel. error}$

gives **Rule:** for this task, can only demand rel. err. at best $\varepsilon \approx \kappa \varepsilon_{mach}$ why? look at picture: ε must exceed change in f due to ε_{mach} rel. err. in input x

Eg
$$f(x) = \sin(x)$$
, $\kappa(x) = |x \cot x|$ $x = 10^{16} \Rightarrow \kappa \text{ typ.} \ge 10^{16}$

the problem is ill-conditioned: meaningless to demand any digits in double-prec!

eg x = 10^5 $\,\,\Rightarrow\,\,\kappa\,\,{\rm typ},\,\,\geq 10^5\,\,\,\,\Rightarrow\,\,{\rm expect}\,\,\varepsilon\sim\,?\,\,10^{-11}$

eg $x = 1 \Rightarrow \kappa(x) = 0.64 \Rightarrow$ good method should get $\varepsilon \approx ?$

Qu: is sin(1e16) reasonable to compute accurately (in double prec.)?

Ans: no! $x = 10^{16}$, floating rel. err. ε_{mach} \rightarrow abs. err. $10^{16}\varepsilon_{mach} \approx 1.1 = \mathcal{O}(1)$ wiggle

 \rightarrow result garbage, just via input variation

Defn. (relative) condition number of *task* "eval. f(x)" is $\kappa(x) := \left| \frac{xf'(x)}{f(x)} \right| \begin{array}{c} \leftarrow \text{ sensitivity to rel. change in } x \\ \leftarrow \text{ converts abs. to rel. error} \end{array}$

gives **Rule:** for this task, can only demand rel. err. at best $\varepsilon \approx \kappa \varepsilon_{mach}$ why? look at picture: ε must exceed change in f due to ε_{mach} rel. err. in input x

Eg
$$f(x) = \sin(x)$$
, $\kappa(x) = |x \cot x|$ $x = 10^{16} \Rightarrow \kappa$ typ. $\geq 10^{16}$

the problem is ill-conditioned: meaningless to demand any digits in double-prec!

eg x = 10^5 $\Rightarrow \kappa$ typ. $\geq 10^5$ \Rightarrow expect $\varepsilon \sim$? 10^{-11}

eg x = 1 $\Rightarrow \kappa(x) = 0.64 \Rightarrow$ good method should get $\varepsilon \approx ? \varepsilon_{mach}$

eg $x = \pi$?

Qu: is sin(1e16) reasonable to compute accurately (in double prec.)?

Ans: no! $x = 10^{16}$, floating rel. err. ε_{mach} \rightarrow abs. err. $10^{16}\varepsilon_{mach} \approx 1.1 = \mathcal{O}(1)$ wiggle

 \rightarrow result garbage, just via input variation

Defn. (relative) condition number of *task* "eval. f(x)" is $\kappa(x) := \left| \frac{xf'(x)}{f(x)} \right| \begin{array}{c} \leftarrow \text{ sensitivity to rel. change in } x \\ \leftarrow \text{ converts abs. to rel. error} \end{array}$

gives **Rule:** for this task, can only demand rel. err. at best $\varepsilon \approx \kappa \varepsilon_{mach}$ why? look at picture: ε must exceed change in f due to ε_{mach} rel. err. in input x

Eg
$$f(x) = \sin(x)$$
, $\kappa(x) = |x \cot x|$ $x = 10^{16} \Rightarrow \kappa$ typ. $\geq 10^{16}$

the problem is ill-conditioned: meaningless to demand any digits in double-prec!

eg x = $10^5 \Rightarrow \kappa$ typ. $\geq 10^5 \Rightarrow$ expect $\varepsilon \sim$? 10^{-11}

eg x = 1 $\Rightarrow \kappa(x) = 0.64 \Rightarrow$ good method should get $\varepsilon \approx ? \varepsilon_{mach}$

eg x = π ? \Rightarrow $\kappa(x) = \infty$, can't demand *relative* acc. (merely abs. accuracy

Stability of an algorithm (method) for some task Recap: task "eval. f(x)" has cond. $\# \kappa(x) := \left|\frac{xf'(x)}{f(x)}\right|$ indep. of any method

Stability of an algorithm (method) for some task Recap: task "eval. f(x)" has cond. $\# \kappa(x) := \left|\frac{xf'(x)}{f(x)}\right|$ indep. of any method

Defn. A method for this task called backward stable if returns an exact answer $f(\tilde{x})$ for some perturbed data \tilde{x} with $|\tilde{x} - x|/|x| = O(\varepsilon_{mach})$

• modern notion of stability here \mathcal{O} implies some "small" const, eg $\leq 10^2$ Thus: backward stable \Rightarrow rel. err. $\varepsilon = \mathcal{O}(\kappa \varepsilon_{mach})$ by rule: can't demand more!

Stability of an algorithm (method) for some task Recap: task "eval. f(x)" has cond. $\# \kappa(x) := \left|\frac{xf'(x)}{f(x)}\right|$ indep. of any method

Defn. A method for this task called backward stable if returns an exact answer $f(\tilde{x})$ for some perturbed data \tilde{x} with $|\tilde{x} - x|/|x| = O(\varepsilon_{mach})$

• modern notion of stability here \mathcal{O} implies some "small" const, eg $\leq 10^2$ Thus: backward stable \Rightarrow rel. err. $\varepsilon = \mathcal{O}(\kappa \varepsilon_{mach})$ by rule: can't demand more!

1) Consequences for physical simulations (nonlinear ODEs, PDEs...) Eg, task: solve ODE

 $\left\{ \begin{array}{ll} u' = F(t, u) & \text{ for } 0 \leq t \leq T \\ u(0) = x & \text{ initial condition} \end{array} \right.$

Output "f(x)" is final state u(T)

Stability of an algorithm (method) for some task

Recap: task "eval. f(x)" has cond. $\# \kappa(x) := \left| \frac{xf'(x)}{f(x)} \right|$ indep. of any method

Defn. A method for this task called backward stable if returns an exact answer $f(\tilde{x})$ for some perturbed data \tilde{x} with $|\tilde{x} - x|/|x| = O(\varepsilon_{mach})$

• modern notion of stability here \mathcal{O} implies some "small" const, eg $\leq 10^2$ Thus: backward stable \Rightarrow rel. err. $\varepsilon = \mathcal{O}(\kappa \varepsilon_{mach})$ by rule: can't demand more!

1) Consequences for physical simulations (nonlinear ODEs, PDEs...) Eg, task: solve ODE

$$\left\{ \begin{array}{ll} u' = F(t, u) & \text{ for } 0 \leq t \leq T \\ u(0) = x & \text{ initial condition} \end{array} \right.$$

Output "f(x)" is final state u(T) $\kappa = \text{sensitivity to IC}$

Stability of an algorithm (method) for some task

Recap: task "eval. f(x)" has cond. $\# \kappa(x) := \left| \frac{xf'(x)}{f(x)} \right|$ indep. of any method

Defn. A method for this task called backward stable if returns an exact answer $f(\tilde{x})$ for some perturbed data \tilde{x} with $|\tilde{x} - x|/|x| = O(\varepsilon_{mach})$

• modern notion of stability here \mathcal{O} implies some "small" const, eg $\leq 10^2$ Thus: backward stable \Rightarrow rel. err. $\varepsilon = \mathcal{O}(\kappa \varepsilon_{mach})$ by rule: can't demand more!

1) Consequences for physical simulations (nonlinear ODEs, PDEs...) Eg, task: solve ODE

$$\left\{ \begin{array}{ll} u' = F(t, u) & \text{ for } 0 \leq t \leq T \\ u(0) = x & \text{ initial condition} \end{array} \right.$$

Output "f(x)" is final state u(T) $\kappa = \text{sensitivity to IC}$

• common that $\kappa \sim e^{\lambda T}$ (Lyapunov exponent $\lambda >$ 0, chaos, eg *n*-body sims.)

then even stable solver must soon lose all accurate digits see: shadowing

• meaning of long-*T* numerics is only *statistical* (correlations, manifold, etc)

Recap: (backward) stable if "exact answer to nearly the right question"

2) There are unstable algorithms ... don't use them!

Eg eval. $f(x) = 1 - \cos(x)$, for $|x| \ll 1$ we all know $f(x) = x^2/2 + O(x^4)$ ALWAYS FIRST ASK: Is *task* (problem) well-conditioned?

Recap: (backward) stable if "exact answer to nearly the right question"

2) There are unstable algorithms ... don't use them!

Eg eval. $f(x) = 1 - \cos(x)$, for $|x| \ll 1$ we all know $f(x) = x^2/2 + O(x^4)$ ALWAYS FIRST ASK: Is *task* (problem) well-conditioned? yes, $\kappa \approx 2$ Now, methods: naive code **1-cos(x)** stable ?

Recap: (backward) stable if "exact answer to nearly the right question"

2) There are unstable algorithms ... don't use them!

Eg eval. $f(x) = 1 - \cos(x)$, for $|x| \ll 1$ we all know $f(x) = x^2/2 + O(x^4)$ ALWAYS FIRST ASK: Is *task* (problem) well-conditioned? yes, $\kappa \approx 2$ Now, methods: naive code **1-cos(x)** stable ? no: catastrophic cancellation! ...w/o clarity on conditioning vs stability, may conclude ill-conditioned problem. Not so! Suggest stable methods?

Recap: (backward) stable if "exact answer to nearly the right question"

2) There are unstable algorithms ... don't use them!

Eg eval. $f(x) = 1 - \cos(x)$, for $|x| \ll 1$ we all know $f(x) = x^2/2 + O(x^4)$ ALWAYS FIRST ASK: Is *task* (problem) well-conditioned? yes, $\kappa \approx 2$ Now, methods: naive code **1-cos(x)** stable ? no: catastrophic cancellation! ...w/o clarity on conditioning vs stability, may conclude ill-conditioned problem. Not so! Suggest stable methods? i) **2*sin(x/2)^2**

Recap: (backward) stable if "exact answer to nearly the right question"

2) There are unstable algorithms ... don't use them!

Eg eval. $f(x) = 1 - \cos(x)$, for $|x| \ll 1$ we all know $f(x) = x^2/2 + O(x^4)$ ALWAYS FIRST ASK: Is *task* (problem) well-conditioned? yes, $\kappa \approx 2$ Now, methods: naive code 1-cos(x) stable? no: catastrophic cancellation! ...w/o clarity on conditioning vs stability, may conclude ill-conditioned problem. Not so! Suggest stable methods? i) 2*sin(x/2)^2 ii) Taylor series (how many terms? conv...)

Recap: (backward) stable if "exact answer to nearly the right question"

2) There are unstable algorithms ... don't use them!

Eg eval. $f(x) = 1 - \cos(x)$, for $|x| \ll 1$ we all know $f(x) = x^2/2 + O(x^4)$ ALWAYS FIRST ASK: Is *task* (problem) well-conditioned? yes, $\kappa \approx 2$ Now, methods: naive code $1 - \cos(x)$ stable? no: catastrophic cancellation! ...w/o clarity on conditioning vs stability, may conclude ill-conditioned problem. Not so! Suggest stable methods? i) $2 + \sin(x/2)^2$ ii) Taylor series (how many terms? conv...)

3) Linear systems: solve $A\mathbf{c} = \mathbf{b}$, square $N \times N$ needs whole lecture Task is $\mathbf{f}(\mathbf{b}) = \mathbf{c}$ solving $A\mathbf{c} = \mathbf{b}^{"}$ brain hurts because \mathbf{b} is input, \mathbf{c} is output!

Recap: (backward) stable if "exact answer to nearly the right question"

2) There are unstable algorithms ... don't use them!

Eg eval. $f(x) = 1 - \cos(x)$, for $|x| \ll 1$ we all know $f(x) = x^2/2 + O(x^4)$ ALWAYS FIRST ASK: Is *task* (problem) well-conditioned? yes, $\kappa \approx 2$ Now, methods: naive code 1-cos(x) stable? no: catastrophic cancellation! ...w/o clarity on conditioning vs stability, may conclude ill-conditioned problem. Not so! Suggest stable methods? i) 2*sin(x/2)^2 ii) Taylor series (how many terms? conv...)

3) Linear systems: solve $A\mathbf{c} = \mathbf{b}$, square $N \times N$ needs whole lecture Task is $\mathbf{f}(\mathbf{b}) = \text{``c solving } A\mathbf{c} = \mathbf{b}$ '' brain hurts because **b** is input, **c** is output! Stable alg: gives $\tilde{\mathbf{c}}$ solving $A\tilde{\mathbf{c}} = \tilde{\mathbf{b}}$ exactly, where $\frac{\|\tilde{\mathbf{b}} - \mathbf{b}\|}{\|\mathbf{b}\|} = \mathcal{O}(\varepsilon_{\text{mach}})$ **Defn.** relative residual of $\tilde{\mathbf{c}}$ is $\frac{\|A\tilde{\mathbf{c}} - \mathbf{b}\|}{\|\mathbf{b}\|}$:

Recap: (backward) stable if "exact answer to nearly the right question"

2) There are unstable algorithms ... don't use them!

Eg eval. $f(x) = 1 - \cos(x)$, for $|x| \ll 1$ we all know $f(x) = x^2/2 + O(x^4)$ ALWAYS FIRST ASK: Is *task* (problem) well-conditioned? yes, $\kappa \approx 2$ Now, methods: naive code $1 - \cos(x)$ stable? no: catastrophic cancellation! ...w/o clarity on conditioning vs stability, may conclude ill-conditioned problem. Not so! Suggest stable methods? i) $2 + \sin(x/2)^2$ ii) Taylor series (how many terms? conv...)

3) Linear systems: solve $A\mathbf{c} = \mathbf{b}$, square $N \times N$ needs whole lecture Task is $\mathbf{f}(\mathbf{b}) = \mathbf{c}$ solving $A\mathbf{c} = \mathbf{b}$ brain hurts because \mathbf{b} is input, \mathbf{c} is output! Stable alg: gives $\tilde{\mathbf{c}}$ solving $A\tilde{\mathbf{c}} = \tilde{\mathbf{b}}$ exactly, where $\frac{\|\tilde{\mathbf{b}} - \mathbf{b}\|}{\|\mathbf{b}\|} = \mathcal{O}(\varepsilon_{\text{mach}})$ Defn. relative residual of $\tilde{\mathbf{c}}$ is $\frac{\|A\tilde{\mathbf{c}} - \mathbf{b}\|}{\|\mathbf{b}\|}$: Stable alg \Leftrightarrow Rel. resid. $\mathcal{O}(\varepsilon_{\text{mach}})$ • even a stable alg doesn't mean $\tilde{\mathbf{c}}$ is close to $\mathbf{c} \dots$

Let's demo a classic unstable algorithm


```
Now let's do some solving...
```

```
% classic pitfall, may be unstable
% rel resid terrible, proving it's unstable!
```



```
Now let's do some solving...
```

```
% classic pitfall, may be unstable
% rel resid terrible, proving it's unstable!
```

```
% use (backward) stable solver
```

```
% rel resid O(e_mach): must be if stable
```



```
>> c = [1;2;3];
>> A = ones(3,3) + 1e-14*rand(3,3)
          1.00000000000000
Δ =
          1.0000000000001
                          1
>> b = A*c;
Now let's do some solving...
>> ct = inv(A)*b:
>> norm(A*ct-b) / norm(b)
                  0.046875
>> ct = linsolve(A,b):
>> norm(A*ct-b) / norm(b)
      8.54650082837135e-17
>> norm(ct-c) / norm(c)
        0.0426438890711514
```

```
% classic pitfall, may be unstable
% rel resid terrible, proving it's unstable!
```

```
% use (backward) stable solver
% rel resid O(e_mach): must be if stable
```

```
% rel err in soln? huge, but that's ok...
```



```
>> c = [1;2;3];
                                         % "true" solution column vector
>> A = ones(3,3) + 1e-14*rand(3,3)
                                         % system matrix (precisely: ill-cond.)
          1.00000000000000
                                     1,00000000000000
Δ =
          1.00000000000001
                                     1.00000000000001
                                                               1.000000000000000
                                                                1.00000000000000
                          1
>> b = A*c:
                                         % make data (input to solver)
Now let's do some solving...
>> ct = inv(A)*b:
                                     % classic pitfall, may be unstable
>> norm(A*ct-b) / norm(b)
                                     % rel resid terrible, proving it's unstable!
                  0.046875
>> ct = linsolve(A,b):
                                     % use (backward) stable solver
>> norm(A*ct-b) / norm(b)
                                     % rel resid O(e_mach): must be if stable
      8.54650082837135e-17
>> norm(ct-c) / norm(c)
                                     % rel err in soln? huge, but that's ok...
        0.0426438890711514
```

If time: here's one stable way to store a soln operator...

```
[U,S,V] = svd(A); W = diag(1./diag(S))*U'; % inv(A)=VW, need two factors
ct = V*(W*b); % apply them to any RHS
norm(A*ct-b) / norm(b) % rel resid again O(e_mach)
2.83455365181694e-16
```

If time: conditioning of linear systems

• Lin. solve task: can show $\kappa(\mathbf{b}) \leq \kappa(A) := \|A\| \|A^{-1}\| = \frac{\sigma_1(A)}{\sigma_N(A)}$ or ∞

Consequence for how accurate solution $\tilde{\mathbf{c}}$ is? Let $\varepsilon = \frac{\|\tilde{\mathbf{c}}-\mathbf{c}\|}{\|\mathbf{c}\|}$ rel. soln. err. Now recall: stable solver (best you can demand) has $\varepsilon = \mathcal{O}(\kappa \varepsilon_{mach})$ if A ill-cond, natural that c floppy in certain directions, since residual small

Idea useful in inverse problems: replace ε_{mach} by meas. err; reverse above pic!
 Idea to sample all c consistent w/ small residual → Bayes Inv. Prob. (Bob, Fri 9:10am)

Recap

- Convergence rates (type & prefactor) key to measure and understand
- Finite-precision $\varepsilon_{\text{mach}}$ can be amplified by catastrophic cancellation
- Before methods, first understand condition # of your problem condition number of problem combines with ε_{mach} to limit accuracy of any method
- Stable methods: solve exactly some ε_{mach} -perturbation of problem "(un)stable" vs "ill-conditioned" have precise definitions: learn and use! check for unstable method and avoid
- For linear systems: "stable" \Leftrightarrow finds relative residual $\mathcal{O}(\varepsilon_{\text{mach}})$

References for today material

- Numerical Methods. Anne Greenbaum & Tim Chartier. book (2012)
- Numerical Linear Algebra. Trefethen & Bau. book (1997)

Convergence acceleration and all-round fun:

• The SIAM 100-Digit Challenge. book (2004)

Randomized SVD, PCA, and big matrix factorizations:

- Halko, Martinsson & Tropp. SIAM Rev. 53(2) 217-288 (2011)
- Martinsson's slides at http://users.oden.utexas.edu/~pgm

I will host slides at https://users.flatironinstitute.org/~ahb
(also see: 2019 FWAM on interpolation & quadrature; Burns on PDE)

Starting new Sci. Comput. Seminar & Concepts, 9:45am Tues, 3rd fl. (fortnightly from 10/26, see Indico)

THANK-YOU!