Joys and pitfalls of numerical computing

Alex H. Barnett ${ }^{1}$

10/14/21
FWAM Episode III - Revenge of the Sithngular Value Decomposition
${ }^{1}$ Center for Computational Mathematics, Flatiron Institute, Simons Foundation

Goals/outline

Crucial practical advice \& good habits, examples, further reading

- how does accuracy improve with effort? rate of convergence
- finite-precision ("rounding error") considerations
- what accuracy is reasonable to demand? conditioning of a problem
- did you mess up getting such accuracy? stability of an algorithm

Goals/outline

Crucial practical advice \& good habits, examples, further reading

- how does accuracy improve with effort? rate of convergence
- finite-precision ("rounding error") considerations
- what accuracy is reasonable to demand? conditioning of a problem
- did you mess up getting such accuracy? stability of an algorithm

Please ask questions*

* with finite time-frequency product ()

PS I will ask YOU questions ©

Accuracy: how much to you need? have?

Usually care about relative error: $\varepsilon:=\frac{\text { size of error of thing }}{\text { size of thing }}=\frac{\left|y_{\text {computed }}-y_{\text {true }}\right|}{\left|y_{\text {true }}\right|}$ eg 0.00123 ± 0.00001 is not "correct to 5 digits", rather, 2 digits, rel. err. 10^{-2}, ie 1% err.

Center for Computationat Mathematics

Accuracy: how much to you need? have?

Usually care about relative error: $\varepsilon:=\frac{\text { size of error of thing }}{\text { size of thing }}=\frac{\left|y_{\text {computed }}-y_{\text {true }}\right|}{\left|y_{\text {true }}\right|}$ eg 0.00123 ± 0.00001 is not "correct to 5 digits", rather, 2 digits, rel. err. 10^{-2}, ie 1% err. Interesting things take a while to compute \rightarrow is $\varepsilon=10^{-1}$ ok, or need 10^{-10} ?

Accuracy: how much to you need? have?

Usually care about relative error: $\varepsilon:=\frac{\text { size of error of thing }}{\text { size of thing }}=\frac{\left|y_{\text {computed }}-y_{\text {true }}\right|}{\left|y_{\text {true }}\right|}$ eg 0.00123 ± 0.00001 is not "correct to 5 digits", rather, 2 digits, rel. err. 10^{-2}, ie 1% err. Interesting things take a while to compute \rightarrow is $\varepsilon=10^{-1}$ ok, or need 10^{-10} ? In our line of work there is really only one graph that matters:

- useful to measure and/or understand this even for simple tasks
- is crucial for larger tasks! methods differ in graph shapes (rates)

Convergence of a computational routine/method

Often a routine has one (usually many) convergence parameters: "dials"
eg how many iterations you run an iterative method, resolution $h=1 / N$ in discretization, number of terms in summing a series, depth/width of a neural net, \# of input data, \# independent samples you average, size of box (or \# particles) in a random simulation, ... and convergence parameters of any sub-functions called inside your beast

Convergence of a computational routine/method

Often a routine has one (usually many) convergence parameters: "dials"
eg how many iterations you run an iterative method, resolution $h=1 / N$ in discretization, number of terms in summing a series, depth/width of a neural net, \# of input data, \# independent samples you average, size of box (or \# particles) in a random simulation, ... and convergence parameters of any sub-functions called inside your beast

Let's simplify: 1 such param, call it N, with $\lim _{N \rightarrow \infty}$ giving true answer

Convergence of a computational routine/method

Often a routine has one (usually many) convergence parameters: "dials"
eg how many iterations you run an iterative method, resolution $h=1 / N$ in discretization, number of terms in summing a series, depth/width of a neural net, \# of input data, \# independent samples you average, size of box (or \# particles) in a random simulation, ... and convergence parameters of any sub-functions called inside your beast

Let's simplify: 1 such param, call it N, with $\lim _{N \rightarrow \infty}$ giving true answer Defn. convergence of a method is $\varepsilon(N)$: how rel. err. ε drops as N grows

Convergence of a computational routine/method

Often a routine has one (usually many) convergence parameters: "dials"
eg how many iterations you run an iterative method, resolution $h=1 / N$ in discretization, number of terms in summing a series, depth/width of a neural net, \# of input data, \# independent samples you average, size of box (or \# particles) in a random simulation,
.... and convergence parameters of any sub-functions called inside your beast
Let's simplify: 1 such param, call it N, with $\lim _{N \rightarrow \infty}$ giving true answer Defn. convergence of a method is $\varepsilon(N)$: how rel. err. ε drops as N grows

Convergence of a computational routine/method

Often a routine has one (usually many) convergence parameters: "dials"
eg how many iterations you run an iterative method, resolution $h=1 / N$ in discretization, number of terms in summing a series, depth/width of a neural net, \# of input data, \# independent samples you average, size of box (or \# particles) in a random simulation,
.... and convergence parameters of any sub-functions called inside your beast
Let's simplify: 1 such param, call it N, with $\lim _{N \rightarrow \infty}$ giving true answer Defn. convergence of a method is $\varepsilon(N)$: how rel. err. ε drops as N grows

Eg. say $\varepsilon(N)=c N^{-2}$ ("2nd-order"), but complexity $\mathcal{O}\left(N^{3}\right)$. Qu: cost for 1 extra digit?

Convergence of a computational routine/method

Often a routine has one (usually many) convergence parameters: "dials"
eg how many iterations you run an iterative method, resolution $h=1 / N$ in discretization, number of terms in summing a series, depth/width of a neural net, \# of input data, \# independent samples you average, size of box (or \# particles) in a random simulation, and convergence parameters of any sub-functions called inside your beast

Let's simplify: 1 such param, call it N, with $\lim _{N \rightarrow \infty}$ giving true answer Defn. convergence of a method is $\varepsilon(N)$: how rel. err. ε drops as N grows

Eg. say $\varepsilon(N)=c N^{-2}$ ("2nd-order"), but complexity $\mathcal{O}\left(N^{3}\right)$. Ans: $\varepsilon \rightarrow \varepsilon / 10$ needs $N \rightarrow \sqrt{10} N$,

Convergence of a computational routine/method

Often a routine has one (usually many) convergence parameters: "dials"
eg how many iterations you run an iterative method, resolution $h=1 / N$ in discretization, number of terms in summing a series, depth/width of a neural net, \# of input data, \# independent samples you average, size of box (or \# particles) in a random simulation, and convergence parameters of any sub-functions called inside your beast

Let's simplify: 1 such param, call it N, with $\lim _{N \rightarrow \infty}$ giving true answer Defn. convergence of a method is $\varepsilon(N)$: how rel. err. ε drops as N grows

Eg. say $\varepsilon(N)=c N^{-2}$ ("2nd-order"), but complexity $\mathcal{O}\left(N^{3}\right)$. Qu: cost for 1 extra digit? Ans: $\varepsilon \rightarrow \varepsilon / 10$ needs $N \rightarrow \sqrt{10} N$, which needs effort mult. by $10^{3 / 2} \approx 32$ times longer run

Convergence of a computational routine/method

Often a routine has one (usually many) convergence parameters: "dials"
eg how many iterations you run an iterative method, resolution $h=1 / N$ in discretization, number of terms in summing a series, depth/width of a neural net, $\#$ of input data, \# independent samples you average, size of box (or \# particles) in a random simulation, and convergence parameters of any sub-functions called inside your beast

Let's simplify: 1 such param, call it N, with $\lim _{N \rightarrow \infty}$ giving true answer Defn. convergence of a method is $\varepsilon(N)$: how rel. err. ε drops as N grows

Eg. say $\varepsilon(N)=c N^{-2}$ ("2nd-order"), but complexity $\mathcal{O}\left(N^{3}\right)$. Qu: cost for 1 extra digit? Ans: $\varepsilon \rightarrow \varepsilon / 10$ needs $N \rightarrow \sqrt{10} N$, which needs effort mult. by $10^{3 / 2} \approx 32$ times longer run

- some useful methods do not converge, eg asymptotic methods $(\sqrt{\pi} / 2) \operatorname{erfc}(x):=\int_{x}^{\infty} e^{-t^{2}} d t=e^{-x^{2}}\left(1 / 2 x-1 / 4 x^{3}+\ldots\right)$ please don't use $N \rightarrow \infty$ terms!

Convergence $\varepsilon(N)$: EXAMPLE I (series)

Toy example: goal compute $y:=1+\frac{1}{4}+\frac{1}{9}+\cdots=\sum_{k=1}^{\infty} k^{-2}$
function y $=$ truncsum(N)

```
y = 0;
for k=1:N
    y = y + 1/k^2;
end
```

Expected accuracy $\varepsilon(N)$?

Convergence $\varepsilon(N)$: EXAMPLE I (series)

Toy example: goal compute $y:=1+\frac{1}{4}+\frac{1}{9}+\cdots=\sum_{k=1}^{\infty} k^{-2}$

function $y=$ truncsum(N)

$y=0 ;$
for $k=1: N$
$\mathrm{y}=\mathrm{y}+1 / \mathrm{k}^{\wedge} 2$;
end

N	y_{N}
10^{2}	1.63498390018489
10^{3}	1.64393456668156
10^{4}	1.64483407184807
10^{5}	1.64492406689824
10^{6}	1.64493306684877
10^{7}	1.64493396684726
10^{8}	1.64493405783458

- "self-convergence" to unknown $y_{\text {true }}$ digits "freeze"

Convergence $\varepsilon(N)$: EXAMPLE I (series)

Toy example: goal compute $y:=1+\frac{1}{4}+\frac{1}{9}+\cdots=\sum_{k=1}^{\infty} k^{-2}$ function $y=$ truncsum (N)
y = 0;
for $k=1: N$

N	y_{N}
10^{2}	1.63498390018489

$10^{3} \quad 1.64393456668156$
$\mathrm{y}=\mathrm{y}+1 / \mathrm{k}^{\wedge} 2$;
end
Expected accuracy $\varepsilon(N)$?
Quick to experiment with your func:
$10^{4} \quad 1.64483407184807$
$10^{5} \quad 1.64492406689824$
$10^{6} \quad 1.64493306684877$
$10^{7} \quad 1.64493396684726$
$10^{8} \quad 1.64493405783458$

- "self-convergence" to unknown $y_{\text {true }}$ digits "freeze"
- Rate? Use your best y as $y_{\text {true }}$, plot errors relative to it.
see $\varepsilon(N) \sim c N^{-1} \quad$ 1st-order, algebraic \rightarrow use loglog plot: math: rigorous tail bnds $\varepsilon(N) \leq \int_{N}^{\infty} k^{-2} d k=N^{-1}$ rigor unusual; but think, read, measure the rate, compare!
- slow! accelerate? Richardson (etc) extrapolation

Convergence: EXAMPLE II (toy big PCA)

Given $M \times N$ dense matrix A big, eg $M=40000$ genes, $N=20000$ samples, 7 GB Seek $\sigma_{1}(A)=\sqrt{\lambda_{\max }\left(A^{T} A\right)}$, and assoc. singular vec. $\mathbf{v}_{1} \quad 1$ st cmpnt, PCA

Convergence: EXAMPLE II (toy big PCA)

Given $M \times N$ dense matrix A big, eg $M=40000$ genes, $N=20000$ samples, 7 GB Seek $\sigma_{1}(A)=\sqrt{\lambda_{\max }\left(A^{T} A\right)}$, and assoc. singular vec. $\mathbf{v}_{1} \quad 1$ st cmpnt, PCA Simple method: power iteration on $A^{T} A \quad$ takes $14 \mathrm{~s} ; \operatorname{svd}(\mathrm{A})$ would be $\sim 1 \mathrm{hr}$

```
v = randn(N,1); v = v/norm(v);
for k=1:30
    v = A'*(A*V);
    vnrm = norm(v); v = v/vnrm;
    sig1est(k) = sqrt(vnrm);
end
```


Convergence: EXAMPLE II (toy big PCA)

Given $M \times N$ dense matrix A big, eg $M=40000$ genes, $N=20000$ samples, 7 GB Seek $\sigma_{1}(A)=\sqrt{\lambda_{\max }\left(A^{T} A\right)}$, and assoc. singular vec. $\mathbf{v}_{1} \quad 1$ st cmpnt, PCA Simple method: power iteration on $A^{T} A$ takes $14 \mathrm{~s} ; \operatorname{svd}(\mathrm{A})$ would be $\sim 1 \mathrm{hr}$
$\mathrm{V}=\operatorname{randn}(\mathrm{N}, 1) ; \mathrm{V}=\mathrm{v} / \operatorname{norm}(\mathrm{v}) ;$
for $k=1: 30$

$$
\mathrm{v}=\mathrm{A}^{\prime} *(\mathrm{~A} * \mathrm{~V}) ;
$$

$$
\text { vnrm }=\operatorname{norm}(\mathrm{v}) ; \mathrm{v}=\mathrm{v} / \mathrm{vnrm} \text {; }
$$

sig1est(k) = sqrt(vnrm);
end
plot abs(sig1est/sig1est(end)-1) vs param. k:

- See $\varepsilon \sim c a^{k}=c e^{-\alpha k}$ \rightarrow use log-lin. plot. Called geometric/exponential conv.
- fast (beats any algebraic order) unless $a \approx 1 \oplus$.

Plenty of theory; we skip

Convergence: EXAMPLE II (toy big PCA)

Given $M \times N$ dense matrix A big, eg $M=40000$ genes, $N=20000$ samples, 7 GB Seek $\sigma_{1}(A)=\sqrt{\lambda_{\max }\left(A^{T} A\right)}$, and assoc. singular vec. $\mathbf{v}_{1} \quad 1$ st cmpnt, PCA Simple method: power iteration on $A^{T} A$ takes $14 \mathrm{~s} ; \operatorname{svd}(\mathrm{A})$ would be $\sim 1 \mathrm{hr}$

$$
\begin{aligned}
& \mathrm{v}=\operatorname{randn}(\mathrm{N}, 1) ; \mathrm{v}=\mathrm{v} / \mathrm{norm}(\mathrm{v}) ; \\
& \text { for } \mathrm{k}=1: 30 \\
& \quad \mathrm{v}=A^{\prime} *(\mathrm{~A} * \mathrm{v}) ; \\
& \quad \text { vnrm }=\operatorname{norm}(\mathrm{v}) ; \mathrm{v}=\mathrm{v} / \mathrm{vnrm} \\
& \text { sig1est }(\mathrm{k})=\operatorname{sqrt}(\text { vnrm }) \text {; } \\
& \text { end }
\end{aligned}
$$

 plot abs(sig1est/sig1est(end)-1) vs param. k: \rightarrow use log-lin. plot. Called geometric/exponential conv.

- See $\varepsilon \sim c a^{k}=c e^{-\alpha k}$
- fast (beats any algebraic order) unless $a \approx 1 \odot$. Plenty of theory; we skip But much better methods exist: Randomized SVD, Lanczos $\left(A^{T} A\right)_{A}$ \rightarrow lesson is not "code your own methods", rather "test convergence" ITUTE

Convergence: EXAMPLE III (stochastic)

Monte Carlo: iid samples y_{j} drawn from a pdf p simple task: estimate $\mu:=\int y p(y) d y$? usual estimator $\hat{\mu}=\frac{1}{N} \sum_{j=1}^{N} y_{j}$

Convergence: EXAMPLE III (stochastic)

Monte Carlo: iid samples y_{j} drawn from a pdf p simple task: estimate $\mu:=\int y p(y) d y$? usual estimator $\hat{\mu}=\frac{1}{N} \sum_{j=1}^{N} y_{j}$

- convergence $\frac{1}{2}$-order (theory: CLT) \rightarrow v. slow!
- error ε stochastic \rightarrow now conv. accel. not poss.

Convergence: EXAMPLE III (stochastic)

Monte Carlo: iid samples y_{j} drawn from a pdf p simple task: estimate $\mu:=\int y p(y) d y$? usual estimator $\hat{\mu}=\frac{1}{N} \sum_{j=1}^{N} y_{j}$

- convergence $\frac{1}{2}$-order (theory: CLT) \rightarrow v. slow!
- error ε stochastic \rightarrow now conv. accel. not poss.

OTHER CONVERGENCE EXAMPLES

- Taylor series, poly interpolants: exponential $\varepsilon \sim e^{-\alpha N} \quad$ if func analytic once you have them, integrate/differentiate analytically: spectral methods (Dan, Fri 11:30am)
- Newton methods (root-find in \mathbb{R}, or \min in \mathbb{R}^{d}): $\varepsilon \sim e^{-c N^{2}}$ "quadratic"

Convergence: EXAMPLE III (stochastic)

Monte Carlo: iid samples y_{j} drawn from a pdf p simple task: estimate $\mu:=\int y p(y) d y$? usual estimator $\hat{\mu}=\frac{1}{N} \sum_{j=1}^{N} y_{j}$ sample mean

- convergence $\frac{1}{2}$-order (theory: CLT) \rightarrow v. slow!
- error ε stochastic \rightarrow now conv. accel. not poss.

OTHER CONVERGENCE EXAMPLES

- Taylor series, poly interpolants: exponential $\varepsilon \sim e^{-\alpha N} \quad$ if func analytic once you have them, integrate/differentiate analytically: spectral methods (Dan, Fri 11:30am)
- Newton methods (root-find in \mathbb{R}, or \min in \mathbb{R}^{d}): $\varepsilon \sim e^{-c N^{2}}$ "quadratic"

Point isn't to memorize rates of methods: rather measure them (type \& prefactor) by habit in any routine you use/write

Then you can pick a good N to get acceptable ε, trust results

Floating-point representation, rounding error
So far rounding error basically irrelevant. Now let's face its consequences:

$\varepsilon_{\text {mach }} \approx 1.1 \mathrm{e}-16$ double (64bit)
$\varepsilon_{\text {mach }} \approx 6 \mathrm{e}-8$ single (32bit), GPU/TPU
$\varepsilon_{\text {mach }} \approx 5 \mathrm{e}-4$ "half" (1 6bit), GPU/TPU

Floating-point representation, rounding error

So far rounding error basically irrelevant. Now let's face its consequences:

$$
\begin{aligned}
& \varepsilon_{\text {mach }} \approx 1.1 \mathrm{e}-16 \text { double (} 64 \mathrm{bit} \text {) } \\
& \varepsilon_{\text {mach }} \approx 6 \mathrm{e}-8 \text { single (} 32 \mathrm{bit} \text {), GPU/TPU } \\
& \varepsilon_{\text {mach }} \approx 5 \mathrm{e}-4 \text { "half" (16bit), GPU/TPU }
\end{aligned}
$$

Represents any real to rel. err. $\varepsilon \leq \varepsilon_{\text {mach }}$; all arith. done to rel. err. $\varepsilon \leq \varepsilon_{\text {mach }}$

Floating-point representation, rounding error

So far rounding error basically irrelevant. Now let's face its consequences:

$$
\begin{aligned}
& \varepsilon_{\text {mach }} \approx 1.1 \mathrm{e}-16 \text { double (64bit) } \\
& \varepsilon_{\text {mach }} \approx 6 \mathrm{e}-8 \text { single (32bit), GPU/TPU } \\
& \varepsilon_{\text {mach }} \approx 5 \mathrm{e}-4 \text { "half" (16bit), GPU/TPU }
\end{aligned}
$$

Represents any real to rel. err. $\varepsilon \leq \varepsilon_{\text {mach }}$; all arith. done to rel. err. $\varepsilon \leq \varepsilon_{\text {mach }}$
eg , in double: $(1+1 \mathrm{e}-16)-1=$?

Floating-point representation, rounding error

So far rounding error basically irrelevant. Now let's face its consequences:

$$
\begin{aligned}
& \varepsilon_{\text {mach }} \approx 1.1 \mathrm{e}-16 \text { double (64bit) } \\
& \varepsilon_{\text {mach }} \approx 6 \mathrm{e}-8 \text { single (32bit), GPU/TPU } \\
& \varepsilon_{\text {mach }} \approx 5 \mathrm{e}-4 \text { "half" (16bit), GPU/TPU }
\end{aligned}
$$

Represents any real to rel. err. $\varepsilon \leq \varepsilon_{\text {mach }}$; all arith. done to rel. err. $\varepsilon \leq \varepsilon_{\text {mach }}$ $e g$, in double: $(1+1 e-16)-1=? 0$ And: $(1-1 e-16)-1=$?

Floating-point representation, rounding error

So far rounding error basically irrelevant. Now let's face its consequences:

$$
\begin{aligned}
& \varepsilon_{\text {mach }} \approx 1.1 \mathrm{e}-16 \text { double (64bit) } \\
& \varepsilon_{\text {mach }} \approx 6 \mathrm{e}-8 \text { single (32bit), GPU/TPU } \\
& \varepsilon_{\text {mach }} \approx 5 \mathrm{e}-4 \text { "half" (16bit), GPU/TPU }
\end{aligned}
$$

Represents any real to rel. err. $\varepsilon \leq \varepsilon_{\text {mach }}$; all arith. done to rel. err. $\varepsilon \leq \varepsilon_{\text {mach }}$ eg, in double: $(1+1 e-16)-1=? 0$ And: $(1-1 e-16)-1=?-1.11022302462516 e-16$

Floating-point representation, rounding error

So far rounding error basically irrelevant. Now let's face its consequences:

$$
\begin{aligned}
& \varepsilon_{\text {mach }} \approx 1.1 \mathrm{e}-16 \text { double (} 64 \mathrm{bit} \text {) } \\
& \varepsilon_{\text {mach }} \approx 6 \mathrm{e}-8 \text { single (32bit), GPU/TPU } \\
& \varepsilon_{\text {mach }} \approx 5 \mathrm{e}-4 \text { "half" (16bit), GPU/TPU }
\end{aligned}
$$

Represents any real to rel. err. $\varepsilon \leq \varepsilon_{\text {mach }}$; all arith. done to rel. err. $\varepsilon \leq \varepsilon_{\text {mach }}$
eg, in double: $(1+1 e-16)-1=? 0$ And: $(1-1 e-16)-1=?-1.11022302462516 e-16$
A) Most common way $\varepsilon_{\text {mach }}$ amplified is subtraction "catastrophic cancellation"
eg, by querying values of $f(x)$, estim. $f^{\prime}(x)$? let's use simplest formula $\frac{f(x+h)-f(x)}{h}$:

h	err. in f^{\prime}	dominant cause?
10^{-4}	10^{-4}	1st-order conv.
10^{-8}	10^{-8}	(balanced causes)
10^{-12}	10^{-4}	$2 \varepsilon_{\text {mach }} / h$ "CC" \odot

Floating-point representation, rounding error

So far rounding error basically irrelevant. Now let's face its consequences:

$$
\begin{aligned}
& \left.\varepsilon_{\text {mach }} \approx 1.1 \mathrm{e}-16 \text { double (} 64 \mathrm{bit}\right) \\
& \varepsilon_{\text {mach }} \approx 6 \mathrm{e}-8 \text { single (32bit), GPU/TPU } \\
& \varepsilon_{\text {mach }} \approx 5 \mathrm{e}-4 \text { "half" (16bit), GPU/TPU }
\end{aligned}
$$

Represents any real to rel. err. $\varepsilon \leq \varepsilon_{\text {mach }}$; all arith. done to rel. err. $\varepsilon \leq \varepsilon_{\text {mach }}$
eg, in double: $(1+1 e-16)-1=? 0$ And: $(1-1 e-16)-1=?-1.11022302462516 e-16$
A) Most common way $\varepsilon_{\text {mach }}$ amplified is subtraction "catastrophic cancellation"
eg, by querying values of $f(x)$, estim. $f^{\prime}(x)$? let's use simplest formula $\frac{f(x+h)-f(x)}{h}$:
Better: use several $p>2$ values to get p th order!

h	err. in f^{\prime}	dominant cause?
10^{-4}	10^{-4}	1st-order conv.
10^{-8}	10^{-8}	(balanced causes)
10^{-12}	10^{-4}	$2 \varepsilon_{\text {mach }} / h$ "CC" ()

Floating-point representation, rounding error

So far rounding error basically irrelevant. Now let's face its consequences:

$$
\begin{aligned}
& \varepsilon_{\text {mach }} \approx 1.1 \mathrm{e}-16 \text { double (64bit) } \\
& \varepsilon_{\text {mach }} \approx 6 \mathrm{e}-8 \text { single (32bit), GPU/TPU } \\
& \varepsilon_{\text {mach }} \approx 5 \mathrm{e}-4 \text { "half" (16bit), GPU/TPU }
\end{aligned}
$$

Represents any real to rel. err. $\varepsilon \leq \varepsilon_{\text {mach }}$; all arith. done to rel. err. $\varepsilon \leq \varepsilon_{\text {mach }}$
eg, in double: $(1+1 e-16)-1=? 0$ And: $(1-1 e-16)-1=?-1.11022302462516 e-16$
A) Most common way $\varepsilon_{\text {mach }}$ amplified is subtraction "catastrophic cancellation" eg, by querying values of $f(x)$, estim. $f^{\prime}(x)$? let's use simplest formula $\frac{f(x+h)-f(x)}{h}$:
Better: use several $p>2$ values to get p th order!

h	err. in f^{\prime}	dominant cause?
10^{-4}	10^{-4}	1st-order conv.
10^{-8}	10^{-8}	(balanced causes)
10^{-12}	10^{-4}	$2 \varepsilon_{\text {mach }} / h$ "CC" ${ }^{-4}$

B) Even without subtraction (or equiv), err. can accumulate:

eg recall	N	y_{N}
$\sum_{k=1}^{N} k^{-2}:$	10^{8}	1.64493405783458
10^{9}	$?$	

Floating-point representation, rounding error

So far rounding error basically irrelevant. Now let's face its consequences:

$$
\begin{aligned}
& \varepsilon_{\text {mach }} \approx 1.1 \mathrm{e}-16 \text { double (64bit) } \\
& \varepsilon_{\text {mach }} \approx 6 \mathrm{e}-8 \text { single (32bit), GPU } / \mathrm{TPU} \\
& \varepsilon_{\text {mach }} \approx 5 \mathrm{e}-4 \text { "half" (16bit), GPU/TPU }
\end{aligned}
$$

Represents any real to rel. err. $\varepsilon \leq \varepsilon_{\text {mach }}$; all arith. done to rel. err. $\varepsilon \leq \varepsilon_{\text {mach }}$
eg, in double: $(1+1 e-16)-1=? 0$ And: $(1-1 e-16)-1=?-1.11022302462516 e-16$
A) Most common way $\varepsilon_{\text {mach }}$ amplified is subtraction "catastrophic cancellation" eg, by querying values of $f(x)$, estim. $f^{\prime}(x)$? let's use simplest formula $\frac{f(x+h)-f(x)}{h}$:
Better: use several $p>2$ values to get p th order!

h	err. in f^{\prime}	dominant cause?
10^{-4}	10^{-4}	1st-order conv.
10^{-8}	10^{-8}	(balanced causes)
10^{-12}	10^{-4}	$2 \varepsilon_{\text {mach }} / h$ "CC" ${ }^{-4}$

B) Even without subtraction (or equiv), err. can accumulate:

eg recall	N	y_{N}
$\sum_{k=1}^{N} k^{-2}:$	10^{8}	1.64493405783458
	10^{9}	1.64493405783458

Here $\varepsilon \approx \sqrt{\varepsilon_{\text {mach }}}$, bad! (\cdot)
fix?

Floating-point representation, rounding error

So far rounding error basically irrelevant. Now let's face its consequences:

$$
\begin{aligned}
& \varepsilon_{\text {mach }} \approx 1.1 \mathrm{e}-16 \text { double (64bit) } \\
& \varepsilon_{\text {mach }} \approx 6 \mathrm{e}-8 \text { single (32bit), GPU/TPU } \\
& \varepsilon_{\text {mach }} \approx 5 \mathrm{e}-4 \text { "half" (16bit), GPU/TPU }
\end{aligned}
$$

Represents any real to rel. err. $\varepsilon \leq \varepsilon_{\text {mach }}$; all arith. done to rel. err. $\varepsilon \leq \varepsilon_{\text {mach }}$
eg, in double: $(1+1 e-16)-1=? 0$ And: $(1-1 e-16)-1=?-1.11022302462516 e-16$
A) Most common way $\varepsilon_{\text {mach }}$ amplified is subtraction "catastrophic cancellation" eg, by querying values of $f(x)$, estim. $f^{\prime}(x)$? let's use simplest formula $\frac{f(x+h)-f(x)}{h}$:
Better: use several $p>2$ values to get p th order!

h	err. in f^{\prime}	dominant cause?
10^{-4}	10^{-4}	1st-order conv.
10^{-8}	10^{-8}	(balanced causes)
10^{-12}	10^{-4}	$2 \varepsilon_{\text {mach }} / h^{\prime \prime}$ CC" ${ }^{-4}$

B) Even without subtraction (or equiv), err. can accumulate:

eg recall	N	y_{N}
$\sum_{k=1}^{N} k^{-2}:$	10^{8}	1.64493405783458
	10^{9}	1.64493405783458

Here $\varepsilon \approx \sqrt{\varepsilon_{\text {mach }}}$, bad! :
fix? sum small to large, most stable

Floating-point representation, rounding error

So far rounding error basically irrelevant. Now let's face its consequences:

$$
\begin{aligned}
& \varepsilon_{\text {mach }} \approx 1.1 \mathrm{e}-16 \text { double (64bit) } \\
& \varepsilon_{\text {mach }} \approx 6 \mathrm{e}-8 \text { single (32bit), GPU/TPU } \\
& \varepsilon_{\text {mach }} \approx 5 \mathrm{e}-4 \text { "half" (16bit), GPU/TPU }
\end{aligned}
$$

Represents any real to rel. err. $\varepsilon \leq \varepsilon_{\text {mach }}$; all arith. done to rel. err. $\varepsilon \leq \varepsilon_{\text {mach }}$
eg, in double: $(1+1 e-16)-1=? 0$ And: $(1-1 e-16)-1=?-1.11022302462516 e-16$
A) Most common way $\varepsilon_{\text {mach }}$ amplified is subtraction "catastrophic cancellation" eg, by querying values of $f(x)$, estim. $f^{\prime}(x)$? let's use simplest formula $\frac{f(x+h)-f(x)}{h}$:
Better: use several $p>2$ values to get p th order!

h	err. in f^{\prime}	dominant cause?
10^{-4}	10^{-4}	1st-order conv.
10^{-8}	10^{-8}	(balanced causes)
10^{-12}	10^{-4}	$2 \varepsilon_{\text {mach }} / h$ "CC" ©

B) Even without subtraction (or equiv), err. can accumulate:

eg recall	N	y_{N}
$\sum_{k=1}^{N} k^{-2}:$	10^{8}	1.64493405783458
	10^{9}	1.64493405783458

Here $\varepsilon \approx \sqrt{\varepsilon_{\text {mach }}}$, bad! :
fix? sum small to large, most stable
Usually stoch. $\varepsilon \sim \sqrt{\# \text { flops }} \varepsilon_{\text {mach }}$

For which tasks is it reasonable to demand accuracy?

Qu: is $\sin (1 \mathrm{e} 16)$ reasonable to compute accurately (in double prec.)?

Center for Computational

For which tasks is it reasonable to demand accuracy?

Qu: is $\sin (1 \mathrm{e} 16)$ reasonable to compute accurately (in double prec.)?

Ans: no! $\quad x=10^{16}$, floating rel. err. $\varepsilon_{\text {mach }}$
\rightarrow abs. err. $10^{16} \varepsilon_{\text {mach }} \approx 1.1=\mathcal{O}(1)$ wiggle
\rightarrow result garbage, just via input variation

For which tasks is it reasonable to demand accuracy?

Qu: is $\sin (1 \mathrm{e} 16)$ reasonable to compute accurately (in double prec.)?

Ans: no! $\quad x=10^{16}$, floating rel. err. $\varepsilon_{\text {mach }}$
\rightarrow abs. err. $10^{16} \varepsilon_{\text {mach }} \approx 1.1=\mathcal{O}(1)$ wiggle
\rightarrow result garbage, just via input variation
Defn. (relative) condition number of task "eval. $f(x)$ " is

$$
\kappa(x):=\left|\frac{x f^{\prime}(x)}{f(x)}\right| \quad \begin{aligned}
& \leftarrow \text { sensitivity to rel. change in } x \\
& \leftarrow \text { converts abs. to rel. error }
\end{aligned}
$$

For which tasks is it reasonable to demand accuracy?

Qu: is $\sin (1 \mathrm{e} 16)$ reasonable to compute accurately (in double prec.)?

Ans: no! $\quad x=10^{16}$, floating rel. err. $\varepsilon_{\text {mach }}$
\rightarrow abs. err. $10^{16} \varepsilon_{\text {mach }} \approx 1.1=\mathcal{O}(1)$ wiggle
\rightarrow result garbage, just via input variation
Defn. (relative) condition number of task "eval. $f(x)$ " is

$$
\kappa(x):=\left|\frac{x f^{\prime}(x)}{f(x)}\right| \quad \begin{aligned}
& \leftarrow \text { sensitivity to rel. change in } x \\
& \leftarrow \text { converts abs. to rel. error }
\end{aligned}
$$

gives Rule: for this task, can only demand rel. err. at best $\varepsilon \approx \kappa \varepsilon_{\text {mach }}$ why? look at picture: ε must exceed change in f due to $\varepsilon_{\text {mach }}$ rel. err. in input x

For which tasks is it reasonable to demand accuracy?

Qu: is $\sin (1 \mathrm{e} 16)$ reasonable to compute accurately (in double prec.)?

Ans: no! $\quad x=10^{16}$, floating rel. err. $\varepsilon_{\text {mach }}$
\rightarrow abs. err. $10^{16} \varepsilon_{\text {mach }} \approx 1.1=\mathcal{O}(1)$ wiggle
\rightarrow result garbage, just via input variation
Defn. (relative) condition number of task "eval. $f(x)$ " is

$$
\kappa(x):=\left|\frac{x f^{\prime}(x)}{f(x)}\right| \quad \begin{aligned}
& \leftarrow \text { sensitivity to rel. change in } x \\
& \leftarrow \text { converts abs. to rel. error }
\end{aligned}
$$

gives Rule: for this task, can only demand rel. err. at best $\varepsilon \approx \kappa \varepsilon_{\text {mach }}$ why? look at picture: ε must exceed change in f due to $\varepsilon_{\text {mach }}$ rel. err. in input x

$$
\operatorname{Eg} f(x)=\sin (x), \quad \kappa(x)=|x \cot x| \quad x=10^{16} \Rightarrow \kappa \text { typ. } \geq 10^{16}
$$

the problem is ill-conditioned: meaningless to demand any digits in double-prec!

For which tasks is it reasonable to demand accuracy?

Qu: is $\sin (1 \mathrm{e} 16)$ reasonable to compute accurately (in double prec.)?

Ans: no! $\quad x=10^{16}$, floating rel. err. $\varepsilon_{\text {mach }}$
\rightarrow abs. err. $10^{16} \varepsilon_{\text {mach }} \approx 1.1=\mathcal{O}(1)$ wiggle
\rightarrow result garbage, just via input variation
Defn. (relative) condition number of task "eval. $f(x)$ " is

$$
\kappa(x):=\left|\frac{x f^{\prime}(x)}{f(x)}\right| \quad \begin{aligned}
& \leftarrow \text { sensitivity to rel. change in } x \\
& \leftarrow \text { converts abs. to rel. error }
\end{aligned}
$$

gives Rule: for this task, can only demand rel. err. at best $\varepsilon \approx \kappa \varepsilon_{\text {mach }}$ why? look at picture: ε must exceed change in f due to $\varepsilon_{\text {mach }}$ rel. err. in input x

$$
\operatorname{Eg} f(x)=\sin (x), \quad \kappa(x)=|x \cot x| \quad x=10^{16} \Rightarrow \kappa \text { typ. } \geq 10^{16}
$$

the problem is ill-conditioned: meaningless to demand any digits in double-prec!
eg $x=10^{5} \Rightarrow \kappa$ typ. $\geq 10^{5} \Rightarrow$ expect $\varepsilon \sim$?

For which tasks is it reasonable to demand accuracy?

Qu: is $\sin (1 \mathrm{e} 16)$ reasonable to compute accurately (in double prec.)?

Ans: no! $\quad x=10^{16}$, floating rel. err. $\varepsilon_{\text {mach }}$
\rightarrow abs. err. $10^{16} \varepsilon_{\text {mach }} \approx 1.1=\mathcal{O}(1)$ wiggle
\rightarrow result garbage, just via input variation
Defn. (relative) condition number of task "eval. $f(x)$ " is

$$
\kappa(x):=\left|\frac{x f^{\prime}(x)}{f(x)}\right| \quad \begin{aligned}
& \leftarrow \text { sensitivity to rel. change in } x \\
& \leftarrow \text { converts abs. to rel. error }
\end{aligned}
$$

gives Rule: for this task, can only demand rel. err. at best $\varepsilon \approx \kappa \varepsilon_{\text {mach }}$ why? look at picture: ε must exceed change in f due to $\varepsilon_{\text {mach }}$ rel. err. in input x

$$
\operatorname{Eg} f(x)=\sin (x), \quad \kappa(x)=|x \cot x| \quad x=10^{16} \Rightarrow \kappa \text { typ. } \geq 10^{16}
$$

the problem is ill-conditioned: meaningless to demand any digits in double-prec!
eg $x=10^{5} \Rightarrow \kappa$ typ. $\geq 10^{5} \Rightarrow$ expect $\varepsilon \sim$? 10^{-11}

For which tasks is it reasonable to demand accuracy?

Qu: is $\sin (1 \mathrm{e} 16)$ reasonable to compute accurately (in double prec.)?

Ans: no! $\quad x=10^{16}$, floating rel. err. $\varepsilon_{\text {mach }}$
\rightarrow abs. err. $10^{16} \varepsilon_{\text {mach }} \approx 1.1=\mathcal{O}(1)$ wiggle
\rightarrow result garbage, just via input variation
Defn. (relative) condition number of task "eval. $f(x)$ " is

$$
\kappa(x):=\left|\frac{x f^{\prime}(x)}{f(x)}\right| \quad \begin{aligned}
& \leftarrow \text { sensitivity to rel. change in } x \\
& \leftarrow \text { converts abs. to rel. error }
\end{aligned}
$$

gives Rule: for this task, can only demand rel. err. at best $\varepsilon \approx \kappa \varepsilon_{\text {mach }}$ why? look at picture: ε must exceed change in f due to $\varepsilon_{\text {mach }}$ rel. err. in input x

$$
\operatorname{Eg} f(x)=\sin (x), \quad \kappa(x)=|x \cot x| \quad x=10^{16} \Rightarrow \kappa \text { typ. } \geq 10^{16}
$$

the problem is ill-conditioned: meaningless to demand any digits in double-prec!
eg $x=10^{5} \Rightarrow \kappa$ typ. $\geq 10^{5} \Rightarrow$ expect $\varepsilon \sim$? 10^{-11}
eg $x=1 \Rightarrow \kappa(x)=0.64 \Rightarrow$ good method should get $\varepsilon \approx$?

For which tasks is it reasonable to demand accuracy?

Qu: is $\sin (1 \mathrm{e} 16)$ reasonable to compute accurately (in double prec.)?

Ans: no! $\quad x=10^{16}$, floating rel. err. $\varepsilon_{\text {mach }}$
\rightarrow abs. err. $10^{16} \varepsilon_{\text {mach }} \approx 1.1=\mathcal{O}(1)$ wiggle
\rightarrow result garbage, just via input variation
Defn. (relative) condition number of task "eval. $f(x)$ " is

$$
\kappa(x):=\left|\frac{x f^{\prime}(x)}{f(x)}\right| \quad \begin{aligned}
& \leftarrow \text { sensitivity to rel. change in } x \\
& \leftarrow \text { converts abs. to rel. error }
\end{aligned}
$$

gives Rule: for this task, can only demand rel. err. at best $\varepsilon \approx \kappa \varepsilon_{\text {mach }}$ why? look at picture: ε must exceed change in f due to $\varepsilon_{\text {mach }}$ rel. err. in input x

$$
\operatorname{Eg} f(x)=\sin (x), \quad \kappa(x)=|x \cot x| \quad x=10^{16} \Rightarrow \kappa \text { typ. } \geq 10^{16}
$$

the problem is ill-conditioned: meaningless to demand any digits in double-prec!
eg $x=10^{5} \Rightarrow \kappa$ typ. $\geq 10^{5} \Rightarrow$ expect $\varepsilon \sim$? 10^{-11}
eg $x=1 \Rightarrow \kappa(x)=0.64 \Rightarrow$ good method should get $\varepsilon \approx ? \varepsilon_{\text {mach }}$
eg $x=\pi$?

For which tasks is it reasonable to demand accuracy?

Qu: is $\sin (1 \mathrm{e} 16)$ reasonable to compute accurately (in double prec.)?

Ans: no! $\quad x=10^{16}$, floating rel. err. $\varepsilon_{\text {mach }}$
\rightarrow abs. err. $10^{16} \varepsilon_{\text {mach }} \approx 1.1=\mathcal{O}(1)$ wiggle
\rightarrow result garbage, just via input variation
Defn. (relative) condition number of task "eval. $f(x)$ " is

$$
\kappa(x):=\left|\frac{x f^{\prime}(x)}{f(x)}\right| \quad \begin{aligned}
& \leftarrow \text { sensitivity to rel. change in } x \\
& \leftarrow \text { converts abs. to rel. error }
\end{aligned}
$$

gives Rule: for this task, can only demand rel. err. at best $\varepsilon \approx \kappa \varepsilon_{\text {mach }}$ why? look at picture: ε must exceed change in f due to $\varepsilon_{\text {mach }}$ rel. err. in input x

$$
\operatorname{Eg} f(x)=\sin (x), \quad \kappa(x)=|x \cot x| \quad x=10^{16} \Rightarrow \kappa \text { typ. } \geq 10^{16}
$$

the problem is ill-conditioned: meaningless to demand any digits in double-prec!
eg $x=10^{5} \Rightarrow \kappa$ typ. $\geq 10^{5} \Rightarrow$ expect $\varepsilon \sim$? 10^{-11}
eg $x=1 \Rightarrow \kappa(x)=0.64 \Rightarrow$ good method should get $\varepsilon \approx ? \varepsilon_{\text {mach }}$
eg $x=\pi ? \Rightarrow \kappa(x)=\infty$, can't demand relative acc. (merely abs. accuracy)

Stability of an algorithm (method) for some task

Recap: task "eval. $f(x)$ " has cond. $\# \kappa(x):=\left|\frac{x f^{\prime}(x)}{f(x)}\right| \quad$ indep. of any method

Stability of an algorithm (method) for some task

Recap: task "eval. $f(x)$ " has cond. $\# \kappa(x):=\left|\frac{x f^{\prime}(x)}{f(x)}\right| \quad$ indep. of any method
Defn. A method for this task called backward stable if returns an exact answer $f(\tilde{x})$ for some perturbed data \tilde{x} with $|\tilde{x}-x| /|x|=\mathcal{O}\left(\varepsilon_{\text {mach }}\right)$

- modern notion of stability here \mathcal{O} implies some "small" const, eg $\lesssim 10^{2}$ Thus: backward stable \Rightarrow rel. err. $\varepsilon=\mathcal{O}\left(\kappa \varepsilon_{\text {mach }}\right)$ by rule: can't demand more!

Stability of an algorithm (method) for some task

Recap: task "eval. $f(x)$ " has cond. $\# \kappa(x):=\left|\frac{x f^{\prime}(x)}{f(x)}\right| \quad$ indep. of any method
Defn. A method for this task called backward stable if returns an exact answer $f(\tilde{x})$ for some perturbed data \tilde{x} with $|\tilde{x}-x| /|x|=\mathcal{O}\left(\varepsilon_{\text {mach }}\right)$

- modern notion of stability here \mathcal{O} implies some "small" const, eg $\lesssim 10^{2}$ Thus: backward stable \Rightarrow rel. err. $\varepsilon=\mathcal{O}\left(\kappa \varepsilon_{\text {mach }}\right)$ by rule: can't demand more!

1) Consequences for physical simulations (nonlinear ODEs, PDEs...) Eg, task: solve ODE
$\begin{cases}u^{\prime}=F(t, u) & \text { for } 0 \leq t \leq T \\ u(0)=x & \text { initial condition }\end{cases}$
Output " $f(x)$ " is final state $u(T)$

Stability of an algorithm (method) for some task

Recap: task "eval. $f(x)$ " has cond. \# $\kappa(x):=\left|\frac{x f^{\prime}(x)}{f(x)}\right| \quad$ indep. of any method
Defn. A method for this task called backward stable if returns an exact answer $f(\tilde{x})$ for some perturbed data \tilde{x} with $|\tilde{x}-x| /|x|=\mathcal{O}\left(\varepsilon_{\text {mach }}\right)$

- modern notion of stability here \mathcal{O} implies some "small" const, eg $\lesssim 10^{2}$ Thus: backward stable \Rightarrow rel. err. $\varepsilon=\mathcal{O}\left(\kappa \varepsilon_{\text {mach }}\right)$ by rule: can't demand more!

1) Consequences for physical simulations (nonlinear ODEs, PDEs...) Eg, task: solve ODE
$\begin{cases}u^{\prime}=F(t, u) & \text { for } 0 \leq t \leq T \\ u(0)=x & \text { initial condition }\end{cases}$
Output " $f(x)$ " is final state $u(T)$ $\kappa=$ sensitivity to IC

Stability of an algorithm (method) for some task

Recap: task "eval. $f(x)$ " has cond. $\# \kappa(x):=\left|\frac{x f^{\prime}(x)}{f(x)}\right| \quad$ indep. of any method
Defn. A method for this task called backward stable if returns an exact answer $f(\tilde{x})$ for some perturbed data \tilde{x} with $|\tilde{x}-x| /|x|=\mathcal{O}\left(\varepsilon_{\text {mach }}\right)$

- modern notion of stability
here \mathcal{O} implies some "small" const, eg $\lesssim 10^{2}$
Thus: backward stable \Rightarrow rel. err. $\varepsilon=\mathcal{O}\left(\kappa \varepsilon_{\text {mach }}\right)$ by rule: can't demand more!

1) Consequences for physical simulations (nonlinear ODEs, PDEs...) Eg, task: solve ODE
$\begin{cases}u^{\prime}=F(t, u) & \text { for } 0 \leq t \leq T \\ u(0)=x & \text { initial condition }\end{cases}$
Output " $f(x)$ " is final state $u(T)$ $\kappa=$ sensitivity to IC

- common that $\kappa \sim e^{\lambda T}$
(Lyapunov exponent $\lambda>0$, chaos, eg n-body sims.)
- then even stable solver must soon lose all accurate digits see: shadowing
- meaning of long- T numerics is only statistical (correlations, manifold, etc)

Stability of algorithms: more examples

Recap: (backward) stable if "exact answer to nearly the right question"
2) There are unstable algorithms ... don't use them!

Eg eval. $f(x)=1-\cos (x), \quad$ for $|x| \ll 1 \quad$ we all know $f(x)=x^{2} / 2+\mathcal{O}\left(x^{4}\right)$
ALWAYS FIRST ASK: Is task (problem) well-conditioned?

Stability of algorithms: more examples

Recap: (backward) stable if "exact answer to nearly the right question"
2) There are unstable algorithms ... don't use them!

Eg eval. $f(x)=1-\cos (x), \quad$ for $|x| \ll 1 \quad$ we all know $f(x)=x^{2} / 2+\mathcal{O}\left(x^{4}\right)$
ALWAYS FIRST ASK: Is task (problem) well-conditioned? yes, $\kappa \approx 2$
Now, methods: naive code $1-\cos (x)$ stable ?

Stability of algorithms: more examples

Recap: (backward) stable if "exact answer to nearly the right question"
2) There are unstable algorithms ... don't use them!
Eg eval. $f(x)=1-\cos (x), \quad$ for $|x| \ll 1 \quad$ we all know $f(x)=x^{2} / 2+\mathcal{O}\left(x^{4}\right)$

ALWAYS FIRST ASK: Is task (problem) well-conditioned? yes, $\kappa \approx 2$
Now, methods: naive code $1-\cos (x)$ stable ? no: catastrophic cancellation!
...w/o clarity on conditioning vs stability, may conclude ill-conditioned problem. Not so! Suggest stable methods?

Stability of algorithms: more examples

Recap: (backward) stable if "exact answer to nearly the right question"
2) There are unstable algorithms ... don't use them!
Eg eval. $f(x)=1-\cos (x), \quad$ for $|x| \ll 1 \quad$ we all know $f(x)=x^{2} / 2+\mathcal{O}\left(x^{4}\right)$

ALWAYS FIRST ASK: Is task (problem) well-conditioned? yes, $\kappa \approx 2$
Now, methods: naive code $1-\cos (x)$ stable ? no: catastrophic cancellation!
...w/o clarity on conditioning vs stability, may conclude ill-conditioned problem. Not so!
Suggest stable methods?
i) $2 * \sin (x / 2) \wedge 2$

Stability of algorithms: more examples

Recap: (backward) stable if "exact answer to nearly the right question"
2) There are unstable algorithms ... don't use them!
Eg eval. $f(x)=1-\cos (x), \quad$ for $|x| \ll 1 \quad$ we all know $f(x)=x^{2} / 2+\mathcal{O}\left(x^{4}\right)$

ALWAYS FIRST ASK: Is task (problem) well-conditioned? yes, $\kappa \approx 2$
Now, methods: naive code $1-\cos (x)$ stable ? no: catastrophic cancellation!
...w/o clarity on conditioning vs stability, may conclude ill-conditioned problem. Not so!
Suggest stable methods? i) $2 * \sin (x / 2)^{\wedge} 2$ ii) Taylor series (how many terms? conv...)

Stability of algorithms: more examples

Recap: (backward) stable if "exact answer to nearly the right question"
2) There are unstable algorithms ... don't use them!

Eg eval. $f(x)=1-\cos (x)$, for $|x| \ll 1 \quad$ we all know $f(x)=x^{2} / 2+\mathcal{O}\left(x^{4}\right)$
ALWAYS FIRST ASK: Is task (problem) well-conditioned? yes, $\kappa \approx 2$
Now, methods: naive code $1-\cos (x)$ stable ? no: catastrophic cancellation!
...w/o clarity on conditioning vs stability, may conclude ill-conditioned problem. Not so!
Suggest stable methods? i) $2 * \sin (x / 2)^{\wedge} 2$ ii) Taylor series (how many terms? conv...)
3) Linear systems: solve $A \mathbf{c}=\mathbf{b}$, square $N \times N$
needs whole lecture
Task is $\mathbf{f}(\mathbf{b})=$ "c solving $A \mathbf{c}=\mathbf{b} " \quad$ brain hurts because \mathbf{b} is input, \mathbf{c} is output!

Stability of algorithms: more examples

Recap: (backward) stable if "exact answer to nearly the right question"
2) There are unstable algorithms ... don't use them!

Eg eval. $f(x)=1-\cos (x)$, for $|x| \ll 1 \quad$ we all know $f(x)=x^{2} / 2+\mathcal{O}\left(x^{4}\right)$
ALWAYS FIRST ASK: Is task (problem) well-conditioned? yes, $\kappa \approx 2$
Now, methods: naive code $1-\cos (x)$ stable ? no: catastrophic cancellation!
$\ldots \mathrm{w} / \mathrm{o}$ clarity on conditioning vs stability, may conclude ill-conditioned problem. Not so!
Suggest stable methods? i) $2 * \sin (\mathrm{x} / 2)^{\wedge} 2$ ii) Taylor series (how many terms? conv....)
3) Linear systems: solve $A \mathbf{c}=\mathbf{b}$, square $N \times N$ needs whole lecture Task is $\mathbf{f}(\mathbf{b})=$ "c solving $A \mathbf{c}=\mathbf{b}$ " brain hurts because \mathbf{b} is input, \mathbf{c} is output!
Stable alg: gives $\tilde{\mathbf{c}}$ solving $A \tilde{\mathbf{c}}=\tilde{\mathbf{b}}$ exactly, where $\frac{\|\tilde{\mathbf{b}}-\mathbf{b}\|}{\|\mathbf{b}\|}=\mathcal{O}\left(\varepsilon_{\text {mach }}\right)$
Defn. relative residual of $\tilde{\mathbf{c}}$ is $\frac{\|A \tilde{\mathbf{c}}-\mathbf{b}\|}{\|\mathbf{b}\|}$:

Stability of algorithms: more examples

Recap: (backward) stable if "exact answer to nearly the right question"
2) There are unstable algorithms ... don't use them!

Eg eval. $f(x)=1-\cos (x), \quad$ for $|x| \ll 1 \quad$ we all know $f(x)=x^{2} / 2+\mathcal{O}\left(x^{4}\right)$
ALWAYS FIRST ASK: Is task (problem) well-conditioned? yes, $\kappa \approx 2$
Now, methods: naive code $1-\cos (x)$ stable ? no: catastrophic cancellation!
...w/o clarity on conditioning vs stability, may conclude ill-conditioned problem. Not so!
Suggest stable methods? i) $2 * \sin (x / 2)^{\wedge} 2$ ii) Taylor series (how many terms? conv...)
3) Linear systems: solve $A \mathbf{c}=\mathbf{b}$, square $N \times N$ needs whole lecture Task is $\mathbf{f}(\mathbf{b})=$ "c solving $A \mathbf{c}=\mathbf{b} " \quad$ brain hurts because \mathbf{b} is input, \mathbf{c} is output!
Stable alg: gives $\tilde{\mathbf{c}}$ solving $A \tilde{\mathbf{c}}=\tilde{\mathbf{b}}$ exactly, where $\frac{\|\tilde{\mathbf{b}}-\mathbf{b}\|}{\|\mathbf{b}\|}=\mathcal{O}\left(\varepsilon_{\text {mach }}\right)$
Defn. relative residual of $\tilde{\mathbf{c}}$ is $\frac{\|A \tilde{\mathbf{c}}-\mathbf{b}\|}{\|\mathbf{b}\|}$: Stable alg \Leftrightarrow Rel. resid. $\mathcal{O}\left(\varepsilon_{\text {mach }}\right)$

- even a stable alg doesn't mean $\tilde{\mathbf{c}}$ is close to \mathbf{c}...

Let's demo a classic unstable algorithm ...

MATLAB demo: unstable vs stable linear solve

>> c = $11 ; 2 ; 3]$;
> $A=$ ones $(3,3)+1 e-14 * r$ and $(3,3)$
$\mathrm{A}=$
1.00000000000001
1.00000000000001

1
>> b $=A * \mathrm{c}$;
\% "true" solution column vector
\% system matrix (precisely: ill-cond.)
1.00000000000001
1.00000000000001

1
\% make data (input to solver)

MATLAB demo: unstable vs stable linear solve

```
>> c = [1;2;3];
>> A = ones(3,3) + 1e-14*rand(3,3)
```

$\mathrm{A}=1.00000000000001$
1.00000000000001
1
>> b = A*c;
Now let's do some solving...
>> ct = inv(A)*b;
>> norm(A*ct-b) / norm(b) 0.046875
\% "true" solution column vector
\% system matrix (precisely: ill-cond.)
1.00000000000001
1.00000000000001
1.00000000000001
1.00000000000001
\% make data (input to solver)
\% classic pitfall, may be unstable
\% rel resid terrible, proving it's unstable!

MATLAB demo: unstable vs stable linear solve

```
>> c = [1;2;3];
>> A = ones(3,3) + 1e-14*rand(3,3)
```

$\mathrm{A}=1.00000000000001$
1.00000000000001
1
>> b = A*c;
Now let's do some solving...
>> $\mathrm{ct}=\operatorname{inv}(\mathrm{A}) * \mathrm{~b}$;
>> norm(A*ct-b) / norm(b) 0.046875
>> ct = linsolve(A,b);
>> norm(A*ct-b) / norm(b) 8.54650082837135e-17
\% "true" solution column vector
\% system matrix (precisely: ill-cond.)
1.00000000000001
1.00000000000001
1.00000000000001
1.00000000000001
\% make data (input to solver)
\% classic pitfall, may be unstable
\% rel resid terrible, proving it's unstable!
\% use (backward) stable solver
\% rel resid $0\left(e _m a c h\right):$ must be if stable

MATLAB demo: unstable vs stable linear solve

```
>> c = [1;2;3];
>> A = ones(3,3) + 1e-14*rand(3,3)
```

$\mathrm{A}=1.00000000000001$
1.00000000000001
1
>> b = A*c;
Now let's do some solving...

```
>> ct = inv(A)*b;
>> norm(A*ct-b) / norm(b)
    0.046875
```

>> ct = linsolve(A,b);
>> norm(A*ct-b) / norm(b)
8.54650082837135e-17
>> norm(ct-c) / norm(c)
0.0426438890711514
\% "true" solution column vector
\% system matrix (precisely: ill-cond.)
1.00000000000001
1.00000000000001
1.00000000000001
1.00000000000001
\% make data (input to solver)
\% classic pitfall, may be unstable
\% rel resid terrible, proving it's unstable!
\% use (backward) stable solver
\% rel resid $0\left(e _m a c h\right)$: must be if stable
\% rel err in soln? huge, but that's ok...

MATLAB demo: unstable vs stable linear solve

>> c $=[1 ; 2 ; 3]$;	\% "true" solution column vector
>> $\mathrm{A}=$ ones $(3,3)+1 \mathrm{e}-14 * \mathrm{rand}(3,3)$	\% system matrix (precisely: ill-cond.)
$\mathrm{A}=1.0000000000001$	1.00000000000001
1.00000000000001	1.000000000000011 .00000000000001
1	11.00000000000001
>> b = A*c;	\% make data (input to solver)

Now let's do some solving...

```
>> ct = inv(A)*b;
>> norm(A*ct-b) / norm(b)
    0.046875
```

>> ct = linsolve(A,b);
>> norm(A*ct-b) / norm(b)
$8.54650082837135 \mathrm{e}-17$
>> norm(ct-c) / norm(c)
0.0426438890711514
\% classic pitfall, may be unstable
\% rel resid terrible, proving it's unstable!
\% use (backward) stable solver
\% rel resid 0 (e_mach) : must be if stable
\% rel err in soln? huge, but that's ok...

If time: here's one stable way to store a soln operator. . .

```
[U,S,V] = svd(A); W = diag(1./diag(S))*U'; % inv(A)=VW, need two factors
ct = V*(W*b);
norm(A*ct-b) / norm(b) % rel resid again O(e_mach)
```

$2.83455365181694 \mathrm{e}-16$

If time: conditioning of linear systems

For vector $\operatorname{map} \mathbf{f}(\mathbf{x})$, condition number is

$$
\kappa(\mathbf{x}):=\lim _{\delta x \rightarrow 0} \sup _{\|\delta \mathbf{x}\| \leq \delta \mathbf{x}} \frac{\|\delta \mathbf{f}\| /\|\mathbf{f}\|}{\|\delta \mathbf{x}\| /\|\mathbf{x}\|}
$$

- Lin. solve task: can show $\kappa(\mathbf{b}) \leq \kappa(A):=\|A\|\left\|A^{-1}\right\|=\frac{\sigma_{1}(A)}{\sigma_{N}(A)} \quad$ or ∞

Consequence for how accurate solution $\tilde{\mathbf{c}}$ is? Let $\varepsilon=\frac{\|\tilde{\mathbf{c}}-\mathbf{c}\|}{\|\mathbf{c}\|}$ rel. soln. err.
Now recall: stable solver (best you can demand) has $\varepsilon=\mathcal{O}\left(\kappa \varepsilon_{\text {mach }}\right)$
if A ill-cond, natural that c floppy in certain directions, since residual small

- Idea useful in inverse problems: replace $\varepsilon_{\text {mach }}$ by meas. err; reverse above pic! Idea to sample all c consistent $\mathrm{w} /$ small residual \rightarrow Bayes Inv. Prob. (Bob, Fri 9:10am)
- Convergence rates (type \& prefactor) key to measure and understand
- Finite-precision $\varepsilon_{\text {mach }}$ can be amplified by catastrophic cancellation
- Before methods, first understand condition \# of your problem condition number of problem combines with $\varepsilon_{\text {mach }}$ to limit accuracy of any method
- Stable methods: solve exactly some $\varepsilon_{\text {mach }}$-perturbation of problem
"(un)stable" vs "ill-conditioned" have precise definitions: learn and use! check for unstable method and avoid
- For linear systems: "stable" \Leftrightarrow finds relative residual $\mathcal{O}\left(\varepsilon_{\text {mach }}\right)$

References for today material

- Numerical Methods. Anne Greenbaum \& Tim Chartier. book (2012)
- Numerical Linear Algebra. Trefethen \& Bau. book (1997)

Convergence acceleration and all-round fun:

- The SIAM 100-Digit Challenge. book (2004)

Randomized SVD, PCA, and big matrix factorizations:

- Halko, Martinsson \& Tropp. SIAM Rev. 53(2) 217-288 (2011)
- Martinsson's slides at http://users.oden.utexas.edu/~pgm

I will host slides at https://users.flatironinstitute.org/~ahb (also see: 2019 FWAM on interpolation \& quadrature; Burns on PDE)

Starting new Sci. Comput. Seminar \& Concepts, 9:45am Tues, 3rd fl.
(fortnightly from 10/26, see Indico)
THANK-YOU!

