Equispaced Fourier representations for efficient Gaussian process regression from a billion data points

Alex Barnett ${ }^{1}$

Courant Computational Mathematics and Scientific Computing Seminar, 11/11/22

Work joint with Philip Greengard (stats @ Columbia) and Manas Rachh (CCM @ Flatiron)

Task: interpolation from noisy scattered data

Given points $x_{1}, \ldots, x_{N} \in D \subset \mathbb{R}^{d}$ where meas. $y_{n}=f\left(x_{n}\right)+\epsilon_{n}, \quad$ noise $\epsilon_{n} \sim \mathcal{N}\left(0, \sigma^{2}\right) \quad$ scalar $y_{n} \in \mathbb{R}$ Recover underlying function $f \in C(D)$? a.k.a. "kriging"

$d=1$, e.g. time series, here toy $N=10^{2}$

$d=2$, geospatial $\left(\mathrm{CO}_{2}\right.$ satellite data), $N>10^{6}$

Task: interpolation from noisy scattered data

Given points $x_{1}, \ldots, x_{N} \in D \subset \mathbb{R}^{d}$
e.g. $D=[0,1]^{d}$ domain where meas. $y_{n}=f\left(x_{n}\right)+\epsilon_{n}, \quad$ noise $\epsilon_{n} \sim \mathcal{N}\left(0, \sigma^{2}\right) \quad$ scalar $y_{n} \in \mathbb{R}$ Recover underlying function $f \in C(D)$? a.k.a. "kriging"

$d=1$, e.g. time series, here toy $N=10^{2}$

$d=2$, geospatial $\left(\mathrm{CO}_{2}\right.$ satellite data $), N>10^{6}$

- Need assumption on f, usually some order of smoothness

Noise-free case ($\sigma=0$): local/global polynomial interp. linear, cubic, barycentric radial basis funcs, etc

Noisy case: make f itself stochastic, recover distribution over f 's

Task: interpolation from noisy scattered data

Given points $x_{1}, \ldots, x_{N} \in D \subset \mathbb{R}^{d}$
where meas. $y_{n}=f\left(x_{n}\right)+\epsilon_{n}, \quad$ noise $\epsilon_{n} \sim \mathcal{N}\left(0, \sigma^{2}\right)$
Recover underlying function $f \in C(D)$?

$d=1$, e.g. time series, here toy $N=10^{2}$

$d=2$, geospatial $\left(\mathrm{CO}_{2}\right.$ satellite data), $N>10^{6}$

- Need assumption on f, usually some order of smoothness

Noise-free case ($\sigma=0$): local/global polynomial interp. linear, cubic, barycentric radial basis funcs, etc

Noisy case: make f itself stochastic, recover distribution over f 's "Gaussian process" prior distn. on f, characterized by: mean $\equiv 0$,

2-point covar. given by some kernel: $\mathbb{E} f(x) f\left(x^{\prime}\right)=k\left(x, x^{\prime}\right), \quad x, x^{\prime} \in D$ Likelihood of data vector $\mathbf{y}:=\left\{y_{n}\right\}_{n=1}^{N}$ also Gaussian noise $\mathbf{y} \mid f(\mathrm{x}) \sim \mathcal{N}\left(0, \sigma^{2} /\right)$ \Rightarrow Bayes' theorem now specifies Gaussian posterior on f : "GP regression"

GP regression: kernels \& posterior mean

Typical kernels $k\left(x-x^{\prime}\right)$ translation-invariant, isotropic $r=\left\|x-x^{\prime}\right\|$, local (lengthscale $\ell>0$):

- $k(r)=e^{-r^{2} / 2 \ell^{2}}$
"Squared exponential"
- $k(r) \propto\left(\frac{\sqrt{2 \nu} r}{\ell}\right)^{\nu} K_{\nu}\left(\frac{\sqrt{2 \nu} r}{\ell}\right) \quad$ Matérn, smoothness $\nu \geq \frac{1}{2}$ $K_{\nu}(z)$ is modified Bessel func.

GP regression: kernels \& posterior mean

Typical kernels $k\left(x-x^{\prime}\right)$ translation-invariant, isotropic $r=\left\|x-x^{\prime}\right\|$, local (lengthscale $\ell>0$):

- $k(r)=e^{-r^{2} / 2 \ell^{2}}$
- $k(r) \propto\left(\frac{\sqrt{2 \nu} r}{\ell}\right)^{\nu} K_{\nu}\left(\frac{\sqrt{2 \nu} r}{\ell}\right) \quad$ Matérn, smoothness $\nu \geq \frac{1}{2}$ $K_{\nu}(z)$ is modified Bessel func.

Posterior over functions $f \in C(D)$ is ∞-dim pdf! Summarize by...

Marginal pdf at each $x \in D$: shown as red density here $\rightarrow \quad f(x)$

Since everything is Gaussian, $f(x) \sim \mathcal{N}(\mu(x), s(x))$

- $\mu(x)$ a common predictor of f at new "test" targets x

Linear system for posterior mean $\mu(x)$

Bayes thm. says: condition the joint pdf (data \& unknowns) on the data \mathbf{y}

Linear system for posterior mean $\mu(x)$

Bayes thm. says: condition the joint pdf (data \& unknowns) on the data \mathbf{y} notation: kernel matrix $K \in \mathbb{R}^{N \times N}$, i.e., elements $K_{n l}:=k\left(x_{n}, x_{l}\right), \quad n, I=1, \ldots, N$ column vector of kernels to one new target x is $\mathbf{k}_{x}:=\left\{k\left(x, x_{n}\right)\right\}_{n=1}^{N}$
joint pdf is $\left[\begin{array}{l}\mathbf{y} \\ f(x)\end{array}\right] \sim \mathcal{N}\left(\left[\begin{array}{l}\mathbf{0} \\ 0\end{array}\right],\left[\begin{array}{ll}K+\sigma^{2} l & \mathbf{k}_{x} \\ \mathbf{k}_{x}^{\top} & k(\mathbf{0})\end{array}\right]\right)$

Linear system for posterior mean $\mu(x)$

Bayes thm. says: condition the joint pdf (data \& unknowns) on the data \mathbf{y} notation: kernel matrix $K \in \mathbb{R}^{N \times N}$, i.e., elements $K_{n l}:=k\left(x_{n}, x_{l}\right), \quad n, l=1, \ldots, N$ column vector of kernels to one new target x is $\mathbf{k}_{x}:=\left\{k\left(x, x_{n}\right)\right\}_{n=1}^{N}$
joint pdf is $\left[\begin{array}{l}\mathbf{y} \\ f(x)\end{array}\right] \sim \mathcal{N}\left(\left[\begin{array}{l}\mathbf{0} \\ 0\end{array}\right],\left[\begin{array}{ll}K+\sigma^{2} \boldsymbol{l} & \mathbf{k}_{x} \\ \mathbf{k}_{x}^{\top} & k(\mathbf{0})\end{array}\right]\right)$
I skip formula for conditional of zero-mean multivariate Gaussian... (Schur complement)
Result for marginal at that target: $\quad f(x) \sim \mathcal{N}(\mu(x), s(x))$ with posterior mean func. $\quad \mu(x)=\sum_{n=1}^{N} k\left(x, x_{n}\right) \alpha_{n}=\mathbf{k}_{x}^{\top} \boldsymbol{\alpha}$ where $\boldsymbol{\alpha}=\left\{\alpha_{n}\right\}_{n=1}^{N}$ is unique solution to

$$
\left(K+\sigma^{2} I\right) \boldsymbol{\alpha}=\mathbf{y} \quad \text { "function space" linear system, } N \times N \text { symm. pos. def. }
$$

- dense direct ("exact") solution costs $\mathcal{O}\left(N^{3}\right)$ time, $\mathcal{O}\left(N^{2}\right)$ RAM limits data size to $N \sim 10^{4}$ on single machine :(
- led to many approximate methods that scale better with N

Previous methods to tackle larger data size N

1) Iterative solve via matvecs with $K+\sigma^{2} I$ conjugate gradient, dense $\mathcal{O}\left(N^{2} n_{\text {iter }}\right)$

- low-rank approx. $K \approx K_{N, M}\left(K_{M, M}\right)^{-1} K_{M, N}$
(Nyström '30)
via M "inducing points", subset of $\left\{x_{n}\right\}_{n=1}^{N}$, or new pts. $\mathcal{O}\left(N M^{2} n_{\text {iter }}\right)$

Previous methods to tackle larger data size N

1) Iterative solve via matvecs with $K+\sigma^{2} I$ conjugate gradient, dense $\mathcal{O}\left(N^{2} n_{\text {iter }}\right)$ - low-rank approx. $K \approx K_{N, M}\left(K_{M, M}\right)^{-1} K_{M, N}$
2) Fast direct solvers (Hackbusch, Rokhlin, Martinsson, Ying, Ho, O'Neil, Gillman, etc) - off-diagonal blocks of K approx. low-rank (various: HODLR, \mathcal{H}-mat, HBS...)

- hierarchical inversion of blocks: compressed $\left(K+\sigma^{2} I\right)^{-1}$ e.g. $\mathcal{O}\left(N^{3 / 2}\right) 2 \mathrm{D}$

Previous methods to tackle larger data size N

1) Iterative solve via matvecs with $K+\sigma^{2} I$ conjugate gradient, dense $\mathcal{O}\left(N^{2} n_{\text {iter }}\right)$ - low-rank approx. $K \approx K_{N, M}\left(K_{M, M}\right)^{-1} K_{M, N}$
2) Fast direct solvers (Hackbusch, Rokhlin, Martinsson, Ying, Ho, O'Neil, Gillman, etc)

- off-diagonal blocks of K approx. low-rank (various: HODLR, \mathcal{H}-mat, HBS...)
- hierarchical inversion of blocks: compressed $\left(K+\sigma^{2} I\right)^{-1}$ e.g. $\mathcal{O}\left(N^{3 / 2}\right) 2 \mathrm{D}$

3) Transform to $M \times M$ system: coeffs. of M basis funcs. "weight space" - subset of regressors, "sparse" GPs $\mathcal{O}\left(N M^{2}\right)$ to fill, then solve indep of N

- e.g., Fourier $e^{i \xi \cdot x}$ basis; full power not used (Hensman '17, P Greengard '21)

Previous methods to tackle larger data size N

1) Iterative solve via matvecs with $K+\sigma^{2} I$ conjugate gradient, dense $\mathcal{O}\left(N^{2} n_{\text {iter }}\right)$

- low-rank approx. $K \approx K_{N, M}\left(K_{M, M}\right)^{-1} K_{M, N}$
(Nyström '30) via M "inducing points", subset of $\left\{x_{n}\right\}_{n=1}^{N}$, or new pts. $\mathcal{O}\left(N M^{2} n_{\text {iter }}\right)$

2) Fast direct solvers (Hackbusch, Rokhlin, Martinsson, Ying, Ho, O'Neil, Gillman, etc)

- off-diagonal blocks of K approx. low-rank (various: HODLR, \mathcal{H}-mat, HBS...)
- hierarchical inversion of blocks: compressed $\left(K+\sigma^{2} I\right)^{-1}$ e.g. $\mathcal{O}\left(N^{3 / 2}\right)$ 2D

3) Transform to $M \times M$ system: coeffs. of M basis funcs. "weight space"

- subset of regressors, "sparse" GPs $\mathcal{O}\left(N M^{2}\right)$ to fill, then solve indep of N
- e.g., Fourier $e^{i \xi \cdot x}$ basis; full power not used (Hensman '17, P Greengard '21)

State of the art (for $d>1$) max out at $N \sim 10^{7}, 1$ hour, on desktop/GPU
Our method: class 3, Fourier, exploits fast fill and fast CG apply, $\mathcal{O}(N)$
We focus on d "small" $(d \leq 3)$: t-series and spatial (geo) statistics
We will achieve $N=10^{9}$ in e.g. 2 minutes on desktop...

Factorizing a translationally-invariant kernel

Fourier transform $\hat{k}(\xi):=\int_{\mathbb{R}^{d}} k(x) e^{-2 \pi i \xi \cdot x} d x \quad \geq 0, \forall \xi \in \mathbb{R}^{d}$ for "positive" kernel

Factorizing a translationally-invariant kernel

Fourier transform $\hat{k}(\xi):=\int_{\mathbb{R}^{d}} k(x) e^{-2 \pi i \xi \cdot x} d x \quad \geq 0, \forall \xi \in \mathbb{R}^{d}$ for "positive" kernel Apply trapezoid quadrature to inverse FT:

$k\left(x-x^{\prime}\right)=\int \hat{k}(\xi) e^{2 \pi i \xi\left(x-x^{\prime}\right)} d \xi \approx \sum_{j=-m}^{j=m} h \hat{k}\left(\xi_{j}\right) e^{2 \pi i \xi_{j}\left(x-x^{\prime}\right)}=\sum_{j=1}^{M} \phi_{j}(x) \overline{\phi_{j}\left(x^{\prime}\right)}$
where "basis funcs" are $\phi_{j}(x)=\sqrt{h^{d} \hat{k}\left(\xi_{j}\right)} e^{2 \pi i \xi_{j} \cdot x}$
For $d>1$: equispaced product grid, size $M=(2 m+1)^{d}$, label freqs. $\xi_{j}, m=1, \ldots, M$

Factorizing a translationally-invariant kernel

Fourier transform $\hat{k}(\xi):=\int_{\mathbb{R}^{d}} k(x) e^{-2 \pi i \xi \cdot x} d x \quad \geq 0, \forall \xi \in \mathbb{R}^{d}$ for "positive" kernel Apply trapezoid quadrature to inverse FT:

$k\left(x-x^{\prime}\right)=\int \hat{k}(\xi) e^{2 \pi i \xi\left(x-x^{\prime}\right)} d \xi \approx \sum_{j=-m}^{j=m} h \hat{k}\left(\xi_{j}\right) e^{2 \pi i \xi_{j}\left(x-x^{\prime}\right)}=\sum_{j=1}^{M} \phi_{j}(x) \overline{\phi_{j}\left(x^{\prime}\right)}$
where "basis funcs" are $\phi_{j}(x)=\sqrt{h^{d} \hat{k}\left(\xi_{j}\right)} e^{2 \pi i \xi_{j} \cdot x}$
For $d>1$: equispaced product grid, size $M=(2 m+1)^{d}$, label freqs. $\xi_{j}, m=1, \ldots, M$
"Design" matrix $\Phi \in \mathbb{C}^{N \times M}$ elements $\Phi_{n j}:=\phi_{j}\left(x_{n}\right)$

Then $K \approx \Phi \Phi^{*}$ (low-rank):

Can rigorously bound this approximation error, given k and \hat{k} decay...

Kernel approximation error I

true kernel:
$\underset{\tilde{k}}{k}\left(x-x^{\prime}\right)$
e.g. squared-exponential, Matérn
its Fourier grid approx: $\tilde{k}\left(x-x^{\prime}\right)=\sum_{j=1}^{M} \phi_{j}(x) \overline{\phi_{j}\left(x^{\prime}\right)}$

Kernel approximation error I

$\begin{array}{ll}\text { true kernel: } & k\left(x-x^{\prime}\right) \\ \text { its Fourier grid approx: } & \tilde{k}\left(x-x^{\prime}\right)=\sum_{j=1}^{M} \phi_{j}(x) \frac{\text { e.g. squa }}{\phi_{j}\left(x^{\prime}\right)}\end{array}$
Lemma (pointwise error of truncated equispaced Fourier quadrature):

Kernel approximation error I

$\begin{array}{ll}\text { true kernel: } & k\left(x-x^{\prime}\right) \\ \text { its Fourier grid approx: } & \tilde{k}\left(x-x^{\prime}\right)=\sum_{j=1}^{M} \phi_{j}(x) \frac{e^{\text {eg. squa }}}{\phi_{j}\left(x^{\prime}\right)}\end{array}$
Lemma (pointwise error of truncated equispaced Fourier quadrature):

Seek uniform bnd $\quad|\tilde{k}(x)-k(x)| \leq \varepsilon \quad \forall$ displacements $x \in D \ominus D=[-1,1]^{d}$ Ideas: take worst-case x in aliasing error, discard phases in trunc. error

Kernel approximation error II

Result: theorems bounding ε, uniform approx. error for two kernel families recall numerical params: Fourier grid spacing h, grid size $M=(2 m+1)^{d}$

Thm (squared-exponential kernel): exponential convergence in m

$$
\begin{aligned}
& \varepsilon \leq 2 d 3^{d} e^{-\frac{1}{2}\left(\frac{h^{-1}-1}{\ell}\right)^{2}}+2 d 4^{d} e^{-2(\pi \ell h m)^{2}} \\
& \text { aliasing truncation }
\end{aligned}
$$

Kernel approximation error II

Result: theorems bounding ε, uniform approx. error for two kernel families recall numerical params: Fourier grid spacing h, grid size $M=(2 m+1)^{d}$

Thm (squared-exponential kernel):

$$
\begin{aligned}
& \varepsilon \leq 2 d 3^{d} e^{-\frac{1}{2}\left(\frac{h^{-1}-1}{\ell}\right)^{2}}+2 d 4^{d} e^{-2(\pi \ell h m)^{2}} \\
& \text { aliasing truncation }
\end{aligned}
$$

Thm (Matérn kernel, smoothness ν): merely algebraic convergence, $m^{-2 \nu}$

$$
\varepsilon \leq 4 d 3^{d-1} \frac{2^{1-\nu}}{\Gamma(\nu)}(4 \nu)^{\nu} e^{2 \nu} K_{\nu}(4 \nu) e^{-\sqrt{\frac{\nu}{2 d}} \frac{h^{-1}-1}{\ell}}+\frac{\nu^{\nu-1} d 5^{d-1}}{2^{\nu} \pi^{d / 2+2 \nu}} \frac{\Gamma(\nu+1 / 2)}{\Gamma(\nu)} \frac{1}{(h \ell m)^{2 \nu}}
$$

Explicit constants! Proofs not trivial. Tools: bounding lattice sums by integrals, induction on dimension d, new bounds on K_{ν} Bessel funcs, 4 pages, some of August. . .

Corollaries: recipes to choose h and m to rigorously achieve tolerance ε SE easy, but Matérn at low ν needs big grid (in practice instead use heuristic L_{2}-estimate)

Converting to a "weight-space" linear system

Recall "function-space" linear system $\left(K+\sigma^{2} I\right) \boldsymbol{\alpha}=\mathbf{y}$ We just showed low-rank approx. $K \approx \Phi \Phi^{*} \quad$ where can push error $\varepsilon \rightarrow 0$

Converting to a "weight-space" linear system

Recall "function-space" linear system $\left(K+\sigma^{2} I\right) \boldsymbol{\alpha}=\boldsymbol{y}$ We just showed low-rank approx. $K \approx \Phi \Phi^{*} \quad$ where can push erroor $\varepsilon \rightarrow 0$

got equiv. dual system: $\quad\left(\Phi^{*} \Phi+\sigma^{2} I\right) \boldsymbol{\beta}=\Phi^{*} \mathbf{y} \quad M \times M$, "weight space" Solve for $\boldsymbol{\beta}$, is just basis coeffs of posterior mean $\mu(x)=\sum_{j=1}^{M} \beta_{j} \phi_{j}(x)$ Why? use $\boldsymbol{\beta}=\Phi^{*} \alpha: \quad \sum_{j} \beta_{j} \phi_{j}(x)=\sum_{n} \sum_{j} \phi_{j}(x) \overline{\phi_{j}\left(x_{n}\right)} \alpha_{n}=\sum_{n} k\left(x, x_{n}\right) \alpha_{n}=\mu(x)$

Converting to a "weight-space" linear system

Recall "function-space" linear system $\left(K+\sigma^{2} I\right) \boldsymbol{\alpha}=\boldsymbol{y}$ We just showed low-rank approx. $K \approx \Phi \Phi^{*} \quad$ where can push error $\varepsilon \rightarrow 0$

got equiv. dual system: $\quad\left(\Phi^{*} \Phi+\sigma^{2} I\right) \boldsymbol{\beta}=\Phi^{*} \mathbf{y} \quad M \times M$, "weight space" Solve for $\boldsymbol{\beta}$, is just basis coeffs of posterior mean $\mu(x)=\sum_{j=1}^{M} \beta_{j} \phi_{j}(x)$

$$
\text { Why? use } \beta=\Phi^{*} \alpha \text { : } \quad \sum_{j} \beta_{j} \phi_{j}(x)=\sum_{n} \sum_{j} \phi_{j}(x) \overline{\phi_{j}\left(x_{n}\right)} \alpha_{n}=\sum_{n} k\left(x, x_{n}\right) \alpha_{n}=\mu(x)
$$

Huge advantages: i) M is indep of data size N, and have fast $\mu(x)$ eval.
ii) $\Phi^{*} \Phi$ and $\Phi^{*} \mathbf{y}$ have special structure so can form and apply fast...

Fast algorithm to solve in weight space

 Recall linear system $\left(\Phi^{*} \Phi+\sigma^{2} I\right) \boldsymbol{\beta}=\Phi^{*} \mathbf{y}$ with $\Phi_{n j}=\phi_{j}\left(x_{n}\right)=e^{2 \pi i \xi_{j} \cdot x_{n}} \sqrt{h^{d} \hat{k}\left(\xi_{j}\right)}=: F_{n j} D_{j j}$

Fast algorithm to solve in weight space

 Recall linear system $\left(\Phi^{*} \Phi+\sigma^{2} I\right) \boldsymbol{\beta}=\Phi^{*} \mathbf{y}$ with $\Phi_{n j}=\phi_{j}\left(x_{n}\right)=e^{2 \pi i \xi_{j} \cdot x_{n}} \sqrt{h^{d} \hat{k}\left(\xi_{j}\right)}=: F_{n j} D_{j j}$- Filling RHS: need $\left(\Phi^{*} \mathbf{y}\right)_{j}=D_{j j} \sum_{n=1}^{N} e^{2 \pi i \xi_{j} \cdot x_{n}} y_{n}, \quad j=1, \ldots, M$ Is a d-dimensional nonuniform FFT: generalization of FFT
Can be done to accuracy ε, cost $\mathcal{O}\left(N \log ^{d}(1 / \varepsilon)+M \log M\right)$ Uniform (equispaced) target grid $\xi_{j}=h \mathbf{j}$: "type 1" NUFFT $(\mathrm{NU} \rightarrow \mathrm{U})$

Fast algorithm to solve in weight space

Recall linear system $\left(\Phi^{*} \Phi+\sigma^{2} I\right) \boldsymbol{\beta}=\Phi^{*} \mathbf{y}$
with $\Phi_{n j}=\phi_{j}\left(x_{n}\right)=e^{2 \pi i \xi_{j} \cdot x_{n}} \sqrt{h^{d} \hat{k}\left(\xi_{j}\right)}=: F_{n j} D_{j j}$

- Filling RHS: need $\left(\Phi^{*} \mathbf{y}\right)_{j}=D_{j j} \sum_{n=1}^{N} e^{2 \pi i \xi_{j} \cdot x_{n}} y_{n}, \quad j=1, \ldots, M$ Is a d-dimensional nonuniform FFT: generalization of FFT
Can be done to accuracy $\varepsilon, \operatorname{cost} \mathcal{O}\left(N \log ^{d}(1 / \varepsilon)+M \log M\right)$ Uniform (equispaced) target grid $\xi_{j}=h \mathbf{j}$: "type 1" NUFFT (NU $\rightarrow \mathrm{U}$)
- $\left(F^{*} F\right)_{\mathrm{j} \mathbf{j}^{\prime}}=\sum_{n=1}^{N} e^{2 \pi i h\left(\mathbf{j}^{\prime}-\mathbf{j}\right) \cdot x_{n}}$

$$
\text { dep. only on } \mathbf{j}^{\prime}-\mathbf{j}
$$

Filling vector $\mathbf{v} \in \mathbb{C}^{(4 m+1)^{d}}$ giving diagonals is another type 1 NUFFT! Matvec with $F^{*} F$ is d-dim. convolution with \mathbf{v} : use padded plain FFT Apply system matrix $\left(D^{*} F^{*} F D+\sigma^{2} I\right)$ in $\mathcal{O}(M \log M)$, per iteration
Note: Toeplitz property only because chose equispaced quadrature
a known idea in medical Fourier imaging (CT, MRI, cryo-EM), curiously with $\xi \leftrightharpoons x$!

Equispaced Fourier GP (EFGP) algorithm summary

Inputs: kernel k, tolerance ε, points $\left\{x_{n}\right\}_{n=1}^{N}$, data $\left\{y_{n}\right\}_{n=1}^{N}$

1. Deduce grid params h then $M=(2 m+1)^{d}$, from kernel and ε
2. Precompute RHS $\Phi^{*} \mathbf{y}$ via type 1 NUFFT with strengths $\left\{y_{n}\right\}$ use ε as NUFFT tolerance
3. Precompute Toeplitz vector \mathbf{v} via type 1 NUFFT with unit strengths 4. Use conjugate gradient to solve WS system $\left(\Phi^{*} \Phi+\sigma^{2} I\right) \boldsymbol{\beta}=\Phi^{*} \mathbf{y}$ use ε as relative residual criterion
4. Evaluate posterior mean $\mu(x)=\sum_{j=1}^{M} \beta_{j} D_{j j} e^{2 \pi i h \mathbf{j} \cdot x}$ wherever you like a single "type 2 " NUFFT $(U \rightarrow N U)$: cheap for huge number of targets x

Note: only two passes through size- N data; rest is quasilinear in M Superior scaling to any other known algorithm (SKI, fast direct, etc) However, prefactor also important - now show results comparisons...

The competition. The error metrics

We compare EFGP to three state-of-the-art GP solvers w/ software:

- SKI (structured kernel interpolation) (Wilson '15) in GPyTorch (Gardner '19) Cart. grid of inducing points \rightarrow FFT-accel matvec, iterative CG solve of FS lin. sys.
- FLAM (fast linear algebra in MATLAB) (Ho '20) as used by (Minden '17) fast direct, FS: recursive skeletonization, interpolative decomp., annulus of proxy points
- RLCM (recursively low-rank compressed matrices) (Chen '21) fast direct, FS: hierarchical Nyström approx, pos. def., claims $\mathcal{O}(N)$ cost, in $\mathrm{C}++$

The competition. The error metrics

We compare EFGP to three state-of-the-art GP solvers w/ software:

- SKI (structured kernel interpolation) (Wilson '15) in GPyTorch (Gardner '19) Cart. grid of inducing points \rightarrow FFT-accel matvec, iterative CG solve of FS lin. sys.
- FLAM (fast linear algebra in MATLAB) (Ho '20) as used by (Minden '17) fast direct, FS: recursive skeletonization, interpolative decomp., annulus of proxy points
- RLCM (recursively low-rank compressed matrices) (Chen '21) fast direct, FS: hierarchical Nyström approx, pos. def., claims $\mathcal{O}(N)$ cost, in $\mathrm{C}++$

Meaningful error metrics? Recall goal to recover $f(x)$ from $\left\{\left(x_{n}, y_{n}\right)\right\}$

- RMSE (typical in ML \& kriging): root mean square prediction error $x_{1}^{*}, \ldots x_{p}^{*}$ new held-out points, $y_{1}^{*}, \ldots y_{p}^{*}$ data, RMSE $:=\left(\frac{1}{p} \sum_{n=1}^{P}\left[\mu\left(x_{n}^{*}\right)-y_{n}^{*}\right]^{2}\right)^{1 / 2}$

The competition. The error metrics

We compare EFGP to three state-of-the-art GP solvers w/ software:

- SKI (structured kernel interpolation) (Wilson '15) in GPyTorch (Gardner '19) Cart. grid of inducing points \rightarrow FFT-accel matvec, iterative CG solve of FS lin. sys.
- FLAM (fast linear algebra in MATLAB) (Ho '20) as used by (Minden '17)
fast direct, FS: recursive skeletonization, interpolative decomp., annulus of proxy points
- RLCM (recursively low-rank compressed matrices) (Chen '21) fast direct, FS: hierarchical Nyström approx, pos. def., claims $\mathcal{O}(N)$ cost, in $\mathrm{C}++$

Meaningful error metrics? Recall goal to recover $f(x)$ from $\left\{\left(x_{n}, y_{n}\right)\right\}$

- RMSE (typical in ML \& kriging): root mean square prediction error
$x_{1}^{*}, \ldots x_{p}^{*}$ new held-out points, $y_{1}^{*}, \ldots y_{p}^{*}$ data, RMSE $:=\left(\frac{1}{p} \sum_{n=1}^{P}\left[\mu\left(x_{n}^{*}\right)-y_{n}^{*}\right]^{2}\right)^{1 / 2}$
Problem: as approx GP becomes exact, RMSE $\rightarrow \mathcal{O}(\sigma)$, not zero :(

The competition. The error metrics

We compare EFGP to three state-of-the-art GP solvers w/ software:

- SKI (structured kernel interpolation) (Wilson '15) in GPyTorch (Gardner '19)

Cart. grid of inducing points \rightarrow FFT-accel matvec, iterative CG solve of FS lin. sys.

- FLAM (fast linear algebra in MATLAB) (Ho '20) as used by (Minden '17)
fast direct, FS: recursive skeletonization, interpolative decomp., annulus of proxy points
- RLCM (recursively low-rank compressed matrices) (Chen '21) fast direct, FS: hierarchical Nyström approx, pos. def., claims $\mathcal{O}(N)$ cost, in C++

Meaningful error metrics? Recall goal to recover $f(x)$ from $\left\{\left(x_{n}, y_{n}\right)\right\}$

- RMSE (typical in ML \& kriging): root mean square prediction error
$x_{1}^{*}, \ldots x_{p}^{*}$ new held-out points, $y_{1}^{*}, \ldots y_{p}^{*}$ data, RMSE := $\left(\frac{1}{\rho} \sum_{n=1}^{P}\left[\mu\left(x_{n}^{*}\right)-y_{n}^{*}\right]^{2}\right)^{1 / 2}$
Problem: as approx GP becomes exact, RMSE $\rightarrow \mathcal{O}(\sigma)$, not zero :(
- Estimated error in posterior mean. EEPM ${ }_{\text {new }}:=\left(\frac{1}{P} \sum_{n=1}^{P}\left[\mu\left(x_{n}^{*}\right)-\mu_{\text {ex }}\left(x_{n}^{*}\right)\right]^{2}\right)^{1 / 2}$

Converges $\rightarrow 0$. "exact" regression $\mu_{\text {ex }}$ found by convergence study of trusted method

The competition. The error metrics

We compare EFGP to three state-of-the-art GP solvers w/ software:

- SKI (structured kernel interpolation) (Wilson '15) in GPyTorch (Gardner '19)

Cart. grid of inducing points \rightarrow FFT-accel matvec, iterative CG solve of FS lin. sys.

- FLAM (fast linear algebra in MATLAB) (Ho '20) as used by (Minden '17)
fast direct, FS: recursive skeletonization, interpolative decomp., annulus of proxy points
- RLCM (recursively low-rank compressed matrices) (Chen '21) fast direct, FS: hierarchical Nyström approx, pos. def., claims $\mathcal{O}(N)$ cost, in $\mathrm{C}++$

Meaningful error metrics? Recall goal to recover $f(x)$ from $\left\{\left(x_{n}, y_{n}\right)\right\}$

- RMSE (typical in ML \& kriging): root mean square prediction error
$x_{1}^{*}, \ldots x_{P}^{*}$ new held-out points, $y_{1}^{*}, \ldots y_{P}^{*}$ data, RMSE $:=\left(\frac{1}{p} \sum_{n=1}^{P}\left[\mu\left(x_{n}^{*}\right)-y_{n}^{*}\right]^{2}\right)^{1 / 2}$
Problem: as approx GP becomes exact, RMSE $\rightarrow \mathcal{O}(\sigma)$, not zero :(
- Estimated error in posterior mean. EEPM ${ }_{\text {new }}:=\left(\frac{1}{P} \sum_{n=1}^{P}\left[\mu\left(x_{n}^{*}\right)-\mu_{\text {ex }}\left(x_{n}^{*}\right)\right]^{2}\right)^{1 / 2}$

Converges $\rightarrow 0$. "exact" regression $\mu_{\text {ex }}$ found by convergence study of trusted method

- But...error in $f(x)$ recovery? e.g. $\left(\frac{1}{q} \sum_{n=1}^{q}\left[\mu\left(x_{n}^{*}\right)-f\left(x_{n}^{*}\right)\right]^{2}\right)^{1 / 2}$

Measures success of (even exact!) GP regression as a tool. Unused? Future study...

Results: CPU time vs accuracy achieved

Synthetic $N=10^{5}$ data points, iid uniform random in $[0,1]^{d}$

$$
f(x)=\sin (\omega \cdot x+a), \quad y_{n}=f\left(x_{n}\right)+\varepsilon_{n}, \quad \varepsilon_{n} \text { iid Gaussian, } \sigma=0.5
$$

For each method we vary a tolerance param (ε, rank, etc..) to get curve:

3D, squared-exponential kernel, $\ell=0.1$

2D, Matérn- $1 / 2$ kernel, $\ell=0.1$

- SE (left): EFGP $100 \times$ faster at 2 -digit acc, can go to many digits recall SE smooth kernel, \hat{k} super-exp. decay: very easy for Fourier method
- Matérn $\nu=\frac{1}{2}$ (right): FLAM best for high-acc (3+ digits) $\hat{k} \sim|\xi|^{-1-d}$, hardest for Fourier, yet EFGP $100 \times$ faster at 1-digit acc.

Results: atmospheric ppm CO_{2} satellite data in $d=2$

Geostatistics is fast if smooth kernel:

$$
\begin{equation*}
N \approx 1.4 \times 10^{6} \tag{Cressie'18}
\end{equation*}
$$

2 weeks data, patchy coverage demean, then use SE kernel, $\sigma=1$

$\ell=50: 0.5 \mathrm{~s}$, EEPM $_{\text {new }}=0.002$
$\ell=5: 5 \mathrm{~s}, \mathrm{EEPM}_{\text {new }}=0.0002$

- In applications: often need repeat for $>10^{3}$ time slices...

Results: large scale tests with nearest competitor (FLAM)

Synthetic 2D data, Matérn- $\frac{3}{2}$ kernel $\ell=0.1$:

Alg	σ	ε	N	m	iters	tot (s)	mem (GB)	EEPM	EEPM $_{\text {new }}$	RMSE
EFGP	0.1	10^{-5}	3×10^{6}	94	2853	9	0.1	4.6×10^{-3}	4.6×10^{-3}	1.0×10^{-1}
EFGP	0.1	10^{-7}	3×10^{6}	346	9481	517	0.1	2.0×10^{-4}	1.9×10^{-4}	1.0×10^{-1}
FLAM	0.1	10^{-7}	3×10^{6}			384	9.1	5.4×10^{-5}	3.0×10^{-4}	1.0×10^{-1}
EFGP	0.1	10^{-5}	10^{7}	94	2634	10	0.3	3.9×10^{-3}	3.9×10^{-3}	1.0×10^{-1}
EFGP	0.1	10^{-7}	10^{7}	346	15398	878	0.7	3.4×10^{-4}	3.4×10^{-4}	1.0×10^{-1}
FLAM	0.1	10^{-7}	10^{7}			1272	25.0	8.0×10^{-5}	4.6×10^{-4}	1.0×10^{-1}
EFGP	0.1	10^{-5}	3×10^{7}	94	1915	9	2.6	3.1×10^{-3}	3.1×10^{-3}	1.0×10^{-1}
EFGP	0.1	10^{-7}	3×10^{7}	346	23792	1315	2.8	5.4×10^{-4}	5.4×10^{-4}	1.0×10^{-1}
FLAM	0.1	10^{-7}	3×10^{7}			3328	54.6	1.0×10^{-4}	7.7×10^{-4}	1.0×10^{-1}
EFGP	0.1	10^{-5}	10^{8}	94	1393	14	9.3	2.3×10^{-3}	2.3×10^{-3}	1.0×10^{-1}
EFGP	0.1	10^{-7}	10^{8}	346	35905	2055	9.5	7.6×10^{-4}	7.6×10^{-4}	1.0×10^{-1}
EFGP	0.1	10^{-5}	10^{9}	94	1027	103	96.7	1.2×10^{-3}	1.2×10^{-3}	1.0×10^{-1}
EFGP	0.1	10^{-7}	10^{9}	346	66199	4048	97.0	7.9×10^{-4}	7.9×10^{-4}	1.0×10^{-1}

- EFGP RAM scaling $\mathcal{O}(N)$, and $20-100 \times$ less than FLAM 12-core desktop w/ 192 GB : could not run FLAM for $N>10^{8}$
- EFGP becomes $3 \times$ faster at $N=3 \times 10^{7}$ and comparable accuracy
- If happy with 3-digit accuracy, EFGP does $N=10^{9}$ in 2 minutes
- But: iteration count gets huge as decrease ε (why?)

Conditioning of the linear systems

By k th conjugate gradient iter, error $\leq c\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^{k} \approx c e^{-2 k / \sqrt{\kappa}}{ }_{\kappa=\text { cond. num. }}$. In EFGP we care about WS $\kappa\left(\Phi^{*} \Phi+\sigma^{2} I\right)$

Empirically we see this grows closely to its upper bound $\kappa\left(K+\sigma^{2} I\right) \leq \frac{N}{\sigma^{2}}+1$
pf easy: $\|K\| \leq\|K\|_{F} \leq N$, and $K \succcurlyeq 0$ by pos. kernel
FS and WS cond. num. similar, and bad!

Huge bnd: eg $N=10^{7}, \sigma=0.1$ gives $\kappa \leq 10^{9}, n_{\text {iter }} \lesssim 10^{5}$ for $\varepsilon=10^{-5}$
consequence: all digits can be lost in single-precision arithmetic!

Conditioning of the linear systems

By k th conjugate gradient iter, error $\leq c\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^{k} \approx c e^{-2 k / \sqrt{\kappa}} \kappa=$ cond. num. In EFGP we care about WS $\kappa\left(\Phi^{*} \Phi+\sigma^{2} I\right)$

Empirically we see this grows closely to its upper bound $\kappa\left(K+\sigma^{2} I\right) \leq \frac{N}{\sigma^{2}}+1$
pf easy: $\|K\| \leq\|K\|_{F} \leq N$, and $K \succcurlyeq 0$ by pos. kernel
FS and WS cond. num. similar, and bad!

Huge bnd: eg $N=10^{7}, \sigma=0.1$ gives $\kappa \leq 10^{9}, n_{\text {iter }} \lesssim 10^{5}$ for $\varepsilon=10^{-5}$
consequence: all digits can be lost in single-precision arithmetic!
Mystery 1: we observe non-geometric CG residual norm decay $\varepsilon \sim 1 / k^{2}$ Mystery 2: can show GP regression problem has (abs.) cond. num. of 1

So, FS or WS methods handle ill-cond. sys to solve well-cond. prob. . . IMHO not good!
Much to explore, preconditioning. . .

How do nonuniform FFTs? our FINUFFT library

http://finufft.readthedocs.io

Flatiron Institute Nonuniform Fast Fourier Transform

FINUFFT is a mult-threaded ibrary to compute efliciently the three most common oypes of nonunitorm tast Fourier transtorm (NUFFT) to a specitied precision, in one, ewo, or three dimensions, on a mutti-core sharedmemory machine. It is extremely fast (typically acheving 10° to 10° points per second), has very simple inter.
taces io most major numerical languages (CIC++ Fortran, MATLAB, octave, python, and julia), but also has taces to most major numerical languages (CiC++, Fortran, MATLAB, octave, python, and julia), but also has
more advanced (vectorized and "guru") interfaces that allow mutipee strength vectors and the reuse of FFT plans. It is written in $\mathrm{C}++$ (with limited use of ++ teatures). OpenMP, and uses FFTW. It has been developed at the Center for Computational Mathematics at the Flatron Insitute, by Alex Barnett and others, and is released under an Apache v2 license.
What does FINUFFT do?
As an example, given M real numbers $x_{j} \in[0,2 \pi)$, and complex numbers c_{j}, wach $j=1, \ldots, M$, and a requested integer number of modes N, FINUFFT can efficiently compute the 10 "type $1^{\prime \prime}$ transform, which means to evaluate the N complex outputs

$$
f_{k}=\sum_{j=1}^{M} c_{j} e^{k_{z_{j}}}, \quad \text { for } k \in \mathbb{Z}, \quad-N / 2 \leq k \leq N / 2-1 .
$$

(Barnett-Magland-af Klinteberg SISC '19)
v1.0 released 2018, now v2.1.0 Types $1,2,3$, in $d=1,2,3$ dims multithreaded $\mathrm{C}++$, C API, wrappers:

Fortran, Python, MATLAB/Octave, Julia
~ 5 devs; ~ 20 contributors 160 GitHub stars
MRI, cryo-EM, PDE, sig. proc.

How do nonuniform FFTs? our FINUFFT library

(Barnett-Magland-af Klinteberg SISC '19)

Flatiron Institute Nonuniform Fast Fourier Transform

FINUFFT is a mult-threaced ibrary to compute efficiently the thee most common oypes of nonunitom tast Fourier transtorm (NUFFT) to a specilied precision, in one, wwo, or three dimensions, on a multi-core sharedmemory machine. It is extremely fast (typically achieving 10^{6} to 10^{8} points per second), has very simple inter-
taces to most major numerical languages (CIC++, Fortran, MATLAB, octave, python, and julia), but also has laces to most major numerical languages (CiC++, Fortran, MATLAB, octave, py thon, and jula), but also has
more advenced (vectorized and "guru") interfaces that alow mutipie strength vectors and the reuse of FFT plans. It is written in $\mathrm{C}++$ (with imited use of ++ teatures). OpenMP, and uses FFTW. It has been developed at the Center for Computational Mathematics at the Flatron Insititu, by Alex Barnett and others, and is released under an Apache v2 license
What does FINUFFT do?
As an example, given M real mumbers $x_{j} \in[0,2 \pi)$, and complex numbers c_{j}, whth $j=1, \ldots, M$, and a re quested integer number of modes N, FINUFFT can efficiently compute the 10 "type $1^{\prime \prime}$ transform, which means to evaluate the N complex outputs

$$
f_{k}=\sum_{j=1}^{M} c_{j} e^{k_{k_{j}}}, \quad \text { for } k \in \mathbb{Z}, \quad-N / 2 \leq k \leq N / 2-1 .
$$

v1.0 released 2018, now v2.1.0 Types $1,2,3$, in $d=1,2,3$ dims multithreaded $\mathrm{C}++$, C API, wrappers:

Fortran, Python, MATLAB/Octave, Julia
~ 5 devs; ~ 20 contributors 160 GitHub stars
MRI, cryo-EM, PDE, sig. proc.

Standard alg: spread \rightarrow upsampled FFT \rightarrow diagonal correction (type 1)

- new spreading kernel $e^{\beta \sqrt{1-x^{2}}}$
- piecewise polynomial Horner eval.
- SIMD-vectorized
- bin-sort for load-balanced spread Typ: $10^{7} \mathrm{NU}$ pts/s, laptop, $\varepsilon=10^{-6}$

Conclusions

GP regression popular for interpolation (kriging) from noisy scattered data

- We fix its poor scaling, allowing data size to $N \sim 10^{9}$ in minutes
- Equispaced quadrature in Fourier space \rightarrow iter. solve for the weights
- One pass through data in $\mathcal{O}(N+M \log M)$; fast $M \log M$ per iter.
- Dimension d "low" (say $d \leq 6$); not for high-dim ML apps.

Preprint: http://arxiv.org/abs/2210.10210
MATLAB pkg: http://github.com/flatironinstitute/gp-shootout

Conclusions

GP regression popular for interpolation (kriging) from noisy scattered data

- We fix its poor scaling, allowing data size to $N \sim 10^{9}$ in minutes
- Equispaced quadrature in Fourier space \rightarrow iter. solve for the weights
- One pass through data in $\mathcal{O}(N+M \log M)$; fast $M \log M$ per iter.
- Dimension d "low" (say $d \leq 6$); not for high-dim ML apps.

Preprint: http://arxiv.org/abs/2210.10210
MATLAB pkg: http://github.com/flatironinstitute/gp-shootout
Preliminary work (new area for me, 2022). Many things to do:

- Work with application users, release more than just research code
- Estimation of parameters $(\ell, \nu, \sigma, \ldots) \quad$ max likelihood needs fast $\operatorname{det}\left(K+\sigma^{2} l\right)$ for now could estimate by cross-validation
- preconditioning (or fast direct solve) for Toeplitz+diagonal system
- Is GP regression (kriging) actually a local problem? Feels like it! but not in general: (banded matrix) ${ }^{-1} \neq$ banded matrix

