= FLATIRON
q\ INSTITUTE

aaaaaaaaaaa

Equispaced Fourier representations for efficient Gaussian
process regression from a billion data points

Alex Barnett!

Courant Computational Mathematics and Scientific Computing Seminar,
11/11/22

Work joint with Philip Greengard (stats @ Columbia) and Manas Rachh (CCM @ Flatiron)

Task: interpolation from noisy scattered data

Given points xi,...,xy € D C RY e.g. D=1[0,1]9 domain
where meas. y, = f(xn) + €n, noise €, ~ N(0,0?) scalar y, € R
Recover underlying function f € C(D)? ak.a. “kriging”

I T B

15 15
0 02 04 06 08 1 0 02 04 06 08 1

d=1, eg. xtime series, here toy N : 102 d = 2, geospatial (CO, satellite data), N > 10°

Task: interpolation from noisy scattered data

Given points xi,...,xy € D C RY e.g. D =[0,1]? domain
where meas. y, = f(xn) + €n, noise €, ~ N(0,0?) scalar y, € R
Recover underlying function f € C(D)? ak.a. “kriging”

I T B

15 15
0 02 04 06 08 1 0 02 04 06 08 1

d=1, eg. xtime series, here toy N : 102 d = 2, geospatial (CO; satellite data), N > 100

e Need assumption on f, usually some order of smoothness

Noise-free case (0=0): local/global polynomial interp. linear, cubic, barycentric
radial basis funcs, etc

Noisy case: make f itself stochastic, recover distribution over f's

Given points x1,...,xy € D C R e.g. D =10,1]¢ domain
where meas. y, = f(x,) + €n, noise €, ~ N(0,0?) scalar y, € R
Recover underlying function f € C(D)? aka. “kriging”

0 02 04 06 08 1 0 02 04 06 08 1

d=1, eg. xtime series, here toy N _ 102 d = 2, geospatial (CO; satellite data), N > 10°
e Need assumption on f, usually some order of smoothness
Noise-free case (0=0): local/global polynomial interp. linear, cubic, barycentric
g poly P y
radial basis funcs, etc

Noisy case: make f itself stochastic, recover distribution over f's
“Gaussian process’ prior distn. on f, characterized by: mean = 0,
2-point covar. given by some kernel: Ef(x)f(x") = k(x,x’), x,x'eD

Likelihood of data vector y := {y,}N_; also Gaussian noise y|f(x) ~ A(0, 02/)
= Bayes' theorem now speC|f|es Gaussian posterior on f: "GP regression”

GP regression: kernels & posterior mean

Typical kernels k(x — x’) translation-invariant,
isotropic r = ||x — x’||, local (lengthscale ¢ > 0):

k(r)

[] k(r) = e—r2/2£2 “Squared exponential”
° k(l‘) XX (@)VKU(%) Matérn, smoothness v > %

Ky (z) is modified Bessel func.

GP regression: kernels & posterior mean

Typical kernels k(x — x’) translation-invariant,
isotropic r = ||x — x’||, local (lengthscale ¢ > 0):

° k(r) = e—r2/2£2 “Squared exponential”
° k(r) XX (@)VKU(%) Matérn, smoothness v > %

Ky (z) is modified Bessel func.

Posterior over functions f € C(D) is co-dim pdf!

Summarize by. ..

Prior on f (no data) d=1

Marginal pdf at each x € D:

shown as red density here — f(z) |

Posterior for N=1 data (o small)

Since everything is Gaussian,

F(x) ~ N(p(x), s(x))

e 1(x) a common predictor "
of f at new "“test” targets x

)

(x) postcrior mean func.

/S(x) posterior sid. dev. func.

r (adapted from D. Duvenaud) T

Linear system for posterior mean pi(x)
Bayes thm. says: condition the joint pdf (data & unknowns) on the data y

= FLATIRON
q\ INSTITUTE

Linear system for posterior mean pi(x)
Bayes thm. says: condition the joint pdf (data & unknowns) on the data y

notation: kernel matrix K € RV*N je. elements K, := k(xn,x1), nl=1,...,N

column vector of kernels to one new target x is ky := {k(x, xn)}N_,

joint pdf is [‘;(X) } ~ N([3] = { f;“zl :EO) D

N

q— FLATIRON

N\

Bayes thm. says: condition the joint pdf (data & unknowns) on the data y

notation: kernel matrix K € RV*N je., elements K, := k(xn,x;), n,/l=1,...,N

column vector of kernels to one new target x is kx := {k(x, xn)}N_;

joint pdf is [i(x) } ~ N([3] : [5;02/ ';EO) D

| skip formula for conditional of zero-mean multivariate Gaussian. .. (Schur complement)
Result for marginal at that target: f(x) ~ N (u(x),s(x))
with posterior mean func. p(x) = Z,ly:l k(x, xn)an = kI
where a = {a,}V_; is unique solution to

(K + 02l)a =Yy “function space” linear system, N X N symm. pos. def.

e dense direct (“exact”) solution costs O(N3) time, O(N?) RAM
limits data size to N ~ 10* on single machine :(

e led to many approximate methods that scale better with N . ..

Previous methods to tackle larger data size N

1) lterative solve via matvecs with K + 021 conjugate gradient, dense O(N2nier)
— low-rank approx. K =~ KN’M(KM’M)flKM’N (Nystrém ’30)

via M “inducing points”, subset of {x,}"_,, or new pts. O(NM?nise,)

q_ FLATIRON

TUTE

Previous methods to tackle larger data size N

1) lterative solve via matvecs with K + 021 conjugate gradient, dense O(N2nier)
— low-rank approx. K =~ KN’M(KM’M)flKM’N (Nystrém ’30)

via M “inducing points”, subset of {x,}"_,, or new pts. O(NM?nise,)

2) Fast direct solvers (Hackbusch, Rokhlin, Martinsson, Ying, Ho, O'Neil, Gillman, etc)
— off-diagonal blocks of K approx. low-rank (various: HODLR, #-mat, HBS. ..)
— hierarchical inversion of blocks: compressed (K 4 02/)™1 eg O(N?/?) 2D

q‘- FLATIRON

Previous methods to tackle larger data size N

1) lterative solve via matvecs with K + 021 conjugate gradient, dense O(N2nier)
— low-rank approx. K =~ KN,M(KM,M)ilKM,N (Nystrém ’30)
via M “inducing points”, subset of {X,,},’Yzl, or new pts. O(NM?nie,)

2) Fast direct solvers (Hackbusch, Rokhlin, Martinsson, Ying, Ho, O'Neil, Gillman, etc)
— off-diagonal blocks of K approx. low-rank (various: HODLR, #-mat, HBS. ..)
— hierarchical inversion of blocks: compressed (K 4 02/)™1 eg O(N?/?) 2D

3) Transform to M x M system: coeffs. of M basis funcs. “weight space”
— subset of regressors, “sparse” GPs O(NM?) to fill, then solve indep of N
- e.g., Fourier e’¢* basis; full power not used (Hensman '17, P Greengard '21)

= FLATIRON

VA

1) Iterative solve via matvecs with K + 0'2/ conjugate gradient, dense O(N?njer)
— low-rank approx. K =~ KN,M(KM,M)ilKM,N (Nystrém ’30)

via M “inducing points”, subset of {x,}"_,, or new pts. O(NM?nise,)

2) Fast direct solvers (Hackbusch, Rokhlin, Martinsson, Ying, Ho, O'Neil, Gillman, etc)
— off-diagonal blocks of K approx. low-rank (various: HODLR, H-mat, HBS. . .)
— hierarchical inversion of blocks: compressed (K 4 02/)™1 eg O(N?/?) 2D

3) Transform to M x M system: coeffs. of M basis funcs. “weight space”
— subset of regressors, “sparse” GPs O(NM?) to fill, then solve indep of N
— e.g., Fourier ei€x basis; full power not used (Hensman '17, P Greengard '21)
State of the art (for d > 1) max out at N ~ 107, 1 hour, on desktop/GPU
Our method: class 3, Fourier, exploits fast fill and fast CG apply, O(N)
We focus on d “small” (d < 3): t-series and spatial (geo) statistics

We will achieve N = 10 in e.g. 2 minutes on desktop. . .

Factorizing a translationally-invariant kernel

Fourier transform k(&) := Jgo k(x)e™2™€Xdx > 0,v¢ € R for “positive” kernel

Factorizing a translationally-invariant kernel

Fourier transform k(f f]Rd (x)e” 2miEX x> 0,vE € RY for “positive” kernel
Apply trapezoid quadrature to inverse FT: bom e ot 075 g

j=m M
k(X—X/) _ /l’;(g)e%rig(x_xf)df ~ Z hl;(gj)e%rigj(x_xf) _ qu)j(x)d)j(xl)

j=—m j=1

where “basis funcs” are ¢;(x) = 1/ hdk(¢&;)e?6

For d > 1: equispaced product grid, size M = (2m + 1), label fregs. & m=1,....M

Fourier transform k(¢) := Jgo k(x)e™2™€Xdx > 0,v¢ € R for “positive” kernel

Em o S 0 & e

Apply trapezoid quadrature to inverse FT: = g1

j=m M
K(xex) = [KO0dg = 37 hk(g)e) = Y ,(135(x)
j=1

j=—m

where “basis funcs” are ¢;(x) = 1/ hdk(¢&;)e?6

For d > 1: equispaced product grid, size M = (2m + 1)9, label fregs. & m=1,....M

N M N
“Design” matrix ¢ € CN*M o "
elements ®,; 1= ¢;(x,) N P 2| e

Then K = ®®* (low-rank):

Can rigorously bound this approximation error, given k and k decay. ..

Kernel approximation error |

true kernel: k(X — X/) e.g. squared-exponential, Matérn
its Fourier grid approx: k(x — x') = Zj‘il ®j(x)9j(x")

Kernel approximation error |

true kernel: k(X — X,) e.g. squared-exponential, Matérn
its Fourier grid approx: k(x — x') = Zj‘il dj(x)0j(x")

Lemma (pointwise error of truncated equispaced Fourier quadrature):

l~<(x)—k(x) = Z k(x—i—%) _ Z hd,“((hj)eznihj.x

neZd, n£0 j€Z9, jegrid
N >
TV
aliasing error: k decay truncation error: k decay
s s . 2
Simple proof: L. » N | 6" 25
. W' 4 -3
Poisson 05 2 355
summation & o - g0 W
formula o5 j as 8
N B B s N
1.5 8 -5.5
<15 -1 05 0 05 1 15 8 6 -4-2 02 46 8 -6
@ £

Kernel approximation error |

true kernel: k(X — X,) e.g. squared-exponential, Matérn
its Fourier grid approx: k(x — x') = Zj‘il dj(x)0j(x")

Lemma (pointwise error of truncated equispaced Fourier quadrature):

l~<(x)—k(x) = Z k(x—i—%) _ Z hd/';(hj)e%-ihj‘x

neZd, n£0 j€Z9, jegrid
TV ~
aliasing error: k decay truncation error: k decay
s s . . 2
Simple proof: N . N | 6 - 25
. ' 4 -3
Poisson 05 2 355
summation & o ™ - g0 a
formula o5 j as 8
M B B % s
15 5 55
<15 -1 05 0 05 1 15 8 6 -4-2 0 2 4 6 8 -6
@ £

Seek uniform bnd |/}(X) — k(X)| <e V displacements x € D& D = [-1, 1]¢

Ideas: take worst-case x in aliasing error, discard phases in trunc. error

Kernel approximation error |l

Result: theorems bounding €, uniform approx. error for two kernel families

recall numerical params: Fourier grid spacing h, grid size M = (2m + l)d

Thm (squared—exponential kernel): exponential convergence in m
— 2
_1(ria 2
e < 2d3% 2(!) + 2d 49 g=2(mthm)
aliasing truncation

Result: theorems bounding €, uniform approx. error for two kernel families

recall numerical params: Fourier grid spacing h, grid size M = (2m + 1)

Thm (squared—exponential kernel): exponential convergence in m
_1(nl)? 2
e < 2439 2("77) | 2gade2mtim)
aliasing truncation
Thm (I\/Iatérn kernel, smoothness V): merely algebraic convergence, m—2¥
2l Tt 5 M(v+1/2) 1

< d-12 " ; V&
e < 4d3) (4v)’ e K, (dv)e V2 o rdj2ia F) (him)

aliasing truncation

Explicit constants! Proofs not trivial. Tools: bounding lattice sums by
integrals, induction on dimension d, new bounds on K, Bessel funcs, 4
pages, some of August. ..

Corollaries: recipes to choose h and m to rigorously achieve tolerance e

SE easy, but Matérn at low v needs big grid (in practice instead use heuristic Lp-estimate)

Converting to a “weight-space” linear system

Recall “function-space” linear system (K + o2?/)a =y
We jUSt showed low-rank approx. K = olog where can push error ¢ — 0

Converting to a “weight-space” linear system

Recall “function-space” linear system (K + o2?/)a =y
We jUSt showed low-rank approx. K = olog where can push error ¢ — 0

| el

Left multiply by ©*
-(I- i)H -I M
N -
factor d*
got equiv. dual system: (®*® + 02/)3 = d*y M x M, “weight space”

Solve for 3, is just basis coeffs of posterior mean pu(x) = Zjﬂil Bioj(x)

Why? use 8= 0% ar 55, B0(x) = 5, 555 ()85 (xnn = 52, k(3 xn)n = ji(x)

Recall “function-space” linear system (K + o2?/)a =y
We jUSt showed low-rank approx. K = oloky where can push error e — 0

= (E ol)H;'I }

Left multiply by ©*

factor d*
<) I v
N -
got equiv. dual system: (®*® + 02/)3 = d*y M x M, “weight space”

Solve for 3, is just basis coeffs of posterior mean p(x) = Zjl\i1 Bipj(x)

Why? use 8= ®*a: 3, Bj9i(x) = 32, 32 0j(x)9j(xn)an = 32, k(x, Xn)an = pu(x)
Huge advantages: i) M is indep of data size N, and have fast u(x) eval.
i) ®*® and ®*y have special structure so can form and apply fast. . .

Fast algorithm to solve in weight space

Recall linear system (®*® + 02/)3 = d*y M
with (Dnj = ¢j(Xn) — @2mi&jXn /hd/;(f_,) =: FnjDJJ N duwdl ling

nonumform Fourier matrix

Recall linear system (®*® + 02/)3 = d*y

. — M
with @ = ¢;(xz) = €757 [hek(§)) = FojDj N I N

nonuniform Fourier matrix

e Filling RHS: need (®*y); = Dj; ZnN:1 emitixny, - j=1,.

Is a d-dimensional nonuniform FFT: generalization of FFT
Can be done to accuracy ¢, cost O(N log?(1/¢) + M log M)
Uniform (equispaced) target grid £; = hj: “type 1" NUFFT (NU—U)

no nunm orm Fourier matrix

Recall linear system (®*® + 02/)3 = d*y .
. - M
with @y = 6;(xn) = €275\ [hdk(&;) = Fy;Dj N

e Filling RHS: need (®*y); = Dj; ZnN:1 emitixny, - j=1,.

Is a d-dimensional nonuniform FFT: generalization of FFT
Can be done to accuracy ¢, cost O(N log?(1/¢) + M log M)
Uniform (equispaced) target grid {; = hj: “type 1" NUFFT (NU—>U)

o (FF)y = I et i -I

dep. onIy on j/ 7] Tocplnz

(diagonals are const.)

Filling vector v € C4mt1)? giving diagonals is another type 1 NUFFT!
Matvec with F*F is d-dim. convolution with v: use padded plain FFT
Apply system matrix (D*F*FD + o21) in O(Mlog M), per iteration

Note: Toeplitz property only because chose equispaced quadrature

a known idea in medical Fourier imaging (CT, MRI, cryo-EM), curiously with § = x !

Inputs: kernel k, tolerance ¢, points {x,}"_;, data {y,}V_,

1. Deduce grid params h then M = (2m + 1)9, from kernel and ¢
2. Precompute RHS ®*y via type 1 NUFFT with strengths {y,}

use £ as NUFFT tolerance
3. Precompute Toeplitz vector v via type 1 NUFFT with unit strengths
4. Use conjugate gradient to solve WS system (®*® + ¢02/)3 = d*y

use € as relative residual criterion

5. Evaluate posterior mean ju(x) = Zjl\il ;Dj;e?™hix wherever you like

a single “type 2" NUFFT (U—NU): cheap for huge number of targets x

Note: only two passes through size-N data; rest is quasilinear in M

Superior scaling to any other known algorithm (SKI, fast direct, etc)

However, prefactor also important — now show results comparisons. . .

The competition. The error metrics
We compare EFGP to three state-of-the-art GP solvers w/ software:

e SKI (structured kernel interpolation) (wilson '15) in GPyTorch (Gardner '19)
Cart. grid of inducing points — FFT-accel matvec, iterative CG solve of FS lin. sys.

e FLAM (fast linear algebra in MATLAB) (Ho 20) as used by (Minden '17)
fast direct, FS: recursive skeletonization, interpolative decomp., annulus of proxy points

e RLCM (recursively low-rank compressed matrices) (Chen '21)
fast direct, FS: hierarchical Nystrém approx, pos. def., claims O(N) cost, in C++

The competition. The error metrics
We compare EFGP to three state-of-the-art GP solvers w/ software:

e SKI (structured kernel interpolation) (wilson '15) in GPyTorch (Gardner '19)
Cart. grid of inducing points — FFT-accel matvec, iterative CG solve of FS lin. sys.

e FLAM (fast linear algebra in MATLAB) (Ho 20) as used by (Minden '17)
fast direct, FS: recursive skeletonization, interpolative decomp., annulus of proxy points

e RLCM (recursively low-rank compressed matrices) (Chen '21)
fast direct, FS: hierarchical Nystrém approx, pos. def., claims O(N) cost, in C++

Meaningful error metrics? Recall goal to recover f(x) from {(xn, yn)}

e RMSE (typical in ML & kriging): root mean square prediction error
x{;...xp new held-out points, y;",...yg data, RMSE := (% Zl:zl[u(x,f) — y,f]2)1/2

The competition. The error metrics
We compare EFGP to three state-of-the-art GP solvers w/ software:

e SKI (structured kernel interpolation) (wilson '15) in GPyTorch (Gardner '19)
Cart. grid of inducing points — FFT-accel matvec, iterative CG solve of FS lin. sys.
e FLAM (fast linear algebra in MATLAB) (Ho 20) as used by (Minden '17)

fast direct, FS: recursive skeletonization, interpolative decomp., annulus of proxy points
e RLCM (recursively low-rank compressed matrices) (Chen '21)
fast direct, FS: hierarchical Nystrém approx, pos. def., claims O(N) cost, in C++

Meaningful error metrics? Recall goal to recover f(x) from {(xn, yn)}

e RMSE (typical in ML & kriging): root mean square prediction error

1/2
x{;...xp new held-out points, y;",...yg data, RMSE := (% Zl:zl[u(x,f) — y,f]2)

Problem: as approx GP becomes exact, RMSE — O(o), not zero :(

The competition. The error metrics
We compare EFGP to three state-of-the-art GP solvers w/ software:

e SKI (structured kernel interpolation) (wilson '15) in GPyTorch (Gardner '19)
Cart. grid of inducing points — FFT-accel matvec, iterative CG solve of FS lin. sys.
e FLAM (fast linear algebra in MATLAB) (Ho 20) as used by (Minden '17)

fast direct, FS: recursive skeletonization, interpolative decomp., annulus of proxy points
e RLCM (recursively low-rank compressed matrices) (Chen '21)
fast direct, FS: hierarchical Nystrém approx, pos. def., claims O(N) cost, in C++

Meaningful error metrics? Recall goal to recover f(x) from {(xn, yn)}

e RMSE (typical in ML & kriging): root mean square prediction error
x{;...xp new held-out points, y;",...yg data, RMSE := (% Zl:zl[u(x,f) — y,f]2)1/2

Problem: as approx GP becomes exact, RMSE — O(o), not zero :(

. . . 1/2
e Estimated error in posterior mean. EEPM,., = (% PG — ,I,ex(x:)]2)

Converges — 0. “exact” regression pex found by convergence study of trusted method

The competition. The error metrics
We compare EFGP to three state-of-the-art GP solvers w/ software:

e SKI (structured kernel interpolation) (wilson '15) in GPyTorch (Gardner '19)
Cart. grid of inducing points — FFT-accel matvec, iterative CG solve of FS lin. sys.
e FLAM (fast linear algebra in MATLAB) (Ho 20) as used by (Minden '17)

fast direct, FS: recursive skeletonization, interpolative decomp., annulus of proxy points
e RLCM (recursively low-rank compressed matrices) (Chen '21)
fast direct, FS: hierarchical Nystrém approx, pos. def., claims O(N) cost, in C++

Meaningful error metrics? Recall goal to recover f(x) from {(xn, yn)}

e RMSE (typical in ML & kriging): root mean square prediction error
x{;...xp new held-out points, y;",...yg data, RMSE := (% Zl:zl[u(x,f) — y,f]2)1/2

Problem: as approx GP becomes exact, RMSE — O(o), not zero :(

. . . 1/2
e Estimated error in posterior mean. EEPM,., = (% PG — ,I,ex(x:)]2)

Converges — 0. “exact” regression pex found by convergence study of trusted method

q
Measures success of (even exact!) GP regression as a tool. Unused? Future study. ..

e But...error in f(x) recovery? g (l 9 [u(xr) — f(x;)]2)1/2

Results: CPU time vs accuracy achieved

Synthetic N = 10° data points, iid uniform random in [0, 1]¢
€ iid Gaussian, o = 0.5
For each method we vary a tolerance param (e, rank, etc..) to get curve:

f(x) =sin(w - x + a),

2k

log, time (s)

3D, squared-exponential kernel, £ = 0.1

T
- —a— EF
T "’ -a— SKI
e = FLAM
-
g —=-RLCM
n g
more accurate JF
. /
N /
] VARN _u
-
/ our proposal
I I L I !
0 -2 —4 —6 -8
log 1y EEPMpew

log o time (s)

Yn = f(Xn) + €n,

Vs

/_/./-/' |

f=— EFGP]

-a— SKI
- FLAM |
—=- RLCM

I
-2

1 -6 -8

logg EEPMyey

2D, Matérn-1/2 kernel, £ = 0.1

e SE (left): EFGP 100x faster at 2-digit acc, can go to many digits

recall SE smooth kernel, k super-exp. decay: very easy for Fourier method

e Matérn v=3 (right): FLAM best for high-acc (3+ digits)

k ~ |€]71=9, hardest for Fourier, yet EFGP 100x faster at 1-digit acc.

Geostatistics is fast if smooth kernel:

N~ 1.4 x 100 (Cressie '18)
2 weeks data, patchy coverage
demean, then use SE kernel, 0 =1

so00m
Soo0m o

05

ww ww ew - e o0e Tare
Longtuds
0 05
0
s -
2 4
2 ot 2 -t »
d = "
L 3. '
%0
1 &4} e
s e - ,0‘ |1/
5000km 85 s5000km
E = I -
ww mw eow o e Ta0e oo O =0 oo - pees e i
Longitude Longitude

¢ =50: 0.5 s, EEPM;e, = 0.002 ¢ =5:5s, EEPMpe, = 0.0002

e In applications: often need repeat for > 103 time slices. . .

Synthetic 2D data, Matérn-3 kernel £ = 0.1:

Alg o € N m iters tot (s) mem (GB) EEPM EEPM, ey RMSE
EFGP 0.1 10° 3x10° 94 2853 9 0.1 46x103 46x103 1.0x10°T
EFGP 0.1 1077 3x10° 346 9481 517 0.1 20%x107* 1.9x107* 1.0x 107!
FLAM 0.1 1077 3x10°0 384 9.1 54x107° 3.0x107* 1.0x 107!
EFGP 0.1 10> 107 94 2634 10 0.3 39x1073 39x1073 1.0x 1071
EFGP 0.1 1077 107 346 15398 878 0.7 34%x107* 34x107* 1.0x10°1!
FLAM 0.1 1077 107 1272 25.0 8.0x10"% 46x10* 1.0x10!
EFGP 0.1 10° 3x 107 94 1915 9 2.6 31x10% 31x103 1.0x10!T
EFGP 0.1 1077 3x107 346 23792 1315 2.8 54x107* 54x107* 1.0x 107!
FLAM 0.1 1077 3x107 3328 54.6 1.0x107* 7.7x107* 1.0x 107!
EFGP 0.1 105 108 94 1393 14 9.3 23%x103 23x103 1.0x10° T
EFGP 0.1 1077 10® 346 35905 2055 9.5 76x107* 7.6x107% 1.0x 107!
EFGP 0.1 105 109 94 1027 103 96.7 12x103 12x1073 1.0x10°!
EFGP 0.1 1077 10° 346 66199 4048 97.0 79%x107* 7.9x107* 1.0x 107!

e EFGP RAM scaling O(N), and 20-100x less than FLAM
12-core desktop w/ 192 GB: could not run FLAM for N > 108

e EFGP becomes 3x faster at N = 3 x 107 and comparable accuracy

e If happy with 3-digit accuracy, EFGP does N = 10° in 2 minutes

e But: iteration count gets huge as decrease ¢ (why?)

k
By kth conjugate gradient iter, error < ¢ (ﬁ;) ~ ce 2k/VE —cond. num.

T T
| d=liidurandin [0,1]]
In EFGP we care about WS x(®*® + o2/) 6| squared-exponential
|or=0r em03 o
Empirically we see this grows closely to its % s
2 N g
upper bound x(K +0°/) < 5 +1 sl o 1
pfeasy: ||K| <|K|lr <N, and K iz 0 by pos. kernel s = k(20 + 0T)
2 ' —a— Upper bound
L | ¥ 1 5(K +02T) ||
FS and WS cond. num. similar, and bad! e T T
logyy N
Huge bnd: eg N =107, o = 0.1 gives s < 10°, niter < 10° for e = 107°

consequence: all digits can be lost in single-precision arithmetic!

N

By kth conjugate gradient iter, error < ¢ <\/E+1

In EFGP we care about WS x(®*® + o2/)

Empirically we see this grows closely to its
upper bound k(K + o?1) < % +1
pfeasy: ||K| <||K|[F <N, and K = 0 by pos. kernel

FS and WS cond. num. similar, and bad!

logqg &

k
) ~ ce_Zk/\/E k=cond. num.

d=1iid urand in |0,1]
squared—exponential
1=0.1 6=03

| V(@ + o20)
—a— Upper bound
55 k(K + a21)
T T T
2 3 4 5 6
logyy N

Huge bnd: eg N =107, o = 0.1 gives s < 10°, niter < 10° for e = 107°
consequence: all digits can be lost in single-precision arithmetic!

Mystery 1: we observe non-geometric CG residual norm decay ¢ ~ 1/k?

Mystery 2: can show GP regression problem has (abs.) cond. num. of 1
So, FS or WS methods handle ill-cond. sys to solve well-cond. prob...IMHO not good!

Much to explore, preconditioning. . .

How do nonuniform FFTs? our FINUFFT library

http ://finufft.readthedocs.io (Barnett-Magland-af Klinteberg SISC '19)

- Flatiron Institute Nonuniform Fast Fourier Transform V].O released 2018, now V210
Types 1,2,3,in d =1,2,3 dims

multithreaded C++, C API, wrappers:
Fortran, Python, MATLAB/Octave, Julia

iNUFFT
vents

fiNUFFT

~ 5 devs; ~ 20 contributors
e o o i) L 160 GitHub stars

the 10 type 1 wansiorm which means

MRI, cryo-EM, PDE, sig. proc.

a 0
o evaluate the N comg

forkcZ, N2SR<N2 1

http://finufft.readthedocs.io

(Barnett-Magland-af Klinteberg SISC '19)

v1.0 released 2018, now v2.1.0
Types 1,2,3,in d =1,2,3 dims

multithreaded C4++, C API, wrappers:
Fortran, Python, MATLAB/Octave, Julia

~ 5 devs; ~ 20 contributors
e 05 e 160 GitHub stars

;. vith j
e 1D "ype 1 wansiorm. which means

MRI, cryo-EM, PDE, sig. proc.

e new spreading kernel V12

e piecewise polynomial Horner eval.
e SIMD-vectorized

e bin-sort for load-balanced spread

Typ: 107 NU pts/s, laptop, e = 107°

subproblems: each own thread

http://finufft.readthedocs.io

GP regression popular for interpolation (kriging) from noisy scattered data

We fix its poor scaling, allowing data size to N ~ 10% in minutes
Equispaced quadrature in Fourier space — iter. solve for the weights
One pass through data in O(N + M log M); fast M log M per iter.
Dimension d “low” (say d < 6); not for high-dim ML apps.

Preprint: http://arxiv.org/abs/2210.10210
MATLAB pkg: http://github.com/flatironinstitute/gp-shootout

http://arxiv.org/abs/2210.10210
http://github.com/flatironinstitute/gp-shootout

GP regression popular for interpolation (kriging) from noisy scattered data

e We fix its poor scaling, allowing data size to N ~ 10% in minutes

e Equispaced quadrature in Fourier space — iter. solve for the weights
e One pass through data in O(N + M log M); fast M log M per iter.

e Dimension d “low” (say d < 6); not for high-dim ML apps.

Preprint: http://arxiv.org/abs/2210.10210
MATLAB pkg: http://github.com/flatironinstitute/gp-shootout

Preliminary work (new area for me, 2022). Many things to do:

e Work with application users, release more than just research code

e Estimation of parameters (& v,o,...) max likelihood needs fast det(K + o/)
for now could estimate by cross-validation

e preconditioning (or fast direct solve) for Toeplitz+diagonal system

e Is GP regression (kriging) actually a local problem? Feels like it!

but not in general: (banded matrix)~! # banded matrix

http://arxiv.org/abs/2210.10210
http://github.com/flatironinstitute/gp-shootout

