
Equispaced Fourier representations for efficient Gaussian
process regression from a billion data points

Alex Barnett1

Courant Computational Mathematics and Scientific Computing Seminar,
11/11/22

Work joint with Philip Greengard (stats @ Columbia) and Manas Rachh (CCM @ Flatiron)

1Center for Computational Mathematics, Flatiron Institute, Simons Foundation



Task: interpolation from noisy scattered data

Given points x1, . . . , xN ∈ D ⊂ Rd e.g. D = [0, 1]d domain

where meas. yn = f (xn) + ϵn, noise ϵn ∼ N (0, σ2) scalar yn ∈ R

Recover underlying function f ∈ C (D)? a.k.a. “kriging”

→

d = 1, e.g. time series, here toy N = 102

→

d = 2, geospatial (CO2 satellite data), N > 106

• Need assumption on f , usually some order of smoothness

Noise-free case (σ=0): local/global polynomial interp. linear, cubic, barycentric

radial basis funcs, etc

Noisy case: make f itself stochastic, recover distribution over f ’s
“Gaussian process” prior distn. on f , characterized by: mean ≡ 0,
2-point covar. given by some kernel: E f (x)f (x ′) = k(x , x ′), x , x ′∈D

Likelihood of data vector y := {yn}Nn=1 also Gaussian noise y|f (x) ∼ N (0, σ2I )

⇒ Bayes’ theorem now specifies Gaussian posterior on f : “GP regression”



Task: interpolation from noisy scattered data

Given points x1, . . . , xN ∈ D ⊂ Rd e.g. D = [0, 1]d domain

where meas. yn = f (xn) + ϵn, noise ϵn ∼ N (0, σ2) scalar yn ∈ R

Recover underlying function f ∈ C (D)? a.k.a. “kriging”

→

d = 1, e.g. time series, here toy N = 102

→

d = 2, geospatial (CO2 satellite data), N > 106

• Need assumption on f , usually some order of smoothness

Noise-free case (σ=0): local/global polynomial interp. linear, cubic, barycentric

radial basis funcs, etc

Noisy case: make f itself stochastic, recover distribution over f ’s

“Gaussian process” prior distn. on f , characterized by: mean ≡ 0,
2-point covar. given by some kernel: E f (x)f (x ′) = k(x , x ′), x , x ′∈D

Likelihood of data vector y := {yn}Nn=1 also Gaussian noise y|f (x) ∼ N (0, σ2I )

⇒ Bayes’ theorem now specifies Gaussian posterior on f : “GP regression”



Task: interpolation from noisy scattered data

Given points x1, . . . , xN ∈ D ⊂ Rd e.g. D = [0, 1]d domain

where meas. yn = f (xn) + ϵn, noise ϵn ∼ N (0, σ2) scalar yn ∈ R

Recover underlying function f ∈ C (D)? a.k.a. “kriging”

→

d = 1, e.g. time series, here toy N = 102

→

d = 2, geospatial (CO2 satellite data), N > 106

• Need assumption on f , usually some order of smoothness

Noise-free case (σ=0): local/global polynomial interp. linear, cubic, barycentric

radial basis funcs, etc

Noisy case: make f itself stochastic, recover distribution over f ’s
“Gaussian process” prior distn. on f , characterized by: mean ≡ 0,

2-point covar. given by some kernel: E f (x)f (x ′) = k(x , x ′), x , x ′∈D
Likelihood of data vector y := {yn}Nn=1 also Gaussian noise y|f (x) ∼ N (0, σ2I )

⇒ Bayes’ theorem now specifies Gaussian posterior on f : “GP regression”



GP regression: kernels & posterior mean

Typical kernels k(x − x ′) translation-invariant,
isotropic r = ∥x − x ′∥, local (lengthscale ℓ > 0):

• k(r) = e−r2/2ℓ2 “Squared exponential”

• k(r) ∝ (
√
2νr
ℓ )νKν(

√
2νr
ℓ ) Matérn, smoothness ν ≥ 1

2

Kν(z) is modified Bessel func.

Posterior over functions f ∈ C (D) is ∞-dim pdf! Summarize by. . .

Marginal pdf at each x ∈ D:
shown as red density here →

Since everything is Gaussian,
f (x) ∼ N (µ(x), s(x))

• µ(x) a common predictor
of f at new “test” targets x



GP regression: kernels & posterior mean

Typical kernels k(x − x ′) translation-invariant,
isotropic r = ∥x − x ′∥, local (lengthscale ℓ > 0):

• k(r) = e−r2/2ℓ2 “Squared exponential”

• k(r) ∝ (
√
2νr
ℓ )νKν(

√
2νr
ℓ ) Matérn, smoothness ν ≥ 1

2

Kν(z) is modified Bessel func.

Posterior over functions f ∈ C (D) is ∞-dim pdf! Summarize by. . .

Marginal pdf at each x ∈ D:
shown as red density here →

Since everything is Gaussian,
f (x) ∼ N (µ(x), s(x))

• µ(x) a common predictor
of f at new “test” targets x



Linear system for posterior mean µ(x)

Bayes thm. says: condition the joint pdf (data & unknowns) on the data y

notation: kernel matrix K ∈ RN×N , i.e., elements Knl := k(xn, xl ), n, l = 1, . . . ,N

column vector of kernels to one new target x is kx := {k(x , xn)}Nn=1

joint pdf is

[
y
f (x)

]
∼ N

([
0
0

]
,

[
K + σ2I kx
kTx k(0)

])
I skip formula for conditional of zero-mean multivariate Gaussian. . . (Schur complement)

Result for marginal at that target: f (x) ∼ N (µ(x), s(x))
with posterior mean func. µ(x) =

∑N
n=1 k(x , xn)αn = kTx α

where α = {αn}Nn=1 is unique solution to

(K + σ2I )α = y “function space” linear system, N × N symm. pos. def.

• dense direct (“exact”) solution costs O(N3) time, O(N2) RAM
limits data size to N ∼ 104 on single machine :(

• led to many approximate methods that scale better with N . . .



Linear system for posterior mean µ(x)

Bayes thm. says: condition the joint pdf (data & unknowns) on the data y

notation: kernel matrix K ∈ RN×N , i.e., elements Knl := k(xn, xl ), n, l = 1, . . . ,N

column vector of kernels to one new target x is kx := {k(x , xn)}Nn=1

joint pdf is

[
y
f (x)

]
∼ N

([
0
0

]
,

[
K + σ2I kx
kTx k(0)

])

I skip formula for conditional of zero-mean multivariate Gaussian. . . (Schur complement)

Result for marginal at that target: f (x) ∼ N (µ(x), s(x))
with posterior mean func. µ(x) =

∑N
n=1 k(x , xn)αn = kTx α

where α = {αn}Nn=1 is unique solution to

(K + σ2I )α = y “function space” linear system, N × N symm. pos. def.

• dense direct (“exact”) solution costs O(N3) time, O(N2) RAM
limits data size to N ∼ 104 on single machine :(

• led to many approximate methods that scale better with N . . .



Linear system for posterior mean µ(x)

Bayes thm. says: condition the joint pdf (data & unknowns) on the data y

notation: kernel matrix K ∈ RN×N , i.e., elements Knl := k(xn, xl ), n, l = 1, . . . ,N

column vector of kernels to one new target x is kx := {k(x , xn)}Nn=1

joint pdf is

[
y
f (x)

]
∼ N

([
0
0

]
,

[
K + σ2I kx
kTx k(0)

])
I skip formula for conditional of zero-mean multivariate Gaussian. . . (Schur complement)

Result for marginal at that target: f (x) ∼ N (µ(x), s(x))
with posterior mean func. µ(x) =

∑N
n=1 k(x , xn)αn = kTx α

where α = {αn}Nn=1 is unique solution to

(K + σ2I )α = y “function space” linear system, N × N symm. pos. def.

• dense direct (“exact”) solution costs O(N3) time, O(N2) RAM
limits data size to N ∼ 104 on single machine :(

• led to many approximate methods that scale better with N . . .



Previous methods to tackle larger data size N

1) Iterative solve via matvecs with K + σ2I conjugate gradient, dense O(N2niter)

– low-rank approx. K ≈ KN,M(KM,M)−1KM,N (Nyström ’30)

via M “inducing points”, subset of {xn}Nn=1, or new pts. O(NM2niter)

2) Fast direct solvers (Hackbusch, Rokhlin, Martinsson, Ying, Ho, O’Neil, Gillman, etc)

– off-diagonal blocks of K approx. low-rank (various: HODLR, H-mat, HBS. . . )

– hierarchical inversion of blocks: compressed (K + σ2I )−1 e.g. O(N3/2) 2D

3) Transform to M ×M system: coeffs. of M basis funcs. “weight space”

– subset of regressors, “sparse” GPs O(NM2) to fill, then solve indep of N

– e.g., Fourier e iξ·x basis; full power not used (Hensman ’17, P Greengard ’21)

State of the art (for d > 1) max out at N ∼ 107, 1 hour, on desktop/GPU

Our method: class 3, Fourier, exploits fast fill and fast CG apply, O(N)

We focus on d “small” (d ≤ 3): t-series and spatial (geo) statistics

We will achieve N = 109 in e.g. 2 minutes on desktop. . .



Previous methods to tackle larger data size N

1) Iterative solve via matvecs with K + σ2I conjugate gradient, dense O(N2niter)

– low-rank approx. K ≈ KN,M(KM,M)−1KM,N (Nyström ’30)

via M “inducing points”, subset of {xn}Nn=1, or new pts. O(NM2niter)

2) Fast direct solvers (Hackbusch, Rokhlin, Martinsson, Ying, Ho, O’Neil, Gillman, etc)

– off-diagonal blocks of K approx. low-rank (various: HODLR, H-mat, HBS. . . )

– hierarchical inversion of blocks: compressed (K + σ2I )−1 e.g. O(N3/2) 2D

3) Transform to M ×M system: coeffs. of M basis funcs. “weight space”

– subset of regressors, “sparse” GPs O(NM2) to fill, then solve indep of N

– e.g., Fourier e iξ·x basis; full power not used (Hensman ’17, P Greengard ’21)

State of the art (for d > 1) max out at N ∼ 107, 1 hour, on desktop/GPU

Our method: class 3, Fourier, exploits fast fill and fast CG apply, O(N)

We focus on d “small” (d ≤ 3): t-series and spatial (geo) statistics

We will achieve N = 109 in e.g. 2 minutes on desktop. . .



Previous methods to tackle larger data size N

1) Iterative solve via matvecs with K + σ2I conjugate gradient, dense O(N2niter)

– low-rank approx. K ≈ KN,M(KM,M)−1KM,N (Nyström ’30)

via M “inducing points”, subset of {xn}Nn=1, or new pts. O(NM2niter)

2) Fast direct solvers (Hackbusch, Rokhlin, Martinsson, Ying, Ho, O’Neil, Gillman, etc)

– off-diagonal blocks of K approx. low-rank (various: HODLR, H-mat, HBS. . . )

– hierarchical inversion of blocks: compressed (K + σ2I )−1 e.g. O(N3/2) 2D

3) Transform to M ×M system: coeffs. of M basis funcs. “weight space”

– subset of regressors, “sparse” GPs O(NM2) to fill, then solve indep of N

– e.g., Fourier e iξ·x basis; full power not used (Hensman ’17, P Greengard ’21)

State of the art (for d > 1) max out at N ∼ 107, 1 hour, on desktop/GPU

Our method: class 3, Fourier, exploits fast fill and fast CG apply, O(N)

We focus on d “small” (d ≤ 3): t-series and spatial (geo) statistics

We will achieve N = 109 in e.g. 2 minutes on desktop. . .



Previous methods to tackle larger data size N

1) Iterative solve via matvecs with K + σ2I conjugate gradient, dense O(N2niter)

– low-rank approx. K ≈ KN,M(KM,M)−1KM,N (Nyström ’30)

via M “inducing points”, subset of {xn}Nn=1, or new pts. O(NM2niter)

2) Fast direct solvers (Hackbusch, Rokhlin, Martinsson, Ying, Ho, O’Neil, Gillman, etc)

– off-diagonal blocks of K approx. low-rank (various: HODLR, H-mat, HBS. . . )

– hierarchical inversion of blocks: compressed (K + σ2I )−1 e.g. O(N3/2) 2D

3) Transform to M ×M system: coeffs. of M basis funcs. “weight space”

– subset of regressors, “sparse” GPs O(NM2) to fill, then solve indep of N

– e.g., Fourier e iξ·x basis; full power not used (Hensman ’17, P Greengard ’21)

State of the art (for d > 1) max out at N ∼ 107, 1 hour, on desktop/GPU

Our method: class 3, Fourier, exploits fast fill and fast CG apply, O(N)

We focus on d “small” (d ≤ 3): t-series and spatial (geo) statistics

We will achieve N = 109 in e.g. 2 minutes on desktop. . .



Factorizing a translationally-invariant kernel

Fourier transform k̂(ξ) :=
∫
Rd k(x)e

−2πiξ·xdx ≥ 0,∀ξ ∈ Rd for “positive” kernel

Apply trapezoid quadrature to inverse FT: d = 1

k(x−x ′) =

∫
k̂(ξ)e2πiξ(x−x ′)dξ ≈

j=m∑
j=−m

hk̂(ξj)e
2πiξj (x−x ′) =

M∑
j=1

ϕj(x)ϕj(x ′)

where “basis funcs” are ϕj(x) =
√
hd k̂(ξj)e

2πiξj ·x

For d > 1: equispaced product grid, size M = (2m + 1)d , label freqs. ξj , m = 1, . . . ,M

“Design” matrix Φ ∈ CN×M

elements Φnj := ϕj(xn)

Then K ≈ ΦΦ∗ (low-rank):

Can rigorously bound this approximation error, given k and k̂ decay. . .



Factorizing a translationally-invariant kernel

Fourier transform k̂(ξ) :=
∫
Rd k(x)e

−2πiξ·xdx ≥ 0,∀ξ ∈ Rd for “positive” kernel

Apply trapezoid quadrature to inverse FT: d = 1

k(x−x ′) =

∫
k̂(ξ)e2πiξ(x−x ′)dξ ≈

j=m∑
j=−m

hk̂(ξj)e
2πiξj (x−x ′) =

M∑
j=1

ϕj(x)ϕj(x ′)

where “basis funcs” are ϕj(x) =
√
hd k̂(ξj)e

2πiξj ·x

For d > 1: equispaced product grid, size M = (2m + 1)d , label freqs. ξj , m = 1, . . . ,M

“Design” matrix Φ ∈ CN×M

elements Φnj := ϕj(xn)

Then K ≈ ΦΦ∗ (low-rank):

Can rigorously bound this approximation error, given k and k̂ decay. . .



Factorizing a translationally-invariant kernel

Fourier transform k̂(ξ) :=
∫
Rd k(x)e

−2πiξ·xdx ≥ 0,∀ξ ∈ Rd for “positive” kernel

Apply trapezoid quadrature to inverse FT: d = 1

k(x−x ′) =

∫
k̂(ξ)e2πiξ(x−x ′)dξ ≈

j=m∑
j=−m

hk̂(ξj)e
2πiξj (x−x ′) =

M∑
j=1

ϕj(x)ϕj(x ′)

where “basis funcs” are ϕj(x) =
√
hd k̂(ξj)e

2πiξj ·x

For d > 1: equispaced product grid, size M = (2m + 1)d , label freqs. ξj , m = 1, . . . ,M

“Design” matrix Φ ∈ CN×M

elements Φnj := ϕj(xn)

Then K ≈ ΦΦ∗ (low-rank):

Can rigorously bound this approximation error, given k and k̂ decay. . .



Kernel approximation error I

true kernel: k(x − x ′) e.g. squared-exponential, Matérn

its Fourier grid approx: k̃(x − x ′) =
∑M

j=1 ϕj(x)ϕj(x ′)

Lemma (pointwise error of truncated equispaced Fourier quadrature):

k̃(x)− k(x) =
∑

n∈Zd , n̸=0

k
(
x +

n

h

)
︸ ︷︷ ︸
aliasing error: k decay

−
∑

j∈Zd , j ̸∈grid

hd k̂(hj)e2πihj·x

︸ ︷︷ ︸
truncation error: k̂ decay

Simple proof:

Poisson
summation
formula

Seek uniform bnd |k̃(x)− k(x)| ≤ ε ∀ displacements x ∈ D ⊖ D = [−1, 1]d

Ideas: take worst-case x in aliasing error, discard phases in trunc. error



Kernel approximation error I

true kernel: k(x − x ′) e.g. squared-exponential, Matérn

its Fourier grid approx: k̃(x − x ′) =
∑M

j=1 ϕj(x)ϕj(x ′)

Lemma (pointwise error of truncated equispaced Fourier quadrature):

k̃(x)− k(x) =
∑

n∈Zd , n̸=0

k
(
x +

n

h

)
︸ ︷︷ ︸
aliasing error: k decay

−
∑

j∈Zd , j ̸∈grid

hd k̂(hj)e2πihj·x

︸ ︷︷ ︸
truncation error: k̂ decay

Simple proof:

Poisson
summation
formula

Seek uniform bnd |k̃(x)− k(x)| ≤ ε ∀ displacements x ∈ D ⊖ D = [−1, 1]d

Ideas: take worst-case x in aliasing error, discard phases in trunc. error



Kernel approximation error I

true kernel: k(x − x ′) e.g. squared-exponential, Matérn

its Fourier grid approx: k̃(x − x ′) =
∑M

j=1 ϕj(x)ϕj(x ′)

Lemma (pointwise error of truncated equispaced Fourier quadrature):

k̃(x)− k(x) =
∑

n∈Zd , n̸=0

k
(
x +

n

h

)
︸ ︷︷ ︸
aliasing error: k decay

−
∑

j∈Zd , j ̸∈grid

hd k̂(hj)e2πihj·x

︸ ︷︷ ︸
truncation error: k̂ decay

Simple proof:

Poisson
summation
formula

Seek uniform bnd |k̃(x)− k(x)| ≤ ε ∀ displacements x ∈ D ⊖ D = [−1, 1]d

Ideas: take worst-case x in aliasing error, discard phases in trunc. error



Kernel approximation error II

Result: theorems bounding ε, uniform approx. error for two kernel families
recall numerical params: Fourier grid spacing h, grid size M = (2m + 1)d

Thm (squared-exponential kernel): exponential convergence in m

ε ≤ 2d 3de
− 1

2

(
h−1−1

ℓ

)2

+ 2d 4de−2(πℓhm)2

aliasing truncation

Thm (Matérn kernel, smoothness ν): merely algebraic convergence, m−2ν

ε ≤ 4d 3d−1 2
1−ν

Γ(ν)
(4ν)νe2νKν(4ν)e

−
√

ν
2d

h−1−1
ℓ +

νν−1d 5d−1

2νπd/2+2ν

Γ(ν + 1/2)

Γ(ν)

1

(hℓm)2ν

aliasing truncation

Explicit constants! Proofs not trivial. Tools: bounding lattice sums by
integrals, induction on dimension d , new bounds on Kν Bessel funcs, 4
pages, some of August. . .

Corollaries: recipes to choose h and m to rigorously achieve tolerance ε
SE easy, but Matérn at low ν needs big grid (in practice instead use heuristic L2-estimate)



Kernel approximation error II

Result: theorems bounding ε, uniform approx. error for two kernel families
recall numerical params: Fourier grid spacing h, grid size M = (2m + 1)d

Thm (squared-exponential kernel): exponential convergence in m

ε ≤ 2d 3de
− 1

2

(
h−1−1

ℓ

)2

+ 2d 4de−2(πℓhm)2

aliasing truncation

Thm (Matérn kernel, smoothness ν): merely algebraic convergence, m−2ν

ε ≤ 4d 3d−1 2
1−ν

Γ(ν)
(4ν)νe2νKν(4ν)e

−
√

ν
2d

h−1−1
ℓ +

νν−1d 5d−1

2νπd/2+2ν

Γ(ν + 1/2)

Γ(ν)

1

(hℓm)2ν

aliasing truncation

Explicit constants! Proofs not trivial. Tools: bounding lattice sums by
integrals, induction on dimension d , new bounds on Kν Bessel funcs, 4
pages, some of August. . .

Corollaries: recipes to choose h and m to rigorously achieve tolerance ε
SE easy, but Matérn at low ν needs big grid (in practice instead use heuristic L2-estimate)



Converting to a “weight-space” linear system

Recall “function-space” linear system (K + σ2I )α = y
We just showed low-rank approx. K ≈ ΦΦ∗ where can push error ε → 0

got equiv. dual system: (Φ∗Φ+ σ2I )β = Φ∗y M ×M, “weight space”

Solve for β, is just basis coeffs of posterior mean µ(x) =
∑M

j=1 βjϕj(x)
Why? use β = Φ∗α:

∑
j βjϕj (x) =

∑
n

∑
j ϕj (x)ϕj (xn)αn =

∑
n k(x , xn)αn = µ(x)

Huge advantages: i) M is indep of data size N, and have fast µ(x) eval.
ii) Φ∗Φ and Φ∗y have special structure so can form and apply fast. . .



Converting to a “weight-space” linear system

Recall “function-space” linear system (K + σ2I )α = y
We just showed low-rank approx. K ≈ ΦΦ∗ where can push error ε → 0

got equiv. dual system: (Φ∗Φ+ σ2I )β = Φ∗y M ×M, “weight space”

Solve for β, is just basis coeffs of posterior mean µ(x) =
∑M

j=1 βjϕj(x)
Why? use β = Φ∗α:

∑
j βjϕj (x) =

∑
n

∑
j ϕj (x)ϕj (xn)αn =

∑
n k(x , xn)αn = µ(x)

Huge advantages: i) M is indep of data size N, and have fast µ(x) eval.
ii) Φ∗Φ and Φ∗y have special structure so can form and apply fast. . .



Converting to a “weight-space” linear system

Recall “function-space” linear system (K + σ2I )α = y
We just showed low-rank approx. K ≈ ΦΦ∗ where can push error ε → 0

got equiv. dual system: (Φ∗Φ+ σ2I )β = Φ∗y M ×M, “weight space”

Solve for β, is just basis coeffs of posterior mean µ(x) =
∑M

j=1 βjϕj(x)
Why? use β = Φ∗α:

∑
j βjϕj (x) =

∑
n

∑
j ϕj (x)ϕj (xn)αn =

∑
n k(x , xn)αn = µ(x)

Huge advantages: i) M is indep of data size N, and have fast µ(x) eval.
ii) Φ∗Φ and Φ∗y have special structure so can form and apply fast. . .



Fast algorithm to solve in weight space
Recall linear system (Φ∗Φ+ σ2I )β = Φ∗y

with Φnj = ϕj(xn) = e2πiξj ·xn
√

hd k̂(ξj) =: FnjDjj

• Filling RHS: need (Φ∗y)j = Djj
∑N

n=1 e
2πiξj ·xnyn, j = 1, . . . ,M

Is a d-dimensional nonuniform FFT: generalization of FFT
Can be done to accuracy ε, cost O(N logd(1/ε) +M logM)
Uniform (equispaced) target grid ξj = hj: “type 1” NUFFT (NU→U)

• (F ∗F )jj′ =
∑N

n=1 e
2πih(j′−j)·xn

dep. only on j′ − j

Filling vector v ∈ C(4m+1)d giving diagonals is another type 1 NUFFT!
Matvec with F ∗F is d-dim. convolution with v: use padded plain FFT
Apply system matrix (D∗F ∗FD + σ2I ) in O(M logM), per iteration

Note: Toeplitz property only because chose equispaced quadrature
a known idea in medical Fourier imaging (CT, MRI, cryo-EM), curiously with ξ ⇋ x !



Fast algorithm to solve in weight space
Recall linear system (Φ∗Φ+ σ2I )β = Φ∗y

with Φnj = ϕj(xn) = e2πiξj ·xn
√

hd k̂(ξj) =: FnjDjj

• Filling RHS: need (Φ∗y)j = Djj
∑N

n=1 e
2πiξj ·xnyn, j = 1, . . . ,M

Is a d-dimensional nonuniform FFT: generalization of FFT
Can be done to accuracy ε, cost O(N logd(1/ε) +M logM)
Uniform (equispaced) target grid ξj = hj: “type 1” NUFFT (NU→U)

• (F ∗F )jj′ =
∑N

n=1 e
2πih(j′−j)·xn

dep. only on j′ − j

Filling vector v ∈ C(4m+1)d giving diagonals is another type 1 NUFFT!
Matvec with F ∗F is d-dim. convolution with v: use padded plain FFT
Apply system matrix (D∗F ∗FD + σ2I ) in O(M logM), per iteration

Note: Toeplitz property only because chose equispaced quadrature
a known idea in medical Fourier imaging (CT, MRI, cryo-EM), curiously with ξ ⇋ x !



Fast algorithm to solve in weight space
Recall linear system (Φ∗Φ+ σ2I )β = Φ∗y

with Φnj = ϕj(xn) = e2πiξj ·xn
√

hd k̂(ξj) =: FnjDjj

• Filling RHS: need (Φ∗y)j = Djj
∑N

n=1 e
2πiξj ·xnyn, j = 1, . . . ,M

Is a d-dimensional nonuniform FFT: generalization of FFT
Can be done to accuracy ε, cost O(N logd(1/ε) +M logM)
Uniform (equispaced) target grid ξj = hj: “type 1” NUFFT (NU→U)

• (F ∗F )jj′ =
∑N

n=1 e
2πih(j′−j)·xn

dep. only on j′ − j

Filling vector v ∈ C(4m+1)d giving diagonals is another type 1 NUFFT!
Matvec with F ∗F is d-dim. convolution with v: use padded plain FFT
Apply system matrix (D∗F ∗FD + σ2I ) in O(M logM), per iteration

Note: Toeplitz property only because chose equispaced quadrature
a known idea in medical Fourier imaging (CT, MRI, cryo-EM), curiously with ξ ⇋ x !



Equispaced Fourier GP (EFGP) algorithm summary

Inputs: kernel k , tolerance ε, points {xn}Nn=1, data {yn}Nn=1

1. Deduce grid params h then M = (2m + 1)d , from kernel and ε

2. Precompute RHS Φ∗y via type 1 NUFFT with strengths {yn}
use ε as NUFFT tolerance

3. Precompute Toeplitz vector v via type 1 NUFFT with unit strengths

4. Use conjugate gradient to solve WS system (Φ∗Φ+ σ2I )β = Φ∗y
use ε as relative residual criterion

5. Evaluate posterior mean µ(x) =
∑M

j=1 βjDjje
2πihj·x wherever you like

a single “type 2” NUFFT (U→NU): cheap for huge number of targets x

Note: only two passes through size-N data; rest is quasilinear in M

Superior scaling to any other known algorithm (SKI, fast direct, etc)

However, prefactor also important — now show results comparisons. . .



The competition. The error metrics

We compare EFGP to three state-of-the-art GP solvers w/ software:

• SKI (structured kernel interpolation) (Wilson ’15) in GPyTorch (Gardner ’19)

Cart. grid of inducing points → FFT-accel matvec, iterative CG solve of FS lin. sys.

• FLAM (fast linear algebra in MATLAB) (Ho ’20) as used by (Minden ’17)

fast direct, FS: recursive skeletonization, interpolative decomp., annulus of proxy points

• RLCM (recursively low-rank compressed matrices) (Chen ’21)

fast direct, FS: hierarchical Nyström approx, pos. def., claims O(N) cost, in C++

Meaningful error metrics? Recall goal to recover f (x) from {(xn, yn)}
• RMSE (typical in ML & kriging): root mean square prediction error

x∗1 , . . . x
∗
P new held-out points, y∗

1 , . . . y
∗
P data, RMSE :=

(
1
P

∑P
n=1[µ(x

∗
n )− y∗

n ]
2
)1/2

Problem: as approx GP becomes exact, RMSE → O(σ), not zero :(

• Estimated error in posterior mean. EEPMnew :=
(

1
P

∑P
n=1[µ(x

∗
n )− µex(x∗n )]

2
)1/2

Converges → 0. “exact” regression µex found by convergence study of trusted method

• But. . . error in f (x) recovery? e.g.
(

1
q

∑q
n=1[µ(x

∗
n )− f (x∗n )]

2
)1/2

Measures success of (even exact!) GP regression as a tool. Unused? Future study. . .



The competition. The error metrics

We compare EFGP to three state-of-the-art GP solvers w/ software:

• SKI (structured kernel interpolation) (Wilson ’15) in GPyTorch (Gardner ’19)

Cart. grid of inducing points → FFT-accel matvec, iterative CG solve of FS lin. sys.

• FLAM (fast linear algebra in MATLAB) (Ho ’20) as used by (Minden ’17)

fast direct, FS: recursive skeletonization, interpolative decomp., annulus of proxy points

• RLCM (recursively low-rank compressed matrices) (Chen ’21)

fast direct, FS: hierarchical Nyström approx, pos. def., claims O(N) cost, in C++

Meaningful error metrics? Recall goal to recover f (x) from {(xn, yn)}
• RMSE (typical in ML & kriging): root mean square prediction error

x∗1 , . . . x
∗
P new held-out points, y∗

1 , . . . y
∗
P data, RMSE :=

(
1
P

∑P
n=1[µ(x

∗
n )− y∗

n ]
2
)1/2

Problem: as approx GP becomes exact, RMSE → O(σ), not zero :(

• Estimated error in posterior mean. EEPMnew :=
(

1
P

∑P
n=1[µ(x

∗
n )− µex(x∗n )]

2
)1/2

Converges → 0. “exact” regression µex found by convergence study of trusted method

• But. . . error in f (x) recovery? e.g.
(

1
q

∑q
n=1[µ(x

∗
n )− f (x∗n )]

2
)1/2

Measures success of (even exact!) GP regression as a tool. Unused? Future study. . .



The competition. The error metrics

We compare EFGP to three state-of-the-art GP solvers w/ software:

• SKI (structured kernel interpolation) (Wilson ’15) in GPyTorch (Gardner ’19)

Cart. grid of inducing points → FFT-accel matvec, iterative CG solve of FS lin. sys.

• FLAM (fast linear algebra in MATLAB) (Ho ’20) as used by (Minden ’17)

fast direct, FS: recursive skeletonization, interpolative decomp., annulus of proxy points

• RLCM (recursively low-rank compressed matrices) (Chen ’21)

fast direct, FS: hierarchical Nyström approx, pos. def., claims O(N) cost, in C++

Meaningful error metrics? Recall goal to recover f (x) from {(xn, yn)}
• RMSE (typical in ML & kriging): root mean square prediction error

x∗1 , . . . x
∗
P new held-out points, y∗

1 , . . . y
∗
P data, RMSE :=

(
1
P

∑P
n=1[µ(x

∗
n )− y∗

n ]
2
)1/2

Problem: as approx GP becomes exact, RMSE → O(σ), not zero :(

• Estimated error in posterior mean. EEPMnew :=
(

1
P

∑P
n=1[µ(x

∗
n )− µex(x∗n )]

2
)1/2

Converges → 0. “exact” regression µex found by convergence study of trusted method

• But. . . error in f (x) recovery? e.g.
(

1
q

∑q
n=1[µ(x

∗
n )− f (x∗n )]

2
)1/2

Measures success of (even exact!) GP regression as a tool. Unused? Future study. . .



The competition. The error metrics

We compare EFGP to three state-of-the-art GP solvers w/ software:

• SKI (structured kernel interpolation) (Wilson ’15) in GPyTorch (Gardner ’19)

Cart. grid of inducing points → FFT-accel matvec, iterative CG solve of FS lin. sys.

• FLAM (fast linear algebra in MATLAB) (Ho ’20) as used by (Minden ’17)

fast direct, FS: recursive skeletonization, interpolative decomp., annulus of proxy points

• RLCM (recursively low-rank compressed matrices) (Chen ’21)

fast direct, FS: hierarchical Nyström approx, pos. def., claims O(N) cost, in C++

Meaningful error metrics? Recall goal to recover f (x) from {(xn, yn)}
• RMSE (typical in ML & kriging): root mean square prediction error

x∗1 , . . . x
∗
P new held-out points, y∗

1 , . . . y
∗
P data, RMSE :=

(
1
P

∑P
n=1[µ(x

∗
n )− y∗

n ]
2
)1/2

Problem: as approx GP becomes exact, RMSE → O(σ), not zero :(

• Estimated error in posterior mean. EEPMnew :=
(

1
P

∑P
n=1[µ(x

∗
n )− µex(x∗n )]

2
)1/2

Converges → 0. “exact” regression µex found by convergence study of trusted method

• But. . . error in f (x) recovery? e.g.
(

1
q

∑q
n=1[µ(x

∗
n )− f (x∗n )]

2
)1/2

Measures success of (even exact!) GP regression as a tool. Unused? Future study. . .



The competition. The error metrics

We compare EFGP to three state-of-the-art GP solvers w/ software:

• SKI (structured kernel interpolation) (Wilson ’15) in GPyTorch (Gardner ’19)

Cart. grid of inducing points → FFT-accel matvec, iterative CG solve of FS lin. sys.

• FLAM (fast linear algebra in MATLAB) (Ho ’20) as used by (Minden ’17)

fast direct, FS: recursive skeletonization, interpolative decomp., annulus of proxy points

• RLCM (recursively low-rank compressed matrices) (Chen ’21)

fast direct, FS: hierarchical Nyström approx, pos. def., claims O(N) cost, in C++

Meaningful error metrics? Recall goal to recover f (x) from {(xn, yn)}
• RMSE (typical in ML & kriging): root mean square prediction error

x∗1 , . . . x
∗
P new held-out points, y∗

1 , . . . y
∗
P data, RMSE :=

(
1
P

∑P
n=1[µ(x

∗
n )− y∗

n ]
2
)1/2

Problem: as approx GP becomes exact, RMSE → O(σ), not zero :(

• Estimated error in posterior mean. EEPMnew :=
(

1
P

∑P
n=1[µ(x

∗
n )− µex(x∗n )]

2
)1/2

Converges → 0. “exact” regression µex found by convergence study of trusted method

• But. . . error in f (x) recovery? e.g.
(

1
q

∑q
n=1[µ(x

∗
n )− f (x∗n )]

2
)1/2

Measures success of (even exact!) GP regression as a tool. Unused? Future study. . .



Results: CPU time vs accuracy achieved

Synthetic N = 105 data points, iid uniform random in [0, 1]d

f (x) = sin(ω · x + a), yn = f (xn) + εn, εn iid Gaussian, σ = 0.5
For each method we vary a tolerance param (ε, rank, etc..) to get curve:

• SE (left): EFGP 100× faster at 2-digit acc, can go to many digits
recall SE smooth kernel, k̂ super-exp. decay: very easy for Fourier method

• Matérn ν= 1
2 (right): FLAM best for high-acc (3+ digits)

k̂ ∼ |ξ|−1−d , hardest for Fourier, yet EFGP 100× faster at 1-digit acc.



Results: atmospheric ppm CO2 satellite data in d = 2

Geostatistics is fast if smooth kernel:

N ≈ 1.4× 106 (Cressie ’18)

2 weeks data, patchy coverage
demean, then use SE kernel, σ = 1

ℓ = 50: 0.5 s, EEPMnew = 0.002 ℓ = 5: 5 s, EEPMnew = 0.0002

• In applications: often need repeat for > 103 time slices. . .



Results: large scale tests with nearest competitor (FLAM)

Synthetic 2D data, Matérn- 32 kernel ℓ = 0.1:

Alg σ ε N m iters tot (s) mem (GB) EEPM EEPMnew RMSE

EFGP 0.1 10−5 3× 106 94 2853 9 0.1 4.6× 10−3 4.6× 10−3 1.0× 10−1

EFGP 0.1 10−7 3× 106 346 9481 517 0.1 2.0× 10−4 1.9× 10−4 1.0× 10−1

FLAM 0.1 10−7 3× 106 384 9.1 5.4× 10−5 3.0× 10−4 1.0× 10−1

EFGP 0.1 10−5 107 94 2634 10 0.3 3.9× 10−3 3.9× 10−3 1.0× 10−1

EFGP 0.1 10−7 107 346 15398 878 0.7 3.4× 10−4 3.4× 10−4 1.0× 10−1

FLAM 0.1 10−7 107 1272 25.0 8.0× 10−5 4.6× 10−4 1.0× 10−1

EFGP 0.1 10−5 3× 107 94 1915 9 2.6 3.1× 10−3 3.1× 10−3 1.0× 10−1

EFGP 0.1 10−7 3× 107 346 23792 1315 2.8 5.4× 10−4 5.4× 10−4 1.0× 10−1

FLAM 0.1 10−7 3× 107 3328 54.6 1.0× 10−4 7.7× 10−4 1.0× 10−1

EFGP 0.1 10−5 108 94 1393 14 9.3 2.3× 10−3 2.3× 10−3 1.0× 10−1

EFGP 0.1 10−7 108 346 35905 2055 9.5 7.6× 10−4 7.6× 10−4 1.0× 10−1

EFGP 0.1 10−5 109 94 1027 103 96.7 1.2× 10−3 1.2× 10−3 1.0× 10−1

EFGP 0.1 10−7 109 346 66199 4048 97.0 7.9× 10−4 7.9× 10−4 1.0× 10−1

• EFGP RAM scaling O(N), and 20–100× less than FLAM
12-core desktop w/ 192 GB: could not run FLAM for N > 108

• EFGP becomes 3× faster at N = 3× 107 and comparable accuracy
• If happy with 3-digit accuracy, EFGP does N = 109 in 2 minutes
• But: iteration count gets huge as decrease ε (why?)



Conditioning of the linear systems

By kth conjugate gradient iter, error ≤ c
(√

κ−1√
κ+1

)k
≈ ce−2k/

√
κ κ=cond. num.

In EFGP we care about WS κ(Φ∗Φ+ σ2I )

Empirically we see this grows closely to its
upper bound κ(K + σ2I ) ≤ N

σ2 + 1
pf easy: ∥K∥ ≤ ∥K∥F ≤ N, and K ≽ 0 by pos. kernel

FS and WS cond. num. similar, and bad!

Huge bnd: eg N = 107, σ = 0.1 gives κ ≤ 109, niter ≲ 105 for ε = 10−5

consequence: all digits can be lost in single-precision arithmetic!

Mystery 1: we observe non-geometric CG residual norm decay ε ∼ 1/k2

Mystery 2: can show GP regression problem has (abs.) cond. num. of 1
So, FS or WS methods handle ill-cond. sys to solve well-cond. prob. . . IMHO not good!

Much to explore, preconditioning. . .



Conditioning of the linear systems

By kth conjugate gradient iter, error ≤ c
(√

κ−1√
κ+1

)k
≈ ce−2k/

√
κ κ=cond. num.

In EFGP we care about WS κ(Φ∗Φ+ σ2I )

Empirically we see this grows closely to its
upper bound κ(K + σ2I ) ≤ N

σ2 + 1
pf easy: ∥K∥ ≤ ∥K∥F ≤ N, and K ≽ 0 by pos. kernel

FS and WS cond. num. similar, and bad!

Huge bnd: eg N = 107, σ = 0.1 gives κ ≤ 109, niter ≲ 105 for ε = 10−5

consequence: all digits can be lost in single-precision arithmetic!

Mystery 1: we observe non-geometric CG residual norm decay ε ∼ 1/k2

Mystery 2: can show GP regression problem has (abs.) cond. num. of 1
So, FS or WS methods handle ill-cond. sys to solve well-cond. prob. . . IMHO not good!

Much to explore, preconditioning. . .



How do nonuniform FFTs? our FINUFFT library

http://finufft.readthedocs.io (Barnett-Magland-af Klinteberg SISC ’19)

v1.0 released 2018, now v2.1.0
Types 1,2,3, in d = 1, 2, 3 dims

multithreaded C++, C API, wrappers:

Fortran, Python, MATLAB/Octave, Julia

∼ 5 devs; ∼ 20 contributors
160 GitHub stars
MRI, cryo-EM, PDE, sig. proc.

Standard alg: spread → upsampled FFT → diagonal correction (type 1)

• new spreading kernel eβ
√
1−x2

• piecewise polynomial Horner eval.
• SIMD-vectorized
• bin-sort for load-balanced spread

Typ: 107 NU pts/s, laptop, ε = 10−6

NU pts x
j

copy over

w

N f

subproblems: each own thread

2D case, type−1, spread to fine grid:

1D kernel evals

outer prod

spread

http://finufft.readthedocs.io


How do nonuniform FFTs? our FINUFFT library

http://finufft.readthedocs.io (Barnett-Magland-af Klinteberg SISC ’19)

v1.0 released 2018, now v2.1.0
Types 1,2,3, in d = 1, 2, 3 dims

multithreaded C++, C API, wrappers:

Fortran, Python, MATLAB/Octave, Julia

∼ 5 devs; ∼ 20 contributors
160 GitHub stars
MRI, cryo-EM, PDE, sig. proc.

Standard alg: spread → upsampled FFT → diagonal correction (type 1)

• new spreading kernel eβ
√
1−x2

• piecewise polynomial Horner eval.
• SIMD-vectorized
• bin-sort for load-balanced spread

Typ: 107 NU pts/s, laptop, ε = 10−6

NU pts x
j

copy over

w

N f

subproblems: each own thread

2D case, type−1, spread to fine grid:

1D kernel evals

outer prod

spread

http://finufft.readthedocs.io


Conclusions
GP regression popular for interpolation (kriging) from noisy scattered data

• We fix its poor scaling, allowing data size to N ∼ 109 in minutes
• Equispaced quadrature in Fourier space → iter. solve for the weights
• One pass through data in O(N +M logM); fast M logM per iter.
• Dimension d “low” (say d ≤ 6); not for high-dim ML apps.

Preprint: http://arxiv.org/abs/2210.10210

MATLAB pkg: http://github.com/flatironinstitute/gp-shootout

Preliminary work (new area for me, 2022). Many things to do:

• Work with application users, release more than just research code
• Estimation of parameters (ℓ, ν, σ,. . . ) max likelihood needs fast det(K + σ2I )

for now could estimate by cross-validation

• preconditioning (or fast direct solve) for Toeplitz+diagonal system
• Is GP regression (kriging) actually a local problem? Feels like it!

but not in general: (banded matrix)−1 ̸= banded matrix

http://arxiv.org/abs/2210.10210
http://github.com/flatironinstitute/gp-shootout


Conclusions
GP regression popular for interpolation (kriging) from noisy scattered data

• We fix its poor scaling, allowing data size to N ∼ 109 in minutes
• Equispaced quadrature in Fourier space → iter. solve for the weights
• One pass through data in O(N +M logM); fast M logM per iter.
• Dimension d “low” (say d ≤ 6); not for high-dim ML apps.

Preprint: http://arxiv.org/abs/2210.10210

MATLAB pkg: http://github.com/flatironinstitute/gp-shootout

Preliminary work (new area for me, 2022). Many things to do:

• Work with application users, release more than just research code
• Estimation of parameters (ℓ, ν, σ,. . . ) max likelihood needs fast det(K + σ2I )

for now could estimate by cross-validation

• preconditioning (or fast direct solve) for Toeplitz+diagonal system
• Is GP regression (kriging) actually a local problem? Feels like it!

but not in general: (banded matrix)−1 ̸= banded matrix

http://arxiv.org/abs/2210.10210
http://github.com/flatironinstitute/gp-shootout

