

Equispaced Fourier representations for efficient Gaussian process regression from a billion data points

Alex Barnett¹

Courant Computational Mathematics and Scientific Computing Seminar, $11/11/22\,$

Work joint with Philip Greengard (stats @ Columbia) and Manas Rachh (CCM @ Flatiron)

Task: interpolation from noisy scattered data

Given points $x_1, \ldots, x_N \in D \subset \mathbb{R}^d$ e.g. $D = [0, 1]^d$ domain where meas. $y_n = f(x_n) + \epsilon_n$, noise $\epsilon_n \sim \mathcal{N}(0, \sigma^2)$ scalar $y_n \in \mathbb{R}$ Recover underlying function $f \in C(D)$? a.k.a. "kriging"

d = 1, e.g. time series, here toy $N = 10^2$

d = 2, geospatial (CO₂ satellite data), $N > 10^6$

Task: interpolation from noisy scattered data

Given points $x_1, \ldots, x_N \in D \subset \mathbb{R}^d$ e.g. $D = [0, 1]^d$ domain where meas. $y_n = f(x_n) + \epsilon_n$, noise $\epsilon_n \sim \mathcal{N}(0, \sigma^2)$ scalar $y_n \in \mathbb{R}$ Recover underlying function $f \in C(D)$? a.k.a. "kriging"

d = 1, e.g. time series, here toy $N = 10^2$

d= 2, geospatial (CO $_2$ satellite data), $N>10^6$

• Need assumption on f, usually some order of *smoothness* Noise-free case (σ =0): local/global polynomial interp. linear, cubic, barycentric radial basis funcs, etc

Noisy case: make f itself stochastic, recover distribution over f's

Task: interpolation from noisy scattered data

Given points $x_1, \ldots, x_N \in D \subset \mathbb{R}^d$ e.g. $D = [0, 1]^d$ domain where meas. $y_n = f(x_n) + \epsilon_n$, noise $\epsilon_n \sim \mathcal{N}(0, \sigma^2)$ scalar $y_n \in \mathbb{R}$ Recover underlying function $f \in C(D)$? a.k.a. "kriging"

d = 1, e.g. time series, here toy $N = 10^2$

d= 2, geospatial (CO₂ satellite data), $N>10^{6}$

• Need assumption on f, usually some order of *smoothness* Noise-free case (σ =0): local/global polynomial interp. linear, cubic, barycentric radial basis funcs, etc

Noisy case: make f itself stochastic, recover *distribution* over f's "Gaussian process" **prior** distn. on f, characterized by: mean $\equiv 0$, 2-point covar. given by some kernel: $\mathbb{E} f(x)f(x') = k(x, x'), \quad x, x' \in D$

Likelihood of data vector $\mathbf{y} := \{y_n\}_{n=1}^N$ also Gaussian noise $\mathbf{y}|f(\mathbf{x}) \sim \mathcal{N}(0, \sigma^2 I)$ \Rightarrow Bayes' theorem now specifies Gaussian **posterior** on f: "GP regression"

GP regression: kernels & posterior mean

Typical kernels k(x - x') translation-invariant, isotropic r = ||x - x'||, local (lengthscale $\ell > 0$):

• $k(r) = e^{-r^2/2\ell^2}$ "Squared exponential" • $k(r) \propto (\frac{\sqrt{2\nu}r}{\ell})^{\nu} \mathcal{K}_{\nu}(\frac{\sqrt{2\nu}r}{\ell})$ Matérn, smoothness $\nu \geq \frac{1}{2}$

 $K_{\nu}(z)$ is modified Bessel func.

GP regression: kernels & posterior mean

Typical kernels k(x - x') translation-invariant, isotropic r = ||x - x'||, local (lengthscale $\ell > 0$):

• $k(r) = e^{-r^2/2\ell^2}$ "Squared exponential" • $k(r) \propto (\frac{\sqrt{2\nu}r}{\ell})^{\nu} \mathcal{K}_{\nu}(\frac{\sqrt{2\nu}r}{\ell})$ Matérn, smoothness $\nu \ge \frac{1}{2}$

 $K_{\nu}(z)$ is modified Bessel func.

Posterior over functions $f \in C(D)$ is ∞ -dim pdf! Summa

Summarize by...

Marginal pdf at each $x \in D$: shown as red density here $\rightarrow f(x)$

Since everything is Gaussian, $f(x) \sim \mathcal{N}(\mu(x), s(x))$

• $\mu(x)$ a common *predictor* f(x) of *f* at new "test" targets *x*

Linear system for posterior mean $\mu(x)$

Bayes thm. says: condition the joint pdf (data & unknowns) on the data y

Linear system for posterior mean $\mu(x)$

Bayes thm. says: condition the joint pdf (data & unknowns) on the data y

notation: kernel matrix $K \in \mathbb{R}^{N \times N}$, i.e., elements $K_{nl} := k(x_n, x_l)$, n, l = 1, ..., Ncolumn vector of kernels to one new target x is $\mathbf{k}_x := \{k(x, x_n)\}_{n=1}^N$

joint pdf is
$$\begin{bmatrix} \mathbf{y} \\ f(x) \end{bmatrix} \sim \mathcal{N}\left(\begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix}, \begin{bmatrix} \mathbf{K} + \sigma^2 \mathbf{I} & \mathbf{k}_x \\ \mathbf{k}_x^\mathsf{T} & \mathbf{k}(\mathbf{0}) \end{bmatrix}\right)$$

Linear system for posterior mean $\mu(x)$

Bayes thm. says: condition the joint pdf (data & unknowns) on the data y

notation: kernel matrix $K \in \mathbb{R}^{N \times N}$, i.e., elements $K_{nl} := k(x_n, x_l)$, n, l = 1, ..., Ncolumn vector of kernels to one new target x is $\mathbf{k}_x := \{k(x, x_n)\}_{n=1}^N$

joint pdf is
$$\begin{bmatrix} \mathbf{y} \\ f(x) \end{bmatrix} \sim \mathcal{N}\left(\begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix}, \begin{bmatrix} \mathbf{K} + \sigma^2 \mathbf{I} & \mathbf{k}_x \\ \mathbf{k}_x^{\mathsf{T}} & k(\mathbf{0}) \end{bmatrix}\right)$$

I skip formula for conditional of zero-mean multivariate Gaussian... (Schur complement)

Result for marginal at that target: $f(x) \sim \mathcal{N}(\mu(x), s(x))$ with posterior mean func. $\mu(x) = \sum_{n=1}^{N} k(x, x_n) \alpha_n = \mathbf{k}_x^{\mathsf{T}} \alpha$ where $\alpha = \{\alpha_n\}_{n=1}^{N}$ is unique solution to

 $(K + \sigma^2 I) \boldsymbol{\alpha} = \mathbf{y}$ "function space" linear system, $N \times N$ symm. pos. def.

- dense direct ("exact") solution costs $\mathcal{O}(N^3)$ time, $\mathcal{O}(N^2)$ RAM limits data size to $N \sim 10^4$ on single machine :(
- led to many approximate methods that scale better with N....

1) Iterative solve via matvecs with $K + \sigma^2 I$ conjugate gradient, dense $\mathcal{O}(N^2 n_{\text{iter}})$ - low-rank approx. $K \approx K_{N,M} (K_{M,M})^{-1} K_{M,N}$ (Nyström '30)

via *M* "inducing points", subset of $\{x_n\}_{n=1}^N$, or new pts. $\mathcal{O}(NM^2n_{\text{iter}})$

1) Iterative solve via matvecs with $K + \sigma^2 I$ conjugate gradient, dense $\mathcal{O}(N^2 n_{\text{iter}})$ - low-rank approx. $K \approx K_{N,M} (K_{M,M})^{-1} K_{M,N}$ (Nyström '30)

via *M* "inducing points", subset of $\{x_n\}_{n=1}^N$, or new pts. $\mathcal{O}(NM^2n_{\text{iter}})$

2) Fast direct solvers (Hackbusch, Rokhlin, Martinsson, Ying, Ho, O'Neil, Gillman, etc)

- off-diagonal blocks of K approx. low-rank (various: HODLR, H-mat, HBS...)

- hierarchical inversion of blocks: compressed $(K + \sigma^2 I)^{-1}$ e.g. $\mathcal{O}(N^{3/2})$ 2D

1) Iterative solve via matvecs with $K + \sigma^2 I$ conjugate gradient, dense $\mathcal{O}(N^2 n_{\text{iter}})$ - low-rank approx. $K \approx K_{N,M} (K_{M,M})^{-1} K_{M,N}$ (Nyström '30)

via *M* "inducing points", subset of $\{x_n\}_{n=1}^N$, or new pts. $\mathcal{O}(NM^2n_{\text{iter}})$

2) Fast direct solvers (Hackbusch, Rokhlin, Martinsson, Ying, Ho, O'Neil, Gillman, etc)

- off-diagonal blocks of K approx. low-rank (various: HODLR, H-mat, HBS...)
- hierarchical inversion of blocks: compressed $(K + \sigma^2 I)^{-1}$ e.g. $\mathcal{O}(N^{3/2})$ 2D
- 3) Transform to $M \times M$ system: coeffs. of M basis funcs. "weight space" - subset of regressors, "sparse" GPs $O(NM^2)$ to fill, then solve *indep* of N- e.g., Fourier $e^{i\xi \cdot x}$ basis; full power not used (Hensman '17, P Greengard '21)

1) Iterative solve via matvecs with $K + \sigma^2 I$ conjugate gradient, dense $\mathcal{O}(N^2 n_{\text{iter}})$ - low-rank approx. $K \approx K_{N,M} (K_{M,M})^{-1} K_{M,N}$ (Nyström '30)

via *M* "inducing points", subset of $\{x_n\}_{n=1}^N$, or new pts. $\mathcal{O}(NM^2n_{\text{iter}})$

2) Fast direct solvers (Hackbusch, Rokhlin, Martinsson, Ying, Ho, O'Neil, Gillman, etc) – off-diagonal blocks of *K* approx. low-rank (various: HODLR, *H*-mat, HBS...)

- hierarchical inversion of blocks: compressed $(K + \sigma^2 I)^{-1}$ e.g. $\mathcal{O}(N^{3/2})$ 2D

3) Transform to $M \times M$ system: coeffs. of M basis funcs. "weight space" – subset of regressors, "sparse" GPs $O(NM^2)$ to fill, then solve *indep* of N – e.g., Fourier $e^{i\xi \cdot x}$ basis; full power not used (Hensman '17, P Greengard '21)

State of the art (for d > 1) max out at $N \sim 10^7$, 1 hour, on desktop/GPU Our method: class 3, Fourier, exploits fast fill and fast CG apply, $\mathcal{O}(N)$ We focus on d "small" ($d \le 3$): t-series and spatial (geo) statistics We will achieve $N = 10^9$ in e.g. 2 minutes on desktop...

Factorizing a translationally-invariant kernel

Fourier transform $\hat{k}(\xi):=\int_{\mathbb{R}^d}k(x)e^{-2\pi i\xi\cdot x}dx$ \geq 0, $orall\xi\in\mathbb{R}^d$ for "positive" kernel

Factorizing a translationally-invariant kernel Fourier transform $\hat{k}(\xi) := \int_{\mathbb{R}^d} k(x)e^{-2\pi i\xi \cdot x} dx \ge 0, \forall \xi \in \mathbb{R}^d$ for "positive" kernel Apply trapezoid quadrature to inverse FT:

$$k(x-x') = \int \hat{k}(\xi) e^{2\pi i \xi(x-x')} d\xi \approx \sum_{j=-m}^{j=m} h \hat{k}(\xi_j) e^{2\pi i \xi_j(x-x')} = \sum_{j=1}^{M} \phi_j(x) \overline{\phi_j(x')}$$

where "basis funcs" are $\phi_j(x) = \sqrt{h^d \hat{k}(\xi_j) e^{2\pi i \xi_j \cdot x}}$

For d > 1: equispaced product grid, size $M = (2m + 1)^d$, label freqs. ξ_j , $m = 1, \dots, M$

Factorizing a translationally-invariant kernel Fourier transform $\hat{k}(\xi) := \int_{\mathbb{R}^d} k(x)e^{-2\pi i\xi \cdot x} dx \ge 0, \forall \xi \in \mathbb{R}^d$ for "positive" kernel Apply trapezoid quadrature to inverse FT:

$$k(x-x') = \int \hat{k}(\xi) e^{2\pi i \xi(x-x')} d\xi \approx \sum_{j=-m}^{j=m} h \hat{k}(\xi_j) e^{2\pi i \xi_j(x-x')} = \sum_{j=1}^{M} \phi_j(x) \overline{\phi_j(x')}$$

where "basis funcs" are $\phi_j(x) = \sqrt{h^d \hat{k}(\xi_j) e^{2\pi i \xi_j \cdot x}}$

For d>1: equispaced product grid, size $M=(2m+1)^d$, label freqs. $\xi_j, m=1,\ldots,M$

Can rigorously bound this approximation error, given k and \hat{k} decay...

Kernel approximation error I

true kernel: k(x - x') e.g. squared-exponential, Matérn its Fourier grid approx: $\tilde{k}(x - x') = \sum_{j=1}^{M} \phi_j(x) \overline{\phi_j(x')}$

Kernel approximation error I

true kernel: k(x - x') e.g. squared-exponential, Matérn its Fourier grid approx: $\tilde{k}(x - x') = \sum_{j=1}^{M} \phi_j(x) \overline{\phi_j(x')}$

Lemma (pointwise error of truncated equispaced Fourier quadrature):

$$\tilde{k}(x) - k(x) = \sum_{\substack{\mathbf{n} \in \mathbb{Z}^d, \ \mathbf{n} \neq \mathbf{0} \\ \text{aliasing error: } k \text{ decay}}} k\left(x + \frac{\mathbf{n}}{h}\right) - \sum_{\substack{\mathbf{j} \in \mathbb{Z}^d, \ \mathbf{j} \notin \text{grid}}} h^d \hat{k}(h\mathbf{j}) e^{2\pi i h\mathbf{j} \cdot x} \\ \text{truncation error: } \hat{k} \text{ decay} \\ \text{Simple proof:} \\ Poisson \\ \text{summation} \\ \text{formula} \\ \frac{\tilde{k}_{\mathbf{0}}}{0} \\ \frac{15}{1} \\ \frac{15}$$

Kernel approximation error I

true kernel: k(x - x') e.g. squared-exponential, Matérn its Fourier grid approx: $\tilde{k}(x - x') = \sum_{j=1}^{M} \phi_j(x) \overline{\phi_j(x')}$

Lemma (pointwise error of truncated equispaced Fourier quadrature):

Seek uniform bnd $|\tilde{k}(x) - k(x)| \leq \varepsilon$ \forall displacements $x \in D \oplus D = [-1, 1]^d$ Ideas: take worst-case x in aliasing error, discard phases in trunc. error

Kernel approximation error II

Result: theorems bounding ε , uniform approx. error for two kernel families recall numerical params: Fourier grid spacing h, grid size $M = (2m + 1)^d$

Thm (squared-exponential kernel):

exponential convergence in m

$$\varepsilon \leq 2d \, 3^d e^{-\frac{1}{2} \left(\frac{h^{-1}-1}{\ell}\right)^2} + 2d \, 4^d e^{-2(\pi \ell h m)^2}$$

aliasing

truncation

Kernel approximation error II

Result: theorems bounding ε , uniform approx. error for two kernel families recall numerical params: Fourier grid spacing h, grid size $M = (2m + 1)^d$

Thm (squared-exponential kernel):

exponential convergence in m

$$\varepsilon \leq 2d \, 3^d e^{-rac{1}{2} \left(rac{h^{-1}-1}{\ell}
ight)^2} + 2d \, 4^d e^{-2(\pi \ell h m)^2}$$

aliasing

truncation

Explicit constants! Proofs not trivial. Tools: bounding lattice sums by integrals, induction on dimension d, new bounds on K_{ν} Bessel funcs, 4 pages, some of August...

Corollaries: recipes to choose h and m to rigorously achieve tolerance ε SE easy, but Matérn at low ν needs big grid (in practice instead use heuristic L₂-estimate)

Converting to a "weight-space" linear system

Recall "function-space" linear system $(K + \sigma^2 I)\alpha = \mathbf{y}$ We just showed low-rank approx. $K \approx \Phi \Phi^*$ where can push error $\varepsilon \to 0$

Converting to a "weight-space" linear system

Recall "function-space" linear system $(K + \sigma^2 I)\alpha = \mathbf{y}$ We just showed low-rank approx. $K \approx \Phi \Phi^*$ where can push error $\varepsilon \to 0$

got equiv. dual system: $(\Phi^* \Phi + \sigma^2 I)\beta = \Phi^* \mathbf{y}$ $M \times M$, "weight space" Solve for β , is just basis coeffs of posterior mean $\mu(x) = \sum_{j=1}^M \beta_j \phi_j(x)$ Why? use $\beta = \Phi^* \alpha$: $\sum_i \beta_j \phi_j(x) = \sum_n \sum_i \phi_j(x) \overline{\phi_j(x_n)} \alpha_n = \sum_n k(x, x_n) \alpha_n = \mu(x)$

Converting to a "weight-space" linear system

Recall "function-space" linear system $(K + \sigma^2 I)\alpha = \mathbf{y}$ We just showed low-rank approx. $K \approx \Phi \Phi^*$ where can push error $\varepsilon \to 0$

got equiv. dual system: $(\Phi^*\Phi + \sigma^2 I)\beta = \Phi^*\mathbf{y}$ $M \times M$, "weight space" Solve for β , is just basis coeffs of posterior mean $\mu(x) = \sum_{j=1}^M \beta_j \phi_j(x)$ Why? use $\beta = \Phi^*\alpha$: $\sum_j \beta_j \phi_j(x) = \sum_n \sum_j \phi_j(x) \overline{\phi_j(x_n)} \alpha_n = \sum_n k(x, x_n) \alpha_n = \mu(x)$ Huge advantages: i) M is indep of data size N, and have fast $\mu(x)$ eval. ii) $\Phi^*\Phi$ and $\Phi^*\mathbf{y}$ have special structure so can form and apply fast...

Fast algorithm to solve in weight space

Recall linear system
$$(\Phi^*\Phi + \sigma^2 I)\beta = \Phi^* \mathbf{y}$$

with $\Phi_{nj} = \phi_j(x_n) = e^{2\pi i\xi_j \cdot x_n} \sqrt{h^d \hat{k}(\xi_j)} =: F_{nj}D_{jj}$

Fast algorithm to solve in weight space

Recall linear system $(\Phi^* \Phi + \sigma^2 I)\beta = \Phi^* \mathbf{y}$ with $\Phi_{nj} = \phi_j(x_n) = e^{2\pi i \xi_j \cdot x_n} \sqrt{h^d \hat{k}(\xi_j)} =: F_{nj} D_{jj}$

Filling RHS: need (Φ*y)_j = D_{jj} ∑_{n=1}^N e^{2πiξ_j·x_n}y_n, j = 1,..., M
 Is a *d*-dimensional nonuniform FFT: generalization of FFT
 Can be done to accuracy ε, cost O(N log^d(1/ε) + M log M)
 Uniform (equispaced) target grid ξ_i = hj: "type 1" NUFFT (NU→U)

Fast algorithm to solve in weight space

Recall linear system
$$(\Phi^*\Phi + \sigma^2 I)\beta = \Phi^*\mathbf{y}$$

with $\Phi_{nj} = \phi_j(x_n) = e^{2\pi i\xi_j \cdot x_n} \sqrt{h^d \hat{k}(\xi_j)} =: F_{nj}D_{jj}$

 Filling RHS: need (Φ*y)_j = D_{jj} ∑_{n=1}^N e^{2πiξ_j·x_n}y_n, j = 1,..., M Is a *d*-dimensional *nonuniform FFT*: generalization of FFT Can be done to accuracy ε, cost O(N log^d(1/ε) + M log M) Uniform (equispaced) target grid ξ_j = hj: "type 1" NUFFT (NU→U)

•
$$(F^*F)_{jj'} = \sum_{n=1}^{N} e^{2\pi i h (j'-j) \cdot x_n} \int_{\substack{M \\ \text{dep. only on } j'-j}}^{N} \int_{\substack{K \\ F}}^{N} \int_{\substack{j \\ K \\ \text{Toeplitz} \\ \text{(diagonals are const.)}}}^{N}$$

Filling vector $\mathbf{v} \in \mathbb{C}^{(4m+1)^d}$ giving diagonals is another type 1 NUFFT! Matvec with F^*F is *d*-dim. *convolution* with \mathbf{v} : use padded plain FFT Apply system matrix $(D^*F^*FD + \sigma^2 I)$ in $\mathcal{O}(M \log M)$, per iteration

Note: Toeplitz property *only* because chose equispaced quadrature a known idea in medical Fourier imaging (CT, MRI, cryo-EM), curiously with $\xi = x$!

Equispaced Fourier GP (EFGP) algorithm summary

Inputs: kernel k, tolerance ε , points $\{x_n\}_{n=1}^N$, data $\{y_n\}_{n=1}^N$

- 1. Deduce grid params h then $M=(2m+1)^d$, from kernel and arepsilon
- 2. Precompute RHS $\Phi^* \mathbf{y}$ via type 1 NUFFT with strengths $\{y_n\}$ use ε as NUFFT tolerance
- 3. Precompute Toeplitz vector \mathbf{v} via type 1 NUFFT with unit strengths
- 4. Use conjugate gradient to solve WS system $(\Phi^* \Phi + \sigma^2 I)\beta = \Phi^* \mathbf{y}$ use ε as relative residual criterion
- 5. Evaluate posterior mean $\mu(x) = \sum_{j=1}^{M} \beta_j D_{jj} e^{2\pi i h \mathbf{j} \cdot \mathbf{x}}$ wherever you like a single "type 2" NUFFT (U \rightarrow NU): cheap for huge number of targets x

Note: only two passes through size-N data; rest is quasilinear in MSuperior scaling to any other known algorithm (SKI, fast direct, etc)

However, prefactor also important — now show results comparisons...

We compare EFGP to three state-of-the-art GP solvers w/ software:

- SKI (structured kernel interpolation) (Wilson '15) in GPyTorch (Gardner '19) Cart. grid of inducing points \rightarrow FFT-accel matvec, iterative CG solve of FS lin. sys.
- FLAM (fast linear algebra in MATLAB) (Ho '20) as used by (Minden '17) fast direct, FS: recursive skeletonization, interpolative decomp., annulus of proxy points
- RLCM (recursively low-rank compressed matrices) (Chen '21) fast direct, FS: hierarchical Nyström approx, pos. def., claims O(N) cost, in C++

We compare EFGP to three state-of-the-art GP solvers w/ software:

- SKI (structured kernel interpolation) (Wilson '15) in GPyTorch (Gardner '19) Cart. grid of inducing points \rightarrow FFT-accel matvec, iterative CG solve of FS lin. sys.
- FLAM (fast linear algebra in MATLAB) (Ho '20) as used by (Minden '17) fast direct, FS: recursive skeletonization, interpolative decomp., annulus of proxy points
- RLCM (recursively low-rank compressed matrices) (Chen '21) fast direct, FS: hierarchical Nyström approx, pos. def., claims O(N) cost, in C++

Meaningful error metrics? Recall goal to recover f(x) from $\{(x_n, y_n)\}$

• RMSE (typical in ML & kriging): root mean square prediction error $x_1^*, \dots x_p^*$ new held-out points, $y_1^*, \dots y_p^*$ data, RMSE := $\left(\frac{1}{P} \sum_{n=1}^{P} [\mu(x_n^*) - y_n^*]^2\right)^{1/2}$

We compare EFGP to three state-of-the-art GP solvers w/ software:

- SKI (structured kernel interpolation) (Wilson '15) in GPyTorch (Gardner '19) Cart. grid of inducing points \rightarrow FFT-accel matvec, iterative CG solve of FS lin. sys.
- FLAM (fast linear algebra in MATLAB) (Ho '20) as used by (Minden '17) fast direct, FS: recursive skeletonization, interpolative decomp., annulus of proxy points
- RLCM (recursively low-rank compressed matrices) (Chen '21) fast direct, FS: hierarchical Nyström approx, pos. def., claims O(N) cost, in C++

Meaningful error metrics? Recall goal to recover f(x) from $\{(x_n, y_n)\}$

• RMSE (typical in ML & kriging): root mean square prediction error $x_1^*, \ldots x_p^*$ new held-out points, $y_1^*, \ldots y_p^*$ data, RMSE := $\left(\frac{1}{P} \sum_{n=1}^{P} [\mu(x_n^*) - y_n^*]^2\right)^{1/2}$ Problem: as approx GP becomes exact, RMSE $\rightarrow \mathcal{O}(\sigma)$, not zero :(

We compare EFGP to three state-of-the-art GP solvers w/ software:

- SKI (structured kernel interpolation) (Wilson '15) in GPyTorch (Gardner '19) Cart. grid of inducing points \rightarrow FFT-accel matvec, iterative CG solve of FS lin. sys.
- FLAM (fast linear algebra in MATLAB) (Ho '20) as used by (Minden '17) fast direct, FS: recursive skeletonization, interpolative decomp., annulus of proxy points
- RLCM (recursively low-rank compressed matrices) (Chen '21) fast direct, FS: hierarchical Nyström approx, pos. def., claims O(N) cost, in C++

Meaningful error metrics? Recall goal to recover f(x) from $\{(x_n, y_n)\}$

- RMSE (typical in ML & kriging): root mean square prediction error $x_1^*, \ldots x_p^*$ new held-out points, $y_1^*, \ldots y_p^*$ data, RMSE := $\left(\frac{1}{P} \sum_{n=1}^{P} [\mu(x_n^*) - y_n^*]^2\right)^{1/2}$ Problem: as approx GP becomes exact, RMSE $\rightarrow \mathcal{O}(\sigma)$, not zero :(
- Estimated error in posterior mean. EEPM_{new} := (¹/_P Σ^P_{n=1}[μ(x^{*}_n) − μ_{ex}(x^{*}_n)]²)^{1/2} Converges → 0. "exact" regression μ_{ex} found by convergence study of trusted method

We compare EFGP to three state-of-the-art GP solvers w/ software:

- SKI (structured kernel interpolation) (Wilson '15) in GPyTorch (Gardner '19) Cart. grid of inducing points \rightarrow FFT-accel matvec, iterative CG solve of FS lin. sys.
- FLAM (fast linear algebra in MATLAB) (Ho '20) as used by (Minden '17) fast direct, FS: recursive skeletonization, interpolative decomp., annulus of proxy points
- RLCM (recursively low-rank compressed matrices) (Chen '21) fast direct, FS: hierarchical Nyström approx, pos. def., claims O(N) cost, in C++

Meaningful error metrics? Recall goal to recover f(x) from $\{(x_n, y_n)\}$

- RMSE (typical in ML & kriging): root mean square prediction error $x_1^*, \ldots x_p^*$ new held-out points, $y_1^*, \ldots y_p^*$ data, RMSE := $\left(\frac{1}{p} \sum_{n=1}^{p} [\mu(x_n^*) - y_n^*]^2\right)^{1/2}$ Problem: as approx GP becomes exact, RMSE $\rightarrow \mathcal{O}(\sigma)$, not zero :(
- Estimated error in posterior mean. EEPM_{new} := (¹/_P Σ^P_{n=1}[μ(x^{*}_n) μ_{ex}(x^{*}_n)]²)^{1/2} Converges → 0. "exact" regression μ_{ex} found by convergence study of trusted method
- But...error in f(x) recovery? e.g. $\left(\frac{1}{q}\sum_{n=1}^{q}[\mu(x_n^*) f(x_n^*)]^2\right)^{1/2}$ Measures success of (even exact!) GP regression as a tool. Unused? Future study...

Results: CPU time vs accuracy achieved

Synthetic $N = 10^5$ data points, iid uniform random in $[0, 1]^d$ $f(x) = \sin(\omega \cdot x + a), \quad y_n = f(x_n) + \varepsilon_n, \quad \varepsilon_n \text{ iid Gaussian, } \sigma = 0.5$ For each method we vary a tolerance param (ε , rank, etc..) to get curve:

3D, squared-exponential kernel, $\ell=0.1$

2D, Matérn-1/2 kernel, $\ell = 0.1$

SE (left): EFGP 100× faster at 2-digit acc, can go to many digits recall SE smooth kernel, k̂ super-exp. decay: very easy for Fourier method
 Matérn ν=¹/₂ (right): FLAM best for high-acc (3+ digits) k̂ ~ |ε|^{-1-d}, hardest for Fourier, yet EFGP 100× faster at 1-digit acc.

Results: atmospheric ppm CO_2 satellite data in d = 2

Results: large scale tests with nearest competitor (FLAM)

Synthetic 2D data, Matérn- $\frac{3}{2}$ kernel $\ell = 0.1$:

Alg	σ	ε	Ν	т	iters	tot (s)	mem (GB)	EEPM	$\mathrm{EEPM}_{\mathrm{new}}$	RMSE
EFGP	0.1	10^{-5}	$3 imes 10^6$	94	2853	9	0.1	$4.6 imes10^{-3}$	$4.6 imes10^{-3}$	$1.0 imes10^{-1}$
EFGP	0.1	10^{-7}	$3 imes 10^6$	346	9481	517	0.1	$2.0 imes10^{-4}$	$1.9 imes10^{-4}$	$1.0 imes10^{-1}$
FLAM	0.1	10^{-7}	$3 imes 10^6$			384	9.1	$5.4 imes10^{-5}$	$3.0 imes10^{-4}$	$1.0 imes10^{-1}$
EFGP	0.1	10^{-5}	10 ⁷	94	2634	10	0.3	$3.9 imes10^{-3}$	$3.9 imes10^{-3}$	$1.0 imes10^{-1}$
EFGP	0.1	10^{-7}	107	346	15398	878	0.7	$3.4 imes10^{-4}$	$3.4 imes10^{-4}$	$1.0 imes10^{-1}$
FLAM	0.1	10^{-7}	107			1272	25.0	$8.0 imes10^{-5}$	$4.6 imes10^{-4}$	$1.0 imes10^{-1}$
EFGP	0.1	10^{-5}	$3 imes10^7$	94	1915	9	2.6	$3.1 imes10^{-3}$	$3.1 imes10^{-3}$	$1.0 imes10^{-1}$
EFGP	0.1	10^{-7}	$3 imes 10^7$	346	23792	1315	2.8	$5.4 imes10^{-4}$	$5.4 imes10^{-4}$	$1.0 imes10^{-1}$
FLAM	0.1	10^{-7}	$3 imes 10^7$			3328	54.6	$1.0 imes10^{-4}$	$7.7 imes10^{-4}$	$1.0 imes10^{-1}$
EFGP	0.1	10^{-5}	10 ⁸	94	1393	14	9.3	$2.3 imes10^{-3}$	$2.3 imes10^{-3}$	$1.0 imes10^{-1}$
EFGP	0.1	10^{-7}	10 ⁸	346	35905	2055	9.5	$7.6 imes10^{-4}$	$7.6 imes10^{-4}$	$1.0 imes10^{-1}$
EFGP	0.1	10^{-5}	10 ⁹	94	1027	103	96.7	$1.2 imes 10^{-3}$	$1.2 imes 10^{-3}$	$1.0 imes 10^{-1}$
EFGP	0.1	10^{-7}	10 ⁹	346	66199	4048	97.0	$7.9 imes10^{-4}$	$7.9 imes10^{-4}$	$1.0 imes10^{-1}$

• EFGP RAM scaling $\mathcal{O}(N)$, and 20–100× less than FLAM

12-core desktop w/ 192 GB: could not run FLAM for $N > 10^8$

- EFGP becomes $3 \times$ faster at $N = 3 \times 10^7$ and comparable accuracy
- If happy with 3-digit accuracy, EFGP does $N = 10^9$ in 2 minutes
- But: iteration count gets huge as decrease ε (why?)

Conditioning of the linear systems

Huge bnd: eg $N = 10^7$, $\sigma = 0.1$ gives $\kappa \le 10^9$, $n_{\text{iter}} \le 10^5$ for $\varepsilon = 10^{-5}$ consequence: all digits can be lost in single-precision arithmetic!

Conditioning of the linear systems

By kth conjugate gradient iter, error $\leq c \left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^{k} \approx c e^{-2k/\sqrt{\kappa}} \kappa = \text{cond. num.}$ d=1 iid u rand in [0,1] In EFGP we care about WS $\kappa(\Phi^*\Phi + \sigma^2 I)$ squared-exponential 6 $1 = 0.1 \quad \sigma = 0.3$ 5 $og_{10} \kappa$ Empirically we see this grows closely to its 4 upper bound $\kappa(K + \sigma^2 I) \leq \frac{N}{r^2} + 1$ 3 $-W^{S}\kappa(\Phi^{*}\Phi + \sigma^{2}I)$ pf easy: $||K|| \le ||K||_F \le N$, and $K \ge 0$ by pos. kernel $\mathbf{2}$ Upper bound - FS $\kappa(K + \sigma^2 I)$ FS and WS cond. num. similar, and bad! 3 5

 $\log_{10} N$

Huge bnd: eg $N = 10^7$, $\sigma = 0.1$ gives $\kappa \le 10^9$, $n_{\text{iter}} \le 10^5$ for $\varepsilon = 10^{-5}$ consequence: all digits can be lost in single-precision arithmetic! Mystery 1: we observe *non-geometric* CG residual norm decay $\varepsilon \sim 1/k^2$ Mystery 2: can show GP regression *problem* has (abs.) cond. num. of 1 So, FS or WS methods handle ill-cond. sys to solve well-cond. prob... IMHO not good! Much to explore, preconditioning...

How do nonuniform FFTs? our FINUFFT library

æ

http://finufft.readthedocs.io

As an example, given M real numbers $x_j \in [0, 2\pi)$, and complex numbers c_j , with j = 1, ..., M, and a requested integer number of modes N, FINUFFT can efficiently compute the 1D "type 1" transform, which means to evaluate the N complex outputs

$$f_k = \sum_{i=1}^{M} c_j e^{ik_{T_j}}$$
, for $k \in \mathbb{Z}$, $-N/2 \le k \le N/2 - 1$.

(Barnett-Magland-af Klinteberg SISC '19)

v1.0 released 2018, now v2.1.0 Types 1,2,3, in d = 1, 2, 3 dims

multithreaded C++, C API, wrappers:

Fortran, Python, MATLAB/Octave, Julia

 \sim 5 devs; \sim 20 contributors 160 GitHub stars MRI, cryo-EM, PDE, sig. proc.

How do nonuniform FFTs? our FINUFFT library

http://finufft.readthedocs.io

(Barnett-Magland-af Klinteberg SISC '19)

v1.0 released 2018, now v2.1.0 Types 1,2,3, in d = 1, 2, 3 dims

multithreaded C++, C API, wrappers:

Fortran, Python, MATLAB/Octave, Julia

 \sim 5 devs; \sim 20 contributors 160 GitHub stars MRI, cryo-EM, PDE, sig. proc.

Standard alg: spread ightarrow upsampled FFT ightarrow diagonal correction (type 1)

- new spreading kernel $e^{eta\sqrt{1-x^2}}$
- piecewise polynomial Horner eval.
- SIMD-vectorized
- bin-sort for load-balanced spread

Typ:
$$10^7~{
m NU}~{
m pts/s}$$
, laptop, $arepsilon=10^{-6}$

Conclusions

GP regression popular for interpolation (kriging) from noisy scattered data

- We fix its poor scaling, allowing data size to $N\sim 10^9$ in minutes
- Equispaced quadrature in Fourier space ightarrow iter. solve for the weights
- One pass through data in $\mathcal{O}(N + M \log M)$; fast $M \log M$ per iter.
- Dimension d "low" (say $d \le 6$); not for high-dim ML apps.

Preprint: http://arxiv.org/abs/2210.10210 MATLAB pkg: http://github.com/flatironinstitute/gp-shootout

Conclusions

GP regression popular for interpolation (kriging) from noisy scattered data

- We fix its poor scaling, allowing data size to $N\sim 10^9$ in minutes
- Equispaced quadrature in Fourier space ightarrow iter. solve for the weights
- One pass through data in $\mathcal{O}(N + M \log M)$; fast $M \log M$ per iter.
- Dimension d "low" (say $d \le 6$); not for high-dim ML apps.

Preprint: http://arxiv.org/abs/2210.10210 MATLAB pkg: http://github.com/flatironinstitute/gp-shootout

Preliminary work (new area for me, 2022). Many things to do:

- Work with application users, release more than just research code
- Estimation of parameters $(\ell, \nu, \sigma, ...)$ max likelihood needs fast det $(\kappa + \sigma^2 I)$

for now could estimate by cross-validation

- preconditioning (or fast direct solve) for Toeplitz+diagonal system
- Is GP regression (kriging) actually a *local* problem? Feels like it!

but not in general: (banded matrix)⁻¹ \neq banded matrix

