

Challenges in fast solvers for highly oscillatory problems

Alex H. Barnett¹

5/26/22

¹Center for Computational Mathematics, Flatiron Institute, Simons Foundation

* this is a collection of opinions, not a complete review (apologies if I omit an area)

Tasks: frequency-domain wave BVPs

Helmholtz $(\Delta + k(\mathbf{x})^2)u = g$ in $\Omega \subset \mathbb{R}^d$, d = 1, 2, 3 acoustic, quantum, 2D EM usually radiation (or multilayer, or worse) outgoing conditions

non-scalar cases: Maxwell (3D EM), elastodynamics (seismic)

Tasks: frequency-domain wave BVPs

Helmholtz $(\Delta + k(\mathbf{x})^2)u = g$ in $\Omega \subset \mathbb{R}^d$, d = 1, 2, 3 acoustic, quantum, 2D EM usually radiation (or multilayer, or worse) outgoing conditions non-scalar cases: Maxwell (3D EM), elastodynamics (seismic)

Variable coeff $k(\mathbf{x})$: shown: source *g* localized, in domain Methods: FD, FFT, FEM, spec elem, HPS Lippman–Schwinger (vol. IE), ...

Tasks: frequency-domain wave BVPs

Helmholtz $(\Delta + k(\mathbf{x})^2)u = g$ in $\Omega \subset \mathbb{R}^d$, d = 1, 2, 3 acoustic, quantum, 2D EM usually radiation (or multilayer, or worse) outgoing conditions non-scalar cases: Maxwell (3D EM), elastodynamics (seismic)

Variable coeff $k(\mathbf{x})$: shown: source *g* localized, in domain Methods: FD, FFT, FEM, spec elem, HPS Lippman–Schwinger (vol. IE), ...

Piecewise-const $k(\mathbf{x})$: eg $(\Delta + k^2)u = 0$ in $\mathbb{R}^d \setminus \overline{\Omega}$ u = f on $\partial \Omega$ or $\partial u / \partial n$, Robin, etc or transmission matching conditions k_i in Ω_i , $i = 1, \dots, n_{\text{media}}$ Scattering: f cancels incident wave Methods: potential theory \rightarrow Boundary IEs \rightarrow Nyström/Galerkin BEM; MPS, MFS

(Zepeda-Nuñez + Demanet '15)

WEAK SCATTERING

 $k(\mathbf{x}) \approx k_0, \quad u_{\text{scatt}} \ll u_{\text{inc}}$ Born approx = 1st-ord. pert. th: $u_{\text{scatt}} \approx G * (k^2 - k_0^2)$ optically "thin," microscopy, Fourier imaging

WEAK SCATTERING

RAY-LIKE (EIKONAL)

bending ray/beam refractive index $k(\mathbf{x})/k_{inc}$

 $u \approx$ locally 1 (or few) plane-waves no direct reflections \rightarrow no resonances but: caustics!

WEAK SCATTERING

bending ray/beam refractive index $k(x)/k_{inc}$

 $u \approx$ locally 1 (or few) plane-waves no direct reflections \rightarrow no resonances but: caustics!

STRONG SCATT. / RESONANT

 $k(\mathbf{x})$ big changes/jumps multiple reflections cavities, trapped rays movie

 $\mathsf{resonances} \rightarrow$

rapid changes in u w.r.t. k_{inc}

WEAK SCATTERING

 $k(\mathbf{x}) \approx k_0, \quad u_{\text{scatt}} \ll u_{\text{inc}}$ Born approx = 1st-ord. pert. th: $u_{\text{scatt}} \approx G * (k^2 - k_0^2)$ optically "thin," microscopy, Fourier imaging

- bending ray/beam refractive index $k(\mathbf{x})/k_{inc}$
- $u \approx$ locally 1 (or few) plane-waves no direct reflections \rightarrow no resonances but: caustics!

STRONG SCATT. / RESONANT

 $k(\mathbf{x})$ big changes/jumps multiple reflections cavities, trapped rays movie

 $\mathsf{resonances} \to$

rapid changes in u w.r.t. k_{inc}

Hard regime is $k \sim 10^2$ to 10^4 ; beyond this, geom. optics sometimes ok

Boundary conditions generally induce strong scattering:

cavity open arc Dirichlet Helmholtz 2D, k_{inc} hitting a resonance

(Lintner-Bruno '12)

(unless convex)

usual discr. (even high order) needs \geq few points per wavelength Nyquist

- Vol discr: $N \sim k^d$
- BIE discr: $N \sim k^{d-1}$

wavelength $\lambda=2\pi/k$ eg 100 λ in 3d: $N\sim 10^9$

Kress (gold standard): > 4 ppw

usual discr. (even high order) needs \geq few points per wavelength Nyquist

- Vol discr: $N \sim k^d$ wavelength $\lambda = 2\pi/k$ eg 100 λ in 3d: $N \sim 10^9$
- BIE discr: $N \sim k^{d-1}$ Kress (gold standard): > 4 ppw

IDEA i) For 1D k(x) smooth (osc. 2nd-ord ODE): solve phase function $u(x) = ae^{i\int \phi(x)dx} + be^{-i\int \phi(x)dx}$, only 2 directions! phase func $\phi(x)$ smooth effort indep of k. Challenge: automate, adaptive/switching (Bremer-Rokhlin; Agogs)

usual discr. (even high order) needs \geq few points per wavelength Nyquist

- Vol discr: $N \sim k^d$ wavelength $\lambda = 2\pi/k$ eg 100 λ in 3d: $N \sim 10^9$
- BIE discr: $N \sim k^{d-1}$ Kress (gold standard): > 4 ppw
- IDEA i) For 1D k(x) smooth (osc. 2nd-ord ODE): solve phase function $u(x) = ae^{i \int \phi(x)dx} + be^{-i \int \phi(x)dx}$, only 2 directions! phase func $\phi(x)$ smooth effort indep of k. Challenge: automate, adaptive/switching (Bremer-Rokhlin; Agogs)
- IDEA ii) For 2D/3D BIE & one convex obstacle single scattering bases inspired by geom. optics: then N grows v. weakly (eg $k^{1/9}$) Challenge: scatt. from even 3 disks: exponential # rays (chaotic!)

usual discr. (even high order) needs \geq few points per wavelength Nyquist

- Vol discr: $N \sim k^d$ wavelength $\lambda = 2\pi/k$ eg 100 λ in 3d: $N \sim 10^9$
- BIE discr: $N \sim k^{d-1}$ Kress (gold standard): > 4 ppw
- IDEA i) For 1D k(x) smooth (osc. 2nd-ord ODE): solve phase function $u(x) = ae^{i \int \phi(x)dx} + be^{-i \int \phi(x)dx}$, only 2 directions! phase func $\phi(x)$ smooth effort indep of k. Challenge: automate, adaptive/switching (Bremer-Rokhlin; Agogs)
- IDEA ii) For 2D/3D BIE & one convex obstacle single scattering bases inspired by geom. optics: then N grows v. weakly (eg $k^{1/9}$) Challenge: scatt. from even 3 disks: exponential # rays (chaotic!)
- IDEA iii) Soln. in Ω only $\sim k^{d-1}$ effective unknowns, scales like bdry $\partial \Omega$ eg, DtN map describes Ω response at freq k eg, exploited by HPS Strong scatt \rightarrow waves going in all directions \rightarrow can't beat it (?)

Reminder that resonant cavity has waves traveling in all directions:

density on bdry contains all spatial freqs from 0 to $k_{\rm inc}$, can't reduce N

CHALLENGE 2: Failure of iterative solvers

Vol. discr. (FD/FEM): multigrid precond fails for $k \gg 1$

Poission Greens kernel k = 0 was scale-invar/smoothing

• shifted Laplacian precond. has some claims $\operatorname{eg only} \mathcal{O}(k^{1/3})$ iter growth

IDEA: sweeping precond / one-way coupling of subdomains

- pretends that the half-space does not reflect \rightarrow fails for strong scatt.
- how to use domain decomposition precond w/ resonant coupling?

CHALLENGE 2: Failure of iterative solvers

Vol. discr. (FD/FEM): multigrid precond fails for $k \gg 1$

Poission Greens kernel k = 0 was scale-invar/smoothing

• shifted Laplacian precond. has some claims $\operatorname{eg only} \mathcal{O}(k^{1/3})$ iter growth

IDEA: sweeping precond / one-way coupling of subdomains

- pretends that the half-space does not reflect \rightarrow fails for strong scatt.
- how to use domain decomposition precond w/ resonant coupling?

BIE/BEM: resonant (eg, cavity): formally 2nd-kind but GMRES k^{d-1} iters

- BIE operator $\frac{1}{2} D_k i\eta S_k$ has eigenvalue density $\mathcal{O}(k^{d-1})$ at origin
- we will hear more about this today (analysis: Spence, Marchand...)

Challenge: new BIE precond. to remove (many?) resonances Challenge: exploit/interpolate slow *k*-dep. of BIE op eigenvalues?

BIE & VIE: fast algs (FMM, FDS) need kernel smoothing in far-field...

BIE & VIE: fast algs (FMM, FDS) need kernel smoothing in far-field...

• Classical well-separated boxes

siz D targ

$$\begin{split} & k \sim 1 : \varepsilon \text{-rank } \mathcal{O}(\log^{d-1} \varepsilon^{-1}) & \text{basically } \mathcal{O}(1) \\ & k \gg 1 : \varepsilon \text{-rank } \mathcal{O}((kD)^{d-1}) & \text{rank growth :}(\end{split}$$

... and for $k \gg 1$ FMM, \exists diagonal translation ops

strong admissibility in HODLR, H-mat, etc

BIE & VIE: fast algs (FMM, FDS) need kernel smoothing in far-field...

• Classical well-separated boxes

$$\begin{split} k &\sim 1: \ensuremath{\varepsilon}\mbox{-rank} \ \mathcal{O}(\log^{d-1} \ensuremath{\varepsilon}\mbox{-1}) & \mbox{basically} \ \mathcal{O}(1) \\ k &\gg 1: \ensuremath{\varepsilon}\mbox{-rank} \ \mathcal{O}((kD)^{d-1}) & \mbox{rank growth}: (\end{split}$$

... and for $k \gg 1$ FMM, \exists diagonal translation ops

strong admissibility in HODLR. \mathcal{H} -mat. etc

• But oscillatory kernel has "parabolic" separability = Rayleigh diffraction limit

- $k \gg 1$: rank $\mathcal{O}((kD_1D_2/L)^{d-1})$ low-rank if $(kD_1)(kD_2) < kL$ 2D: similar to $D_1 \times D_2$ block of size-N DFT mat
- \Rightarrow can "butterfly" compress BIE matrix

like FFT written as prod of $\log_2 N$ sparse mats

BIE & VIE: fast algs (FMM, FDS) need kernel smoothing in far-field...

• Classical well-separated boxes

l'sre' D

$$\begin{split} k &\sim 1: \ensuremath{\varepsilon}\mbox{-rank} \ \mathcal{O}(\log^{d-1} \ensuremath{\varepsilon}\mbox{-1}) & \mbox{basically} \ \mathcal{O}(1) \\ k &\gg 1: \ensuremath{\varepsilon}\mbox{-rank} \ \mathcal{O}((kD)^{d-1}) & \mbox{rank growth}: (\end{split}$$

... and for $k \gg 1$ FMM, \exists diagonal translation ops

• But oscillatory kernel has "parabolic" separability = Rayleigh diffraction limit

 $k \gg 1$: rank $\mathcal{O}((kD_1D_2/L)^{d-1})$ low-rank if $(kD_1)(kD_2) < kL$

2D: similar to $D_1 \times D_2$ block of size-N DFT mat

strong admissibility in HODLR. \mathcal{H} -mat. etc

 \Rightarrow can "butterfly" compress BIE matrix

like FFT written as prod of $\log_2 N$ sparse mats

Compression/inversion: solvers research phase (randomized lin alg, etc) Challenge to interface to application users (but see butterflyPACK, Liu)

Assorted CHALLENGES

4) Imposing Sommerfeld or "interesting media" radiation conditions

- for vol. discr: PMLs poor near corners, grazing rays; BIE op too big
- for BIE: half-space or multilayer media (Green's funcs/FMMs) photonic crystals ("half-space matching" method) (Fliss)

5) HPS: top-level merges $n \sim k^{d-1}$, dense inverse $S_{ ext{glue}}^{-1}$ takes $\mathcal{O}(n^3)$

• Idea: HPS merge at leaf (low) levels but iterate on high levels

(Lucero-Lorca, Gillman)

• Challenge: can't use HODLR/HBS \rightarrow butterfly compress $S_{
m glue}$?

6) Ill-conditioning for $k \gg 1$ of Lippman–Schwinger VIE GMRES poor

CHALLENGE 7: Resonances and k-dependent information

 $\begin{array}{c} \mbox{Multiple reflections} \rightarrow \mbox{resonances} \rightarrow \mbox{rapid k-dependence of soln} \\ \dots \rightarrow \mbox{annoyingly fine k-sampling needed} \end{array}$

CHALLENGE 7: Resonances and k-dependent information

 $\begin{array}{c} \mbox{Multiple reflections} \rightarrow \mbox{resonances} \rightarrow \mbox{rapid k-dependence of soln} \\ \dots \rightarrow \mbox{annoyingly fine k-sampling needed} \end{array}$

IDEA: more efficiency via solve together a range $k \in [k_1, k_2]$?

- exploit slow change of G_k , rational approx to inverses/soln?
- related to eigenvalue (closed cavity) BVP:

Sometimes $\mathcal{O}(N)$ speedup by linearize in k ... apply to scattering?

 $-\Delta\phi_i = \lambda_i\phi_i$

CHALLENGE 7: Resonances and k-dependent information

 $\begin{array}{c} \mbox{Multiple reflections} \rightarrow \mbox{resonances} \rightarrow \mbox{rapid k-dependence of soln} \\ \dots \rightarrow \mbox{annoyingly fine k-sampling needed} \end{array}$

 $-\Delta\phi_i = \lambda_i\phi_i$

IDEA: more efficiency via solve together a range $k \in [k_1, k_2]$?

- exploit slow change of G_k , rational approx to inverses/soln?
- related to eigenvalue (closed cavity) BVP:

Sometimes $\mathcal{O}(N)$ speedup by linearize in k ... apply to scattering?

Conclusion: Highly-osc BVPs is a great place for numerics/software/analysis/applications to meet!