Challenges in fast solvers for highly oscillatory problems

Alex H. Barnett ${ }^{1}$

5/26/22
${ }^{1}$ Center for Computational Mathematics, Flatiron Institute, Simons Foundation

* this is a collection of opinions, not a complete review (apologies if I omit an area)

Tasks: frequency-domain wave BVPs

Helmholtz $\quad\left(\Delta+k(\mathbf{x})^{2}\right) u=g$ in $\Omega \subset \mathbb{R}^{d}, \quad d=1,2,3$ acoustic, quantum, 2D EM
usually radiation (or multilayer, or worse) outgoing conditions
non-scalar cases: Maxwell (3D EM), elastodynamics (seismic)

Tasks: frequency-domain wave BVPs

Helmholtz $\left(\Delta+k(\mathbf{x})^{2}\right) u=g$ in $\Omega \subset \mathbb{R}^{d}, \quad d=1,2,3$ acoustic, quantum, 2D EM
usually radiation (or multilayer, or worse) outgoing conditions non-scalar cases: Maxwell (3D EM), elastodynamics (seismic)

Variable coeff $k(\mathbf{x})$:

shown: source g localized, in domain Methods: FD, FFT, FEM, spec elem, HPS Lippman-Schwinger (vol. IE), ...

Tasks: frequency-domain wave BVPs

Helmholtz $\quad\left(\Delta+k(\mathbf{x})^{2}\right) u=g$ in $\Omega \subset \mathbb{R}^{d}, \quad d=1,2,3$ acoustic, quantum, 2D EM usually radiation (or multilayer, or worse) outgoing conditions non-scalar cases: Maxwell (3D EM), elastodynamics (seismic)

Variable coeff $k(\mathbf{x})$:

shown: source g localized, in domain Methods: FD, FFT, FEM, spec elem, HPS Lippman-Schwinger (vol. IE), ...

Piecewise-const $k(\mathbf{x})$:
eg $\quad\left(\Delta+k^{2}\right) u=0 \quad$ in $\mathbb{R}^{d} \backslash \bar{\Omega}$ $u=f$ on $\partial \Omega$ or $\partial u / \partial n$, Robin, etc or transmission matching conditions k_{i} in $\Omega_{i}, \quad i=1, \ldots, n_{\text {media }}$
Scattering: f cancels incident wave Methods: potential theory \rightarrow Boundary IEs \rightarrow Nyström/Galerkin BEM; MPS, MFS

Three regimes

WEAK SCATTERING

$k(\mathbf{x}) \approx k_{0}, \quad u_{\text {scatt }} \ll u_{\text {inc }}$
Born approx $=$ 1st-ord. pert. th:
$u_{\mathrm{scatt}} \approx G *\left(k^{2}-k_{0}^{2}\right)$
optically "thin," microscopy,
Fourier imaging

Three regimes

WEAK SCATTERING

$k(\mathbf{x}) \approx k_{0}, \quad u_{\text {scatt }} \ll u_{\text {inc }}$
Born approx =
1st-ord. pert. th:
$u_{\text {scatt }} \approx G *\left(k^{2}-k_{0}^{2}\right)$
optically "thin," microscopy,
Fourier imaging

RAY-LIKE (EIKONAL)

bending ray/beam refractive index $k(x) / k_{\text {inc }}$
$u \approx$ locally 1 (or few) plane-waves
no direct reflections
\rightarrow no resonances
but: caustics!

Three regimes

WEAK SCATTERING

$k(\mathbf{x}) \approx k_{0}, \quad u_{\text {scatt }} \ll u_{\text {inc }}$
Born approx $=$ 1st-ord. pert. th:
$u_{\text {scatt }} \approx G *\left(k^{2}-k_{0}^{2}\right)$
optically "thin," microscopy,
Fourier imaging

RAY-LIKE (EIKONAL)

Peri pat of total ficld ria nee mettiod

bending ray/beam refractive index $k(x) / k_{\text {inc }}$
$u \approx$ locally 1 (or few) plane-waves
no direct reflections
\rightarrow no resonances
but: caustics!

STRONG SCATT. / RESONANT

$k(\mathbf{x})$ big changes/jumps multiple reflections cavities, trapped rays movie
resonances \rightarrow
rapid changes in u w.r.t. $K_{\text {inc }}$

Three regimes

WEAK SCATTERING

$k(\mathbf{x}) \approx k_{0}, \quad u_{\text {scatt }} \ll u_{\text {inc }}$
Born approx $=$ 1st-ord. pert. th:
$u_{\text {scatt }} \approx G *\left(k^{2}-k_{0}^{2}\right)$
optically "thin," microscopy,
Fourier imaging

RAY-LIKE (EIKONAL)

Aesil part of tatal field via nee mettrod

bending ray/beam refractive index $k(x) / k_{\text {inc }}$
$u \approx$ locally 1 (or few) plane-waves
no direct reflections
\rightarrow no resonances
but: caustics!

STRONG SCATT. / RESONANT

$k(\mathbf{x})$ big changes/jumps multiple reflections cavities, trapped rays movie
resonances \rightarrow
rapid changes in u w.r.t. $K_{\text {inc }}$ Hard regime is $k \sim 10^{2}$ to 10^{4}; beyond this, geom. optics sometimes ok

CHALLENGE 1: degrees of freedom (N)

usual discr. (even high order) needs \geq few points per wavelength Nyquist

- Vol discr: $N \sim k^{d}$ wavelength $\lambda=2 \pi / k \quad$ eg 100 λ in $3 d: N \sim 10^{9}$
- BIE discr: $N \sim k^{d-1}$

Kress (gold standard): > 4 ppw

CHALLENGE 1: degrees of freedom (N)

usual discr. (even high order) needs \geq few points per wavelength Nyquist

- Vol discr: $N \sim k^{d} \quad$ wavelength $\lambda=2 \pi / k \quad$ eg 100 in 3d: $N \sim 10^{9}$
- BIE discr: $N \sim k^{d-1} \quad$ Kress (gold standard): >4 ppw

IDEA i) For 1D $k(x)$ smooth (osc. 2nd-ord ODE): solve phase function $u(x)=a e^{i \int \phi(x) d x}+b e^{-i \int \phi(x) d x}$, only 2 directions! phase func $\phi(x)$ smooth effort indep of k. Challenge: automate, adaptive/switching
(Bremer-Rokhlin; Agogs)

CHALLENGE 1: degrees of freedom (N)

usual discr. (even high order) needs \geq few points per wavelength Nyquist

- Vol discr: $N \sim k^{d} \quad$ wavelength $\lambda=2 \pi / k \quad$ eg 100 in 3d: $N \sim 10^{9}$
- BIE discr: $N \sim k^{d-1}$

```
Kress (gold standard): > 4 ppw
```

IDEA i) For 1D $k(x)$ smooth (osc. 2nd-ord ODE): solve phase function $u(x)=a e^{i \int \phi(x) d x}+b e^{-i \int \phi(x) d x}$, only 2 directions! phase func $\phi(x)$ smooth effort indep of k. Challenge: automate, adaptive/switching
(Bremer-Rokhlin; Agogs)
IDEA ii) For 2D/3D BIE \& one convex obstacle single scattering bases inspired by geom. optics: then N grows v. weakly (eg $k^{1 / 9}$) Challenge: scatt. from even 3 disks: exponential \# rays (chaotic!)

CHALLENGE 1: degrees of freedom (N)

usual discr. (even high order) needs \geq few points per wavelength Nyquist

- Vol discr: $N \sim k^{d} \quad$ wavelength $\lambda=2 \pi / k \quad$ eg 100λ in $3 \mathrm{~d}: ~ N \sim 10^{9}$
- BIE discr: $N \sim k^{d-1}$

IDEA i) For 1D $k(x)$ smooth (osc. 2nd-ord ODE): solve phase function $u(x)=a e^{i \int \phi(x) d x}+b e^{-i \int \phi(x) d x}$, only 2 directions! phase func $\phi(x)$ smooth effort indep of k. Challenge: automate, adaptive/switching
(Bremer-Rokhlin; Agogs)
IDEA ii) For 2D/3D BIE \& one convex obstacle single scattering bases inspired by geom. optics: then N grows v. weakly (eg $k^{1 / 9}$) Challenge: scatt. from even 3 disks: exponential \# rays (chaotic!)

IDEA iii) Soln. in Ω only $\sim k^{d-1}$ effective unknowns, scales like bdry $\partial \Omega$ eg, DtN map describes Ω response at freq k eg, exploited by HPS Strong scatt \rightarrow waves going in all directions \rightarrow can't beat it (?)

Reminder that resonant cavity has waves traveling in all directions:

CHALLENGE 2: Failure of iterative solvers

Vol. discr. (FD/FEM): multigrid precond fails for $k \gg 1$
Poission Greens kernel $k=0$ was scale-invar/smoothing

- shifted Laplacian precond. has some claims eg only $\mathcal{O}\left(k^{1 / 3}\right)$ iter growth

IDEA: sweeping precond / one-way coupling of subdomains

- pretends that the half-space does not reflect \rightarrow fails for strong scatt.
- how to use domain decomposition precond $w /$ resonant coupling?

CHALLENGE 2: Failure of iterative solvers

Vol. discr. (FD/FEM): multigrid precond fails for $k \gg 1$
Poission Greens kernel $k=0$ was scale-invar/smoothing

- shifted Laplacian precond. has some claims eg only $\mathcal{O}\left(k^{1 / 3}\right)$ iter growth

IDEA: sweeping precond / one-way coupling of subdomains

- pretends that the half-space does not reflect \rightarrow fails for strong scatt.
- how to use domain decomposition precond $\mathrm{w} /$ resonant coupling?

BIE/BEM: resonant (eg, cavity): formally 2nd-kind but GMRES k^{d-1} iters

- BIE operator $\frac{1}{2}-D_{k}-i \eta S_{k}$ has eigenvalue density $\mathcal{O}\left(k^{d-1}\right)$ at origin
- we will hear more about this today (analysis: Spence, Marchand...)

Challenge: new BIE precond. to remove (many?) resonances
Challenge: exploit/interpolate slow k-dep. of BIE op eigenvalues?

CHALLENGE 3: Low-rank separability of Green's kernel BIE \& VIE: fast algs (FMM, FDS) need kernel smoothing in far-field. . .

CHALLENGE 3: Low-rank separability of Green's kernel

 BIE \& VIE: fast algs (FMM, FDS) need kernel smoothing in far-field...- Classical well-separated boxes
strong admissibility in HODLR, \mathcal{H}-mat, etc

$$
\begin{array}{ll}
k \sim 1: \varepsilon-\operatorname{rank} \mathcal{O}\left(\log ^{d-1} \varepsilon^{-1}\right) \quad \text { basically } \mathcal{O}(1) \\
k \gg 1: \varepsilon-\operatorname{rank} \mathcal{O}\left((k D)^{d-1}\right) \quad \text { rank growth :(}
\end{array}
$$

$$
\text { and for } k \gg 1 \text { FMM, } \exists \text { diagonal translation ops }
$$

CHALLENGE 3: Low-rank separability of Green's kernel

 BIE \& VIE: fast algs (FMM, FDS) need kernel smoothing in far-field. . .- Classical well-separated boxes

$$
\begin{array}{cc}
k \sim 1: \varepsilon-r a n k & \mathcal{O}\left(\log ^{d-1} \varepsilon^{-1}\right) \quad \text { basically } \mathcal{O}(1) \\
k \gg 1: \varepsilon-\operatorname{rank} \mathcal{O}\left((k D)^{d-1}\right) \quad \text { rank growth :(} \\
\quad \ldots \text { and for } k \gg 1 \mathrm{FMM}, \exists \text { diagonal translation ops }
\end{array}
$$

- But oscillatory kernel has "parabolic" separability = Rayleigh diffraction limit

$k \gg 1: \operatorname{rank} \mathcal{O}\left(\left(k D_{1} D_{2} / L\right)^{d-1}\right)$
low-rank if $\left(k D_{1}\right)\left(k D_{2}\right)<k L$
2D: similar to $D_{1} \times D_{2}$ block of size- N DFT mat
\Rightarrow can "butterfly" compress BIE matrix
like FFT written as prod of $\log _{2} N$ sparse mats

CHALLENGE 3: Low-rank separability of Green's kernel

 BIE \& VIE: fast algs (FMM, FDS) need kernel smoothing in far-field. . .- Classical well-separated boxes

$$
\begin{array}{ll}
k \sim 1: \varepsilon-\operatorname{rank} \mathcal{O}\left(\log ^{d-1} \varepsilon^{-1}\right) & \text { basically } \mathcal{O}(1) \\
k \gg 1: \varepsilon \text {-rank } \mathcal{O}\left((k D)^{d-1}\right) & \text { rank growth :(}
\end{array}
$$

. and for $k \gg 1$ FMM, \exists diagonal translation ops

- But oscillatory kernel has "parabolic" separability = Rayleigh diffraction limit

$k \gg 1: \operatorname{rank} \mathcal{O}\left(\left(k D_{1} D_{2} / L\right)^{d-1}\right)$
low-rank if $\left(k D_{1}\right)\left(k D_{2}\right)<k L$
2D: similar to $D_{1} \times D_{2}$ block of size- N DFT mat
\Rightarrow can "butterfly" compress BIE matrix
like FFT written as prod of $\log _{2} N$ sparse mats
Compression/inversion: solvers research phase (randomized lin alg, etc) Challenge to interface to application users

Assorted CHALLENGES

4) Imposing Sommerfeld or "interesting media" radiation conditions

- for vol. discr: PMLs poor near corners, grazing rays; BIE op too big
- for BIE: half-space or multilayer media (Green's funcs/FMMs) photonic crystals ("half-space matching" method) (Fliss)

5) HPS: top-level merges $n \sim k^{d-1}$, dense inverse $S_{\text {glue }}^{-1}$ takes $\mathcal{O}\left(n^{3}\right)$

- Idea: HPS merge at leaf (low) levels but iterate on high levels
(Lucero-Lorca, Gillman)
- Challenge: can't use HODLR/HBS \rightarrow butterfly compress $S_{\text {glue }}$?

6) III-conditioning for $k \gg 1$ of Lippman-Schwinger VIE

CHALLENGE 7: Resonances and k-dependent information

Multiple reflections \rightarrow resonances \rightarrow rapid k-dependence of soln
$\ldots \rightarrow$ annoyingly fine k-sampling needed

CHALLENGE 7: Resonances and k-dependent information

Multiple reflections \rightarrow resonances \rightarrow rapid k-dependence of soln
$\ldots \rightarrow$ annoyingly fine k-sampling needed
IDEA: more efficiency via solve together a range $k \in\left[k_{1}, k_{2}\right]$?

- exploit slow change of G_{k}, rational approx to inverses/soln?
- related to eigenvalue (closed cavity) BVP:

```
-\Delta\mp@subsup{\phi}{j}{}=\mp@subsup{\lambda}{j}{}\mp@subsup{\phi}{j}{}
```


$\phi_{j}: j=1$

$j=10$

$j=100$

$j=10^{3}$

$j=10^{4}$

$j=10^{5}$

Sometimes $\mathcal{O}(N)$ speedup by linearize in $k \ldots$ apply to scattering?

CHALLENGE 7: Resonances and k-dependent information

Multiple reflections \rightarrow resonances \rightarrow rapid k-dependence of soln
$\ldots \rightarrow$ annoyingly fine k-sampling needed
IDEA: more efficiency via solve together a range $k \in\left[k_{1}, k_{2}\right]$?

- exploit slow change of G_{k}, rational approx to inverses/soln?
- related to eigenvalue (closed cavity) BVP:

$\phi_{j}: j=1$

$j=10$

$j=100$

$j=10^{3}$

$j=10^{4}$

$j=10^{5}$

Sometimes $\mathcal{O}(N)$ speedup by linearize in $k \ldots$ apply to scattering?
Conclusion: Highly-osc BVPs is a great place for numerics/software/analysis/applications to meet!

