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Tasks: frequency-domain wave BVPs

Helmholtz (∆ + k(x)2)u = g in Ω ⊂ Rd , d = 1, 2, 3 acoustic, quantum, 2D EM

usually radiation (or multilayer, or worse) outgoing conditions

non-scalar cases: Maxwell (3D EM), elastodynamics (seismic)

Variable coeff k(x):
shown: source g localized, in domain

Methods: FD, FFT, FEM, spec elem, HPS

Lippman–Schwinger (vol. IE), . . .

(Zepeda-Nuñez + Demanet ’15)

Piecewise-const k(x):
eg (∆ + k2)u = 0 in Rd\Ω

u = f on ∂Ω or ∂u/∂n, Robin, etc

or transmission matching conditions
ki in Ωi , i = 1, . . . , nmedia

Scattering: f cancels incident wave
Methods: potential theory → Boundary IEs →

Nyström/Galerkin BEM; MPS, MFS (Greengard, O’Neil, Rachh, Vico ’21)
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Three regimes

WEAK SCATTERING

k(x) ≈ k0, uscatt � uinc

Born approx =
1st-ord. pert. th:

uscatt ≈ G ∗ (k2 − k2
0 )

optically “thin,” microscopy,

Fourier imaging

RAY-LIKE (EIKONAL)

bending ray/beam
refractive index k(x)/kinc

u ≈ locally 1 (or few)
plane-waves

no direct reflections
→ no resonances

but: caustics!

STRONG SCATT. /
RESONANT

k(x) big changes/jumps
multiple reflections
cavities, trapped rays
movie

resonances →
rapid changes in u w.r.t. kinc

Hard regime is k ∼ 102 to 104; beyond this, geom. optics sometimes ok
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Boundary conditions generally induce strong scattering: (unless convex)

cavity open arc Dirichlet Helmholtz 2D, kinc hitting a resonance (Lintner–Bruno ’12)



CHALLENGE 1: degrees of freedom (N)

usual discr. (even high order) needs ≥ few points per wavelength Nyquist

• Vol discr: N ∼ kd wavelength λ = 2π/k eg 100λ in 3d: N ∼ 109

• BIE discr: N ∼ kd−1 Kress (gold standard): > 4 ppw

IDEA i) For 1D k(x) smooth (osc. 2nd-ord ODE): solve phase function
u(x) = ae i

∫
φ(x)dx + be−i

∫
φ(x)dx , only 2 directions! phase func φ(x) smooth

effort indep of k. Challenge: automate, adaptive/switching
(Bremer–Rokhlin; Agogs)

IDEA ii) For 2D/3D BIE & one convex obstacle single scattering

bases inspired by geom. optics: then N grows v. weakly (eg k1/9)
Challenge: scatt. from even 3 disks: exponential # rays (chaotic!)

IDEA iii) Soln. in Ω only ∼ kd−1 effective unknowns, scales like bdry ∂Ω
eg, DtN map describes Ω response at freq k eg, exploited by HPS

Strong scatt → waves going in all directions → can’t beat it (?)



CHALLENGE 1: degrees of freedom (N)

usual discr. (even high order) needs ≥ few points per wavelength Nyquist

• Vol discr: N ∼ kd wavelength λ = 2π/k eg 100λ in 3d: N ∼ 109

• BIE discr: N ∼ kd−1 Kress (gold standard): > 4 ppw

IDEA i) For 1D k(x) smooth (osc. 2nd-ord ODE): solve phase function
u(x) = ae i

∫
φ(x)dx + be−i

∫
φ(x)dx , only 2 directions! phase func φ(x) smooth

effort indep of k. Challenge: automate, adaptive/switching
(Bremer–Rokhlin; Agogs)

IDEA ii) For 2D/3D BIE & one convex obstacle single scattering

bases inspired by geom. optics: then N grows v. weakly (eg k1/9)
Challenge: scatt. from even 3 disks: exponential # rays (chaotic!)

IDEA iii) Soln. in Ω only ∼ kd−1 effective unknowns, scales like bdry ∂Ω
eg, DtN map describes Ω response at freq k eg, exploited by HPS

Strong scatt → waves going in all directions → can’t beat it (?)



CHALLENGE 1: degrees of freedom (N)

usual discr. (even high order) needs ≥ few points per wavelength Nyquist

• Vol discr: N ∼ kd wavelength λ = 2π/k eg 100λ in 3d: N ∼ 109

• BIE discr: N ∼ kd−1 Kress (gold standard): > 4 ppw

IDEA i) For 1D k(x) smooth (osc. 2nd-ord ODE): solve phase function
u(x) = ae i

∫
φ(x)dx + be−i

∫
φ(x)dx , only 2 directions! phase func φ(x) smooth

effort indep of k. Challenge: automate, adaptive/switching
(Bremer–Rokhlin; Agogs)

IDEA ii) For 2D/3D BIE & one convex obstacle single scattering

bases inspired by geom. optics: then N grows v. weakly (eg k1/9)
Challenge: scatt. from even 3 disks: exponential # rays (chaotic!)

IDEA iii) Soln. in Ω only ∼ kd−1 effective unknowns, scales like bdry ∂Ω
eg, DtN map describes Ω response at freq k eg, exploited by HPS

Strong scatt → waves going in all directions → can’t beat it (?)



CHALLENGE 1: degrees of freedom (N)

usual discr. (even high order) needs ≥ few points per wavelength Nyquist

• Vol discr: N ∼ kd wavelength λ = 2π/k eg 100λ in 3d: N ∼ 109

• BIE discr: N ∼ kd−1 Kress (gold standard): > 4 ppw

IDEA i) For 1D k(x) smooth (osc. 2nd-ord ODE): solve phase function
u(x) = ae i

∫
φ(x)dx + be−i

∫
φ(x)dx , only 2 directions! phase func φ(x) smooth

effort indep of k. Challenge: automate, adaptive/switching
(Bremer–Rokhlin; Agogs)

IDEA ii) For 2D/3D BIE & one convex obstacle single scattering

bases inspired by geom. optics: then N grows v. weakly (eg k1/9)
Challenge: scatt. from even 3 disks: exponential # rays (chaotic!)

IDEA iii) Soln. in Ω only ∼ kd−1 effective unknowns, scales like bdry ∂Ω
eg, DtN map describes Ω response at freq k eg, exploited by HPS

Strong scatt → waves going in all directions → can’t beat it (?)



Reminder that resonant cavity has waves traveling in all directions:

density on bdry contains all spatial freqs from 0 to kinc, can’t reduce N



CHALLENGE 2: Failure of iterative solvers
Vol. discr. (FD/FEM): multigrid precond fails for k � 1

Poission Greens kernel k = 0 was scale-invar/smoothing

• shifted Laplacian precond. has some claims eg only O(k1/3) iter growth

IDEA: sweeping precond / one-way coupling of subdomains
• pretends that the half-space does not reflect → fails for strong scatt.
• how to use domain decomposition precond w/ resonant coupling?

BIE/BEM: resonant (eg, cavity): formally 2nd-kind but GMRES kd−1 iters

• BIE operator 1
2 − Dk − iηSk has eigenvalue density O(kd−1) at origin

• we will hear more about this today (analysis: Spence, Marchand. . . )

Challenge: new BIE precond. to remove (many?) resonances
Challenge: exploit/interpolate slow k-dep. of BIE op eigenvalues?
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CHALLENGE 3: Low-rank separability of Green’s kernel

BIE & VIE: fast algs (FMM, FDS) need kernel smoothing in far-field. . .

• Classical well-separated boxes strong admissibility in HODLR, H-mat, etc

k ∼ 1 : ε-rank O(logd−1 ε−1) basically O(1)

k � 1 : ε-rank O((kD)d−1) rank growth :(

. . . and for k � 1 FMM, ∃ diagonal translation ops

• But oscillatory kernel has “parabolic” separability = Rayleigh diffraction limit

k � 1: rank O((kD1D2/L)d−1)
low-rank if (kD1)(kD2) < kL

2D: similar to D1×D2 block of size-N DFT mat

⇒ can “butterfly” compress BIE matrix
like FFT written as prod of log2 N sparse mats

Compression/inversion: solvers research phase (randomized lin alg, etc)
Challenge to interface to application users (but see butterflyPACK, Liu)
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Assorted CHALLENGES

4) Imposing Sommerfeld or “interesting media” radiation conditions

• for vol. discr: PMLs poor near corners, grazing rays; BIE op too big
• for BIE: half-space or multilayer media (Green’s funcs/FMMs)

photonic crystals (“half-space matching” method) (Fliss)

5) HPS: top-level merges n ∼ kd−1, dense inverse S−1
glue takes O(n3)

• Idea: HPS merge at leaf (low) levels but iterate on high levels
(Lucero-Lorca, Gillman)

• Challenge: can’t use HODLR/HBS → butterfly compress Sglue ?

6) Ill-conditioning for k � 1 of Lippman–Schwinger VIE GMRES poor



CHALLENGE 7: Resonances and k-dependent information

Multiple reflections → resonances → rapid k-dependence of soln
. . .→ annoyingly fine k-sampling needed

IDEA: more efficiency via solve together a range k ∈ [k1, k2] ?
• exploit slow change of Gk , rational approx to inverses/soln?
• related to eigenvalue (closed cavity) BVP: −∆φj = λjφj

φj : j = 1 j = 10 j = 100 j = 103 j = 104 j = 105

Sometimes O(N) speedup by linearize in k . . . apply to scattering?

Conclusion: Highly-osc BVPs is a great place for
numerics/software/analysis/applications to meet!
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