
Positive Power Functions

Positive Power Functions

In today’s lecture, we continue our theme of studying polynomials and the terms which comprise polynomials.
A positive power function is a function of the form f(x) = xn, where n is a natural number. You should
become familiar with seeing notation like this, where the exponent is not given explicitly, but instead is
represented by a letter. Here, we mean that we are studying the function f(x) = x, x2, x3, x4, ... as a family.

Suppose we were to graph this family of functions all on the same graph. Specifically, let us graph x, x2,
x3, and x4 using the following numerical tables as a guide (we leave out the table for the function x):

x x2

-1.5 2.25
-1 1

-0.5 0.25
0 0

0.5 0.25
1 1

1.5 2.25

x x3

-1.5 -3.375
-1 -1

-0.5 -0.125
0 0

0.5 0.125
1 1

1.5 3.375

x x4

-1.5 5.0625
-1 1

-0.5 0.0625
0 0

0.5 0.0625
1 1

1.5 5.0625

When we sketch out these graphs, we see the following traits of the graphs of positive power functions:

• The graphs of positive power functions come in two basic shapes. If n is even, then the graph of xn has
an axis of symmetry, and that is the vertical line x = 0, the y-axis. If n is odd, then xn has a point of
symmetry, which is the origin. This means that if the point (x, y) is in the graph of xn, then the point
(−x,−y) is also in the graph. We will discuss these two types of symmetries more later in the lecture.

• For all values of n, xn equals 0 when x = 0, and xn equals 1 when x = 1. So the graphs of all positive
power functions intersect at the origin and at the point (1, 1).

• When x is between 0 and 1, the larger n is, the smaller xn is. You can observe this phenomenon but
studying the values of x, x2, x3, x4 for x = 0.5 in the tables above. This has the effect that, if m and
n are two natural numbers and m < n, then between x = 0 and x = 1, the graph of xm is above the
graph of xn. We also see that, as n gets larger, the graph of xn looks more and more like it is following
the x-axis and the vertical line x = 1, so that it almost looks like it has a corner in it.

• When x is greater than 1, the larger n is, the larger xn is. Think of the powers of any natural number
greater than 1 to see this. This means that, if m and n are natural numbers and m < n, then when
x > 1, the graph of xm is below that of xn. We also observe that, the larger n is, the more the graph
of xn for x > 1 looks like the vertical line x = 1.

Derivatives of Positive Power Functions

Now let f(x) = xn, where n is some natural number. The derivative of f(x) at x = p is

df

dx
(p) = npn−1.

In particular:

• If f(x) = x, then df
dx (p) = 1. This should make sense: in this case, f(x) is a linear function. Recall

that the derivative of a function at a point is the slope of the tangent line to the graph of that function
at that point. The graph of a linear function is a line, and, when you think about it, the tangent line
to a line is itself. So the derivative of a linear function is its own slope. In this case, that slope is 1.

• If f(x) = x2, then the formula above tells us that df
dx (p) = 2p. This is consistent with what we already

know, because here f(x) is a quadratic function, with a = 1 and b = 0, and applying the formula for
the derivative of a quadratic function, we get the same result as above.
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• If f(x) = x3, then df
dx (p) = 3p2. Now f(x) is a cubic function, with a = 1, b = 0, and c = 0, and here

too we would have gotten the same result had we used the formula for the derivative of a cubic.

As an example of using this formula, let us find the derivatives of all of the positive power function at
x = 1. Since we are working with all of the positive power function, let us use the notation f(x) = xn instead
of specific values of n. Then applying the formula for the derivative, we get that

df

dx
(1) = n · 1n−1 = n · 1 = n.

So the slope of the tangent line to the graph of xn at x = 1 is n. This means that, as n gets larger, so does
the slope of that tangent line. Does this agree with our observations of how the graphs of positive power
functions look when compared to each other?

Even and Odd Functions

We now return to the issue of the symmetry we found in the graphs of positive power functions. Remember,
when n is even, the graph of f(x) = xn has an axis of symmetry at the y-axis. This axis of symmetry exists
specifically because (−x)n = xn when n is even. Another way to write this is that is by using function
notation: f(−x) = f(x). It turns out that many functions have the property that f(−x) = f(x). Since the
most important of these are the positive power functions when n is even, the name we give to functions with
this property is even functions. The main characteristic of graphs of even functions is that they all have an
axis of symmetry at the y-axis. It is also true that if the graph of a function has an axis of symmetry at the
y-axis, then that function is an even function.

We also observed that, when n is odd, the graph of f(x) = xn has a point of symmetry at the origin.
This point of symmetry exists because (−x)n = −xn when n is odd (if you do not see this, try computing
both sides of this equation using specific values of x and n). We can also write this relationship using
function notation: f(−x) = −f(x). Just as in the previous case, there are many functions with the property
f(−x) = −f(x), and for because the most prominent examples of functions like these are the positive power
functions when n is odd, the name for functions with this property is odd functions. The graphs of odd
functions have the characteristic that they have point symmetry about the origin and, specifically, they pass
through the origin. In other words, if f is an odd function, then f(0) = 0. Can you see why this must be
true? We also have that, if the graph of a function has point symmetry about the origin, then that function
is an odd function.

The Derivative as a Function and Higher Derivatives

We now return to studying the derivative. In all of the functions we have described so far, we have talked
about the notion of the derivative at a point. You may have noticed, however, that we do not need to think
about the derivative as being at one point and one point only. We can think of the derivative of f(x) as being
another function: we assign to every x the derivative of f(x) at that x value. We write this new function
as df

dx (x), so simply df
dx , and instead of calling this the derivative function, we simply call it the derivative.

In the future, if we do not specify a point at which we are taking the derivative, then we are taking about
the derivative as a function. If we do specify a point, then we are taking about the derivative at that point,
which is simply a number.

As a example of the derivative as a function, take f(x) = 2x2 + 3x− 5. Then

df

dx
(x) = 4x + 3.

Notice that all we did was apply the formula for the derivative of a quadratic, and instead of substituting
a number for p, we simply replaced p with x. Also notice that the derivative of f(x), which is a quadratic
function, is a linear function. This is a general phenomenon: the derivatives of all quadratic functions are
linear functions. Likewise, the derivative of a cubic function is a quadratic function, and the derivative of a
linear function is a constant function. Can you see a pattern developing?

The concept of the derivative as a function leads us to another idea: taking the derivative of a derivative.
The derivative of the derivative of the function f(x) is called the second derivative of f(x). In this context,
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the derivative of f(x) is called the first derivative. We write the second derivative as d2f
dx2 . Pay special

attention to where the number 2 appears in the expression for the second derivative: the placement in the
denominator is different that that in the numerator.

Let us find the second derivative of the function f(x) = 2x2+3x−5. We already found that df
dx (x) = 4x+3.

Taking the derivative of df
dx , we get that

d2f

dx2
(x) = 4.

The fact that the second derivative of f(x) is positive everywhere will tell us quite a bit about the shape
of the graph of f(x). We will learn more about the information the second derivative gives us in the next
lecture.

Finally, it should be noted that very often we can find the derivative of the second derivative of a function,
which we call the third derivative, and keep taking derivatives over and over again. The ith derivative of
f(x), the function we get by taking the derivative i times, is written using the notation dif

dxi . The second
derivative of f(x) and all of the derivatives after it are called the higher derivatives of f(x). Of them, the
second derivative is by far the most important, but we will find uses for other higher derivatives as the terms
moves along.
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