Definition. Two linear maps $j, j^{\prime}: \mathfrak{z} \rightarrow \mathfrak{s o}(\mathfrak{v})$ are called isospectral if for each $\boldsymbol{Z} \in \mathfrak{z}$, the maps $\boldsymbol{j}_{z}, j_{z}^{\prime} \in \mathfrak{s o}(\mathfrak{v})$ have the same eigenvalues (with multiplicities) in \mathbb{C}.

Proposition [GGSWW]

Let $j, j^{\prime}: \mathfrak{z} \rightarrow \mathfrak{s o}(\mathfrak{v})$ be isospectral, and let \mathcal{L} be a cocompact lattice in $\mathfrak{z} \Rightarrow$ the associated closed Riemannian manifolds $N(j)$ and $N\left(j^{\prime}\right)$ are isospectral for the Laplace operator on functions.
Definition.
$j: \mathfrak{z} \rightarrow \mathfrak{s o}(\mathfrak{v})$ is of Heisenberg type if $j_{Z}^{2}=-|\boldsymbol{Z}|^{2} \mathbf{I d} \mathbf{d}_{\mathfrak{v}}$ for all $\boldsymbol{Z} \in \mathfrak{z}$. Remark: If $\boldsymbol{j}, \boldsymbol{j}^{\prime}: \mathfrak{z} \rightarrow \mathfrak{s o}(\mathfrak{v})$ are both of Heisenberg type $\Rightarrow \boldsymbol{j}$ and \boldsymbol{j}^{\prime} are obviously isospectral because the eigenvalues for both of them are $\pm i|Z|$, each with multiplicity $(\operatorname{dim} \mathfrak{v}) / \mathbf{2}$.

9. The special family $N^{a, b}:=N\left(j^{a, b}\right)$

Notation: $\mathbb{H}=\mathbf{s p a n}\{\mathbf{1}, \boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k}\}$ denote the algebra of quaternions with the usual multiplication, endowed with the inner product for which $\{\mathbf{1}, \boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k}\}$ is an orthonormal basis.
Definition. For $\boldsymbol{a}, \boldsymbol{b} \in \mathbb{N}_{0}$ with $\boldsymbol{a}+\boldsymbol{b}>\mathbf{0}$ define

- $\mathfrak{v}:=\mathbb{H} \oplus \cdots{ }^{a+b} \cdots \oplus \mathbb{H}$ (orthogonal sum),
$\bullet \mathfrak{z}:=\boldsymbol{\operatorname { s p a n }}\{\boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k}\}$, the space of pure quaternions,
- $\mathcal{L}:=\operatorname{span}_{\mathbb{Z}}\{\boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k}\}$, the standard lattice in \mathfrak{j}.
\Rightarrow Define $j^{\mathrm{a}, \boldsymbol{b}}: \mathfrak{z} \rightarrow \mathfrak{s o (v)}$ by

$$
j_{z}^{a, b}\left(X_{1}, \ldots, X_{a}, Y_{1}, \ldots, Y_{b}\right):=\left(X_{1} z, \ldots, X_{a} Z, Z Y_{1}, \ldots, Z Y_{b}\right) .
$$

\Rightarrow We denote the resulting Riemannian manifolds by

$$
N^{a, b}:=N\left(j^{a, b}\right), \text { resp. } \tilde{N}^{a, b}:=\tilde{N}\left(j^{a, b}\right) .
$$

10. Szabó's isospectral pairs $N^{a+b, 0}$ and $N^{a, b}$

Remark: For all pairs $(a, b) \in \mathbb{N}_{0}^{2}$ with fixed sum

$$
a+b=(\operatorname{dim} \mathfrak{v}) / 4>0
$$

the associated Riemannian manifolds $\boldsymbol{N}^{a, b}$ are of Heisenberg type and thus mutually isospectral.
Proposition [Sz]
For every $\boldsymbol{a} \in \mathbb{N}$ the manifolds $\boldsymbol{N}^{, 0,0}$ and $\tilde{\boldsymbol{N}}^{, 00}$ are homogeneous. Remark [Sz]: $\boldsymbol{N}^{\boldsymbol{a}, \boldsymbol{b}}$ is not locally homogeneous if both \boldsymbol{a} and \boldsymbol{b} are nonzero.
\Rightarrow One can not hear the local homogeneity property of a closed Riemannian manifold.

11. Weak local symmetry of $N^{a, 0}$

Weakly symmetric spaces were introduced by A. Selberg in 1956.
A Riemannian manifold \boldsymbol{M} is called weakly symmetric if each $\boldsymbol{p} \in \boldsymbol{M}$ and each nontrivial geodesic γ starting in p there exists an isometry f of \boldsymbol{M} which fixes \boldsymbol{p} and reverses γ (equivalently: $\boldsymbol{d f}_{p}(\dot{\gamma}(\mathbf{0}))=-\dot{\gamma}(\mathbf{0})$).
This is not Selberg's original definition, but was Z.I. Szabó's definition of what he called ray symmetry in 1993.
Now, for any given point $\boldsymbol{p} \in \tilde{\boldsymbol{N}}^{\mathrm{a}, \mathbf{0}}$ and any given tangent vector at \boldsymbol{p}, we find an isometry \boldsymbol{f} of $\tilde{\boldsymbol{N}}^{\boldsymbol{a}, 0}$ which fixes \boldsymbol{p} and whose differential maps the given tangent vector to its negative. In particular, since $\tilde{\mathbf{N}}^{0,0}$ is homogeneous we only consider the case $\boldsymbol{p}:=\exp ^{\mathrm{j}^{\mathrm{a}, 0}}((1,0, \ldots, 0), \mathbf{0})$ Therefore, we conclude
Theorem:
For any $\boldsymbol{a} \in \mathbb{N}$ the Riemannian manifold $\tilde{\boldsymbol{N}}^{\mathrm{a}, 0}$ is weakly symmetric.
\Rightarrow Since $\tilde{\boldsymbol{N}}^{\mathrm{a}, 0}$ and $\boldsymbol{N}^{\mathrm{a}, 0}$ are locally isometric, the manifold $\boldsymbol{N}^{\mathrm{a}, 0}$ is weakly locally symmetric.
Remark:The isometry f in the proof of the Theorem will in general not descend to the quotient manifold $\boldsymbol{N}^{\mathbf{a}, 0}$. So we cannot conclude weak symmetry of $\boldsymbol{N}^{\mathrm{a}, 0}$ but only weak local symmetry.

12. Failure of the type \mathcal{A} condition for $N^{a, b}$ with $a, b>0$

Notation:

(i) Let $\boldsymbol{j}: \mathfrak{z} \rightarrow \mathfrak{s o}(\mathfrak{v})$ be any linear map (not necessarily one of our maps $j^{j, b}$). Inner products \langle,$\rangle and norms \mid$. | will refer to the metric $g(j)$ on $\tilde{\mathcal{N}}(j)$. We denote the Levi Civita connection and the Ricci tensor of $\tilde{\mathcal{N}}(j)$ by ∇ and by ric, resp.
(iv) We identify vectors in $\boldsymbol{T}_{p} G(j)=L_{p * \mathfrak{G}}(j)$ with their preimage in $\mathfrak{g}(j)$. Correspondingly, we will decompose $Y \in T_{p} G(j)$ as

$$
\boldsymbol{Y}=\boldsymbol{Y}^{\mathfrak{v}}+\boldsymbol{Y}^{\mathfrak{z}} \text { with } \boldsymbol{Y}^{\mathfrak{v}} \in \mathfrak{v}, \boldsymbol{Y}^{\mathfrak{z}} \in \mathfrak{z} .
$$

Lema: Let \boldsymbol{j} be of Heisenberg type and let $\boldsymbol{p}=\boldsymbol{\operatorname { e x p }}^{j}(\boldsymbol{x}, \boldsymbol{z}) \in \tilde{\boldsymbol{N}}(\boldsymbol{j})$, where $\boldsymbol{x} \in \mathfrak{v},|\boldsymbol{x}|=\mathbf{1}, \boldsymbol{z} \in \mathfrak{z}$. Then for all $\boldsymbol{Y}_{1}, \boldsymbol{Y}_{2}, \boldsymbol{Y} \in \boldsymbol{T}_{\boldsymbol{p}} \boldsymbol{N}(\boldsymbol{j})$ we have
(i) $\operatorname{ric}_{p}\left(Y_{1}, Y_{2}\right)=\left(\frac{1}{4} \operatorname{dim} \mathfrak{v}-\frac{1}{2}\right)\left\langle Y_{1}^{3}, Y_{2}^{3}\right\rangle+\frac{1}{2}\left\langle\left[Y_{1}^{\mathfrak{p}}, x\right]^{j},\left[Y_{2}^{\mathfrak{v}}, x\right]^{j}\right\rangle$
$+\left(\operatorname{dim} \mathfrak{v}-2-\frac{1}{2} \operatorname{dim} \mathfrak{z}\right)\left\langle Y_{1}^{\mathfrak{v}}, Y_{2}^{\mathfrak{v}}\right\rangle+\frac{1}{2}(\operatorname{dim} \mathfrak{v}-2)\left\langle j_{Y_{1}^{\mathfrak{y}}} Y_{2}^{\mathfrak{v}}+j_{Y_{2}^{\prime}} Y_{1}^{\mathfrak{v}}, x\right\rangle$,
(ii) $\left(\nabla_{Y}\right.$ ric $)(Y, Y)=\left\langle\left[Y^{\mathfrak{v}}, x\right]^{j},\left[j_{Y^{3}} Y^{\mathfrak{v}}, x\right]^{j}\right\rangle$.

Theorem:
For $\boldsymbol{a}, \boldsymbol{b}>\mathbf{0}$ the Riemannian manifolds $\tilde{N}^{, b \boldsymbol{b}}$ are not of Type \mathcal{A}. \Rightarrow Since the type \mathcal{A} condition is a local condition and since $\boldsymbol{N}^{a, b}$ and $\tilde{\boldsymbol{N}}^{\mathrm{a}, \boldsymbol{b}}$ are locally isometric, we conclude that $\boldsymbol{N}^{a, b}$ are not of Type \mathcal{A}.

