8. Spectral results on N(j)

Definition. Two linear maps $j, j' : \mathfrak{z} \to \mathfrak{so}(\mathfrak{v})$ are called isospectral if for each $Z \in \mathfrak{z}$, the maps $j_Z, j'_Z \in \mathfrak{so}(\mathfrak{v})$ have the same eigenvalues (with multiplicities) in \mathbb{C} .

Proposition [GGSWW]

Let $j, j' : \mathfrak{z} \to \mathfrak{so}(\mathfrak{v})$ be isospectral, and let \mathcal{L} be a cocompact lattice in $\mathfrak{z} \Rightarrow$ the associated closed Riemannian manifolds N(j) and N(j') are isospectral for the Laplace operator on functions.

Definition.

 $j: \mathfrak{z} \to \mathfrak{so}(\mathfrak{v})$ is of Heisenberg type if $j_Z^2 = -|Z|^2 \mathrm{Id}_{\mathfrak{v}}$ for all $Z \in \mathfrak{z}$. **Remark:** If $j, j' : \mathfrak{z} \to \mathfrak{so}(\mathfrak{v})$ are both of Heisenberg type $\Rightarrow j$ and j'are obviously isospectral because the eigenvalues for both of them are $\pm i |\mathbf{Z}|$, each with multiplicity (dim v)/2.

9. The special family $N^{a,b} := N(j^{a,b})$

Notation: $\mathbb{H} = \text{span}\{1, i, j, k\}$ denote the algebra of quaternions with the usual multiplication, endowed with the inner product for which $\{1, i, j, k\}$ is an orthonormal basis.

Definition. For $a, b \in \mathbb{N}_0$ with a + b > 0 define

- $\mathfrak{v} := \mathbb{H} \oplus \cdots^{a+b} \cdots \oplus \mathbb{H}$ (orthogonal sum),
- $\mathfrak{z} := \operatorname{span}\{i, j, k\}$, the space of pure quaternions,
- $\mathcal{L} := \operatorname{span}_{\mathbb{Z}} \{ i, j, k \}$, the standard lattice in \mathfrak{z} .
- \Rightarrow Define $j^{a,b}: \mathfrak{z} \to \mathfrak{so}(\mathfrak{v})$ by

 $j_{z}^{a,b}(X_1,\ldots,X_a,Y_1,\ldots,Y_b):=(X_1Z,\ldots,X_aZ,ZY_1,\ldots,ZY_b).$

 \Rightarrow We denote the resulting Riemannian manifolds by $N^{a,b} := N(j^{a,b}), \text{ resp. } \tilde{N}^{a,b} := \tilde{N}(j^{a,b}).$

10. Szabó's isospectral pairs N^{a+b,0} and N^{a,b}

Remark: For all pairs $(a, b) \in \mathbb{N}_0^2$ with fixed sum

 $a + b = (\dim v)/4 > 0$

the associated Riemannian manifolds N^{a,b} are of Heisenberg type and thus mutually isospectral.

Proposition [Sz]

For every $\mathbf{a} \in \mathbb{N}$ the manifolds $N^{a,0}$ and $\tilde{N}^{a,0}$ are homogeneous.

Remark [Sz]: N^{a,b} is not locally homogeneous if both a and b are nonzero.

 \Rightarrow One can not hear the local homogeneity property of a closed Riemannian manifold.

11. Weak local symmetry of **N**^{a,0}

Weakly symmetric spaces were introduced by A. Selberg in 1956.

A Riemannian manifold **M** is called weakly symmetric if each $p \in M$ and each nontrivial geodesic γ starting in **p** there exists an isometry **f** of **M** which fixes **p** and reverses γ (equivalently: $df_p(\dot{\gamma}(\mathbf{0})) = -\dot{\gamma}(\mathbf{0})$).

This is not Selberg's original definition, but was Z.I. Szabó's definition of what he called ray symmetry in 1993.

Now, for any given point $\mathbf{p} \in \tilde{\mathbf{N}}^{a,0}$ and any given tangent vector at \mathbf{p} , we find an isometry f of $\tilde{N}^{a,0}$ which fixes p and whose differential maps the given tangent vector to its negative. In particular, since $\tilde{N}^{a,0}$ is homogeneous we only consider the case $p := \exp^{j^{a,0}}((1, 0, \dots, 0), 0)$. Therefore, we conclude

Theorem:

For any $a \in \mathbb{N}$ the Riemannian manifold $\tilde{N}^{a,0}$ is weakly symmetric.

 \Rightarrow Since $\tilde{N}^{a,0}$ and $N^{a,0}$ are locally isometric, the manifold $N^{a,0}$ is weakly locally symmetric.

Remark:The isometry *f* in the proof of the Theorem will in general not descend to the quotient manifold $N^{a,0}$. So we cannot conclude weak symmetry of $N^{a,0}$ but only weak local symmetry.

12. Failure of the type \mathcal{A} condition for $N^{a,b}$ with a, b > 0

Notation:

- (i) Let $j: \mathfrak{z} \to \mathfrak{so}(\mathfrak{v})$ be any linear map (not necessarily one of our maps $j^{a,b}$). Inner products \langle , \rangle and norms $| \cdot |$ will refer to the metric g(j) on $\tilde{N}(j)$. We denote the Levi Civita connection and the Ricci tensor of $\hat{N}(j)$ by ∇ and by **ric**, resp.
- (iv) We identify vectors in $T_{\rho}G(j) = L_{\rho*}\mathfrak{g}(j)$ with their preimage in $\mathfrak{g}(j)$. Correspondingly, we will decompose $Y \in T_{\rho}G(j)$ as $Y = Y^{v} + Y^{3}$ with $Y^{v} \in v$, $Y^{3} \in z$.

Lema: Let **j** be of Heisenberg type and let $p = \exp^{j}(x, z) \in N(j)$, where $x \in v$, |x| = 1, $z \in \mathfrak{z}$. Then for all $Y_1, Y_2, Y \in T_p N(j)$ we have

(i)
$$\operatorname{ric}_{p}(Y_{1}, Y_{2}) = (\frac{1}{4} \dim v - \frac{1}{2}) \langle Y_{1}^{\mathfrak{z}}, Y_{2}^{\mathfrak{z}} \rangle + \frac{1}{2} \langle [Y_{1}^{v}, x]^{j}, [Y_{2}^{v}, x]^{j} \rangle$$

+ $(\dim v - 2 - \frac{1}{2} \dim \mathfrak{z}) \langle Y_{1}^{v}, Y_{2}^{v} \rangle + \frac{1}{2} (\dim v - 2) \langle j_{Y_{1}^{\mathfrak{z}}} Y_{2}^{v} + j_{Y_{2}^{\mathfrak{z}}} Y_{1}^{v}, x \rangle,$
(ii) $(\nabla_{Y} \operatorname{ric})(Y, Y) = \langle [Y^{v}, x]^{j}, [j_{Y^{\mathfrak{z}}} Y^{v}, x]^{j} \rangle.$

Theorem:

For a, b > 0 the Riemannian manifolds $\tilde{N}^{a,b}$ are not of Type A. \Rightarrow Since the type \mathcal{A} condition is a local condition and since $N^{a,b}$ and $\tilde{N}^{a,b}$ are locally isometric, we conclude that $N^{a,b}$ are not of Type \mathcal{A} .