Eigenfunction L^p Estimates on Manifolds of Constant Negative Curvature

Melissa Tacy

Department of Mathematics Australian National University

melissa.tacy@anu.edu.au

July 2010

Joint with Andrew Hassell

(中) (종) (종) (종) (종) (종)

Let u_j be a L^2 normalised eigenfunction of the Laplace-Beltrami Operator on a *n* dimensional smooth compact manifold *M*.

$$-\Delta u_j = \lambda_j^2 u_j$$
$$\sqrt{-\Delta} u_j = \lambda_j u_j$$

- Concentrated eigenfunctions usually have large L^p norm for p > 2.
- Suggests we study the L^p norms of eigenfunctions.
- Seek estimates of the form

$$\|u_j\|_{L^p} \lesssim f(\lambda_j, p) \|u_j\|_{L^2}$$

• Not easy to study eigenfunctions directly. Therefore we will study sums (clusters) of eigenfunctions.

We study norms of spectral clusters on windows of width w

$$E_{\lambda} = \sum_{\lambda_j \in [\lambda - w, \lambda + w]} E_j$$

 E_j projection onto λ_j eigenspace.

Easier to work with an approximate spectral cluster.

Pick χ smooth such that $\chi(0) = 1$ and $\hat{\chi}$ is supported in $[\epsilon, 2\epsilon]$. We will study

$$\chi_{\lambda} = \chi(\sqrt{-\Delta} - \lambda)$$

Write

$$\chi_{\lambda} = \int_{\epsilon}^{2\epsilon} e^{it\sqrt{-\Delta}} e^{-it\lambda} \hat{\chi}(t) dt$$

If we can write $e^{it\sqrt{-\Delta}}$ as an integral operator with kernel e(x, y, t) we can write

$$\chi_{\lambda} u = \int_{\epsilon}^{2\epsilon} \int_{M} e(x, y, t) e^{-it\lambda} \hat{\chi}(t) u(y) dt dy$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The operator $e^{it\sqrt{-\Delta}}$ is the fundamental solution to

$$\begin{cases} (i\partial_t + \sqrt{-\Delta})U(t) = 0\\ U(0) = \delta_y \end{cases}$$

We can build a parametrix for this propagator and write its kernel as ∞

$$e(x, y, t) = \int_0^\infty e^{i\theta(d(x, y) - t)} a(x, y, t, \theta) d\theta$$

where $a(x, y, t, \theta)$ has principal symbol

$$\theta^{\frac{n-1}{2}}a_0(x,y,t)$$

Expression for χ_{λ}

Substituting into the expression for χ_{λ}

$$\chi_{\lambda} u = \int_{\epsilon}^{2\epsilon} \int_{M} \int_{0}^{\infty} e^{i\theta(d(x,y)-t)} e^{-it\lambda} \theta^{\frac{n-1}{2}} \tilde{a}(x,y,t,\theta) u(y) d\theta dy dt$$

Change of variables $\theta \to \lambda \theta$

$$\chi_{\lambda} u = \lambda^{\frac{n+1}{2}} \int_{\epsilon}^{2\epsilon} \int_{M} \int_{0}^{\infty} e^{i\lambda\theta(d(x,y)-t)} e^{-it\lambda} \theta^{\frac{n-1}{2}} \tilde{a}(x,y,t,\theta) u(y) d\theta dy dt$$

Now use stationary phase in (t, θ) . Nondegenerate critical points when

$$d(x, y) = t \quad \theta = 1$$

$$\chi_{\lambda} = \lambda^{\frac{n-1}{2}} \int_{M} e^{i\lambda d(x, y)} a(x, y) u(y) dy$$

where a(x, y) is supported away from the diagonal.

Sogge's Result

Sogge's result on windows of width 1 gives a complete sharp (for clusters) set of L^p estimates.

$$\delta(n,p) = \begin{cases} \frac{n-1}{2} - \frac{n}{p} & \frac{2(n+1)}{n-1} \le p \le \infty\\ \frac{n-1}{4} - \frac{n-1}{2p} & 2 \le p \le \frac{2(n+1)}{n-1} \end{cases}$$

Estimates sharp for spectral clusters and also sharp on the sphere. Two regimes for sharp estimates

Can find spherical harmonics for both regimes. However geodesic flow on a sphere is the antithesis of chaotic.

- Sphere has many stable invariant sets under the flow.
- Every point has a conjugate point.
- Large multiplicity of eigenvalues so a width one window is efficient.
- Expect improvements on multiplicities and eigenfunction estimates for "chaotic" systems
- For n = 2 and negative curvature conjectured $C_{\epsilon}\lambda^{\epsilon}$ growth.

Case where M has no conjugate points. Bérard proved a log λ improvement on counting function remainder. This implies a better L^{∞} estimate.

$$\|u\|_{L^{\infty}} \lesssim rac{\lambda^{rac{n-1}{2}}}{(\log \lambda)^{1/2}} \|u\|_{L^{2}}$$

This is achieved by shrinking the spectral window by a factor of $\log \lambda$.

Means that we need to run propagator for $\log \lambda$, time, $\lim_{n \to \infty} \lim_{n \to \infty} \int_{\mathbb{R}^n} \int$

We need to evaluate

$$\int_{t<\log\lambda}e^{it\sqrt{-\Delta}}e^{it\lambda}dt$$

Cannot achieve this on any manifold but for manifolds without conjugate point we can use the universal cover. If M has no conjugate points its universal cover \widetilde{M} is a manifold with infinite injectivity radius. Therefore we can find a solution for

$$egin{cases} (i\partial_t+\sqrt{-\Delta}_{ ilde{M}})U(t)=0\ U(0)=\delta_y \end{cases}$$

for all time on \widetilde{M}

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三里 - 釣��

Expression for Propagator Kernel

 $e^{it\sqrt{-\Delta}}$ has kernel

$$e(x, y, t) = \sum_{g \in \Gamma} \tilde{e}(x, gy, t)$$

where Γ is the group of automorphisms of the covering $\pi : \widetilde{M} \to M$ and the fundamental solution of

$$\begin{cases} (i\partial_t + \sqrt{-\Delta}_{\tilde{M}})U(t) = 0\\ U(0) = \delta_y \end{cases}$$

is given by

$$U(t)u = \int_{\tilde{M}} \tilde{e}(x, y, t)u(y)dy$$

We will reduce to the simple case where M is two dimensional and has constant negative curvature, therefore \widetilde{M} is the hyperbolic plane.

We study

$$\chi_{\lambda} = \chi((\sqrt{\Delta} - \lambda)A)$$

where $A = A(\lambda)$ controls the size of the spectral window. Therefore

$$\chi_{\lambda} = \int_{\epsilon}^{2\epsilon} e^{itA\sqrt{-\Delta}} e^{-itA\lambda} \hat{\chi}(t) dt$$

So

$$\chi_{\lambda}\chi_{\lambda}^{\star} = \int_{\epsilon}^{2\epsilon} \int_{\epsilon}^{2\epsilon} e^{iA(t-s)\sqrt{-\Delta}} e^{-iA(t-s)\lambda} \hat{\chi}(t) \hat{\chi}(s) dt ds$$

We have

$$e(x, y, At) = \sum_{g \in \Gamma} \tilde{e}(x, gy, At)$$
$$= \sum_{g \in \Gamma} \int_0^\infty e^{i\theta(d(x, gy) - tA)} \theta^{1/2} a(x, gy, tA, \theta) d\theta$$

- Away from diagonal x = gy the principal symbol of a(x, gy, tA, θ) is (sinh(d(x, gy)))^{-1/2}.
- Only significant contributions when d(x, gy) = At so sum is finite
- If (t − s) is bounded away from zero can directly substitute this expression for the kernel of e^{i(t-s)A√−Δ}.

Small t - s

$$(\chi_{\lambda}\chi_{\lambda}^{\star})_{1} = \int_{\epsilon}^{2\epsilon} \int_{\epsilon}^{2\epsilon} e^{iA(t-s)\sqrt{-\Delta}} e^{-iA(t-s)\lambda} \hat{\chi}(t) \hat{\chi}(s) \zeta(A(t-s)) dt ds$$

for ζ cut off function supported on $[-2\epsilon, 2\epsilon]$ and $\zeta = 1$ on $[\epsilon, \epsilon]$.

$$(\chi_{\lambda}\chi_{\lambda}^{\star})_{1}u = \int_{M} K_{1}(x,y)u(y)dy$$

$$\begin{aligned} \mathcal{K}_{1}(x,y) &= \int_{\mathbb{R}^{2}} \int_{M} e(x,z,At) e(z,y,As) e^{-iA(t-s)\lambda} \hat{\chi}(t) \hat{\chi}(s) u(y) dz ds dt \\ &= \sum_{g,g' \in \Gamma} \int e^{iA(\theta(d(x,gz)-t)-\eta(d(g'z,y)-s))} e^{iA(t-s)\lambda} \theta^{1/2} \eta^{1/2} d\Lambda \end{aligned}$$

where

$$d\Lambda = \frac{b(t,s)\zeta(A(t-s))d\eta d\theta dz ds dt}{(\sinh(d(x,gz)))^{1/2}(\sinh(d(g'z,y)))^{1/2}}$$

Scaling $\theta \to \lambda \theta$ and $\eta \to \lambda \eta$ combined with stationary phase in $(t, \theta), (s, \eta)$ gives

$$K_1(x,y) = \frac{\lambda}{A^2} \sum_{g,g' \in \Gamma} \int_M e^{i\lambda(d(x,gz) - d(g'z,y))} d\Lambda$$
$$d\Lambda = \frac{\tilde{a}(x,y,z)dz}{(\sinh(d(x,gz)))^{-1/2}(\sinh(d(g'z,y)))^{-1/2}}$$

and the restriction

$$d(g'z,y) \in [d(x,gz) - \epsilon, d(x,gz) + \epsilon]$$

Turn one sum into an integral over H^2

$$K_1(x,y) = \frac{\lambda}{A^2} \sum_{g \in \Gamma} \int_{H^2} e^{i\lambda(d(x,z) - d(z,gy))} d\tilde{\Lambda}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

but for $g \neq Id$ zero contribution. So

$$K_1(x,y) = rac{\lambda}{A^2} \int_{H^2} e^{i\lambda(d(x,z)-d(z,y))} d ilde{\Lambda}$$

Stationary Phase

- Phase is stationary (in angular variables) when z is on the geodesic to y from x.
- Nondegeneracy depends on the distance between *x* and *y*.
- Pick up one factor of A from radial integral.

・ロト ・聞ト ・ヨト ・ヨト

ъ

Arrive at

$$\mathcal{K}_1(x,y) = \frac{\lambda}{A} \frac{e^{i\lambda d(x,y)} a(x,y)}{(1+\lambda|x-y|)^{-1/2}}$$

This is true for all A including A = 1 which is the Sogge case. Therefore

$$\|(\chi_{\lambda}\chi_{\lambda}^{\star})_{1}u\|_{L^{p}} \lesssim \frac{\lambda^{2\delta(n,p)}}{A} \|u\|_{L^{p'}}$$

Can make this estimate very small by increasing A however we still need to address the terms given by (t - s) large. This term will limit how large we make A.

Use Hadamard parametrix for large t - s

For $|t - s| > \epsilon$ we assume that t > s and use

$$e^{i\mathcal{A}t\sqrt{-\Delta}}e^{-i\mathcal{A}s\sqrt{-\Delta}}=e^{i\mathcal{A}(t-s)\sqrt{-\Delta}}$$

and write

$$\begin{aligned} (\chi_{\lambda}\chi_{\lambda}^{\star})_{2} &= \int e^{iA(t-s)\sqrt{-\Delta}} e^{i(t-s)\lambda} \hat{\chi}(t) \hat{\chi}(s) (1-\zeta(A(t-s))) dt ds \\ &= \frac{1}{A^{2}} \int_{t,s<\epsilon A} e^{i(t-s)\sqrt{-\Delta}} e^{i(t-s)\lambda} b(t,s) (1-\zeta((t-s))) dt ds \\ &= \frac{1}{A^{2}} \sum_{g \in \Gamma} \int_{t,s<\epsilon A} \int_{M} \int_{0}^{\infty} e^{i(\theta(d(x,gy)-(t-s))-(t-s)\lambda)} \theta^{1/2} d\Lambda \\ &\quad d\Lambda = \frac{\tilde{a}(x,y,\theta,t,s) d\theta dy dt ds}{(\sinh(d(x,gy))^{-1/2}} \end{aligned}$$

After the usual scaling $\theta \to \lambda \theta$ and stationary phase in (t, θ) we obtain

$$(\chi_{\lambda}\chi_{\lambda}^{\star})_{2}u = \int K_{2}(x,y)u(y)dy$$
$$K_{2}(x,y) = \frac{\lambda^{1/2}}{A} \sum_{g \in \Gamma} (\sinh(d(x,gy))^{-1/2}e^{i\lambda d(x,gy)}$$

where

$$\epsilon \leq d(x, gy) \leq \epsilon A$$

Because of the exponential growth there are $e^{\epsilon R}$ such terms at distance R + O(1) from x. Therefore

$$K_2(R,x,y) = \zeta(d(x,gy)-R)K_2(x,y) \Rightarrow |K_2(R,x,y)| \leq \frac{\lambda^{1/2}e^{cR}}{A}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

lf

$$T_{\lambda}^{R}u = \int K(R, x, y)u(y)dy$$

then

$$\left\| T_{\lambda}^{R} u \right\|_{L^{\infty}} \lesssim \frac{\lambda^{1/2} e^{cR}}{A} \left\| u \right\|_{L^{1}}$$

As $e^{it\sqrt{-\Delta}}$ is a unitary operator

$$\left\| T_{\lambda}^{R} u \right\|_{L^{2}} \lesssim \frac{1}{A} \left\| u \right\|_{L^{2}}$$

Interpolating

$$\| T_{\lambda}^{R} u \|_{L^{p}} \lesssim \frac{\lambda^{1/2 - 1/p} e^{cR(1 - 2/p)}}{A} \| u \|_{L^{p'}}$$
$$\| T_{\lambda}^{R} u \|_{L^{p}} \lesssim \frac{\lambda^{2\delta(n,p) - 1/2 + 3/p} e^{cR(1 - 2/p)}}{A} \| u \|_{L^{p'}}$$

æ

Final Result

Finally let $A = \alpha \log \lambda$

$$\begin{split} \|(\chi_{\lambda}\chi_{\lambda}^{\star})_{2}u\|_{L^{p}} &\lesssim \int_{\epsilon}^{c\log\lambda} \left\|T_{\lambda}^{R}u\right\|_{L^{p}} dR\\ &\lesssim \frac{\lambda^{2\delta(n,p)-1/2+3/p+c\alpha}}{\alpha\log\lambda} \left\|u\right\|_{L^{p'}} \end{split}$$

Putting this together with the $A|t - s| \le \epsilon$ term we obtain (by picking α small enough)

$$\|\chi_{\lambda}u\|_{L^{p}} \lesssim C_{p}f(\lambda,p) \|u\|_{L^{2}}$$
$$f(\lambda,p) = \frac{\lambda^{\frac{1}{2}-\frac{2}{p}}}{(\log \lambda)^{1/2}}$$

for 6 .

Kink Point?

- For n = 2, L⁶ is the kink point representing change in sharpness regimes
- We get no improvement for p = 6, however we have no sharp examples

When we interpolate between

$$\left\| T_{\lambda}^{R} u \right\|_{L^{2}} \lesssim \frac{1}{A} \left\| u \right\|_{L^{2}} \quad \text{and} \quad \left\| T_{\lambda}^{R} u \right\|_{L^{\infty}} \lesssim \frac{\lambda^{1/2} e^{cR}}{A} \left\| u \right\|_{L^{1}}$$

we do not take into consideration sharpness regimes.

For the t - s small term we can do this as there is a strong relationship between distance and time.

Wrapping Up

We have the eigenfunction estimates for p > 6

$$\|\chi_{\lambda}u\|_{L^p} \lesssim C_p f(\lambda,p) \|u\|_{L^2}$$
 $f(\lambda,p) = rac{\lambda^{rac{1}{2}-rac{2}{p}}}{(\log \lambda)^{1/2}}$

- Sharp examples exist for clusters but C_p does not blow up in these examples
- Thought that eigenfunctions estimates are much better, $\mathit{C}_{\epsilon}\lambda^{\epsilon}$
- To prove good eigenfunction estimates would need to exploit some cancellation in the sum

$$\sum_{g\in\Gamma}(\sinh(d(x,gy)))^{-1/2}e^{i\lambda d(x,gy)}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <