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Objects of study in Benguria–L.–Parnovski (2009)

Ω ⊂ Rd — simply connected bounded domain with connected
boundary ∂Ω;

χΩ(x) =

{
1, if x ∈ Ω,

0 if x 6∈ Ω
— the characteristic function of Ω;

χ̂Ω(ξ) = F [χΩ](ξ) :=
∫

Ω eiξ·x dx — its Fourier transform;

NC(Ω) := {ξ ∈ Cd : χ̂Ω(ξ) = 0} — its complex null variety, or null
set;

κC(Ω) := dist(NC(Ω), 0) = min{|ξ| : ξ ∈ NC(Ω)};
Also, in particular for balanced (e.g. centrally symmetric domains) we
look at N (Ω) := NC(Ω) ∩ Rd = {ξ ∈ Rd : χ̂Ω(ξ) = 0} = {ξ ∈ Rd :∫

Ω cos(ξ · x) dx = 0} and κ(Ω) := dist(N (Ω), 0);

(0 <)λ1(Ω) < λ2(Ω) ≤ . . . — Dirichlet Laplacian’s eigenvalues,
(0 =)µ1(Ω) < µ2(Ω) ≤ . . . — Neumann Laplacian’s eigenvalues.
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What does N (Ω) look like?

Far field zero intensity diffraction pattern from the aperture Ω! Physical
motivation.
Also, it is of importance for inverse problems and image recognition. It is
known that the structure of N (Ω) far from the origin determines the
shape of a convex set Ω.
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Questions and Motivation

Main question: study κ(Ω) and its relations to the eigenvalues.

Known links between N (Ω) and spectral theory: two unsolved problems

Pompeiu’s Problem

Let M(d) be a group of rigid
motions of Rd , and Ω be a
bounded simply connected domain
with piecewise smooth connected
boundary. Prove that the existence
of a non-zero continuous function
f : Rd → Rd such that∫
m(Ω) f (x) dx = 0 for all

m ∈M(d) implies that Ω is a ball.

Schiffer’s conjecture

The existence of an eigenfunction v
(corresponding to a non-zero
eigenvalue µ) of a Neumann
Laplacian on a domain Ω such that
v ≡ const along the boundary ∂Ω
(or, in other words, the existence of
a non-constant solution v to the
over-determined problem
−∆v = µv , ∂v/∂n|∂Ω = 0,
v |∂Ω = 1) implies that Ω is a ball.
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Motivation (contd.)

It is known that

the positive answer to the Pompeiu problem ⇐⇒ Schiffer’s conjecture
⇐⇒ 6 ∃ Ω and r > 0 such that NC(Ω) ⊃ {ξ ∈ Cd :

∑d
j=1 ξ

2
j = r 2} .

Thus, the interest in NC(Ω). Also, it is of importance for inverse problems
— determining the shape of Ω. A lot of publications, e.g. Agranovsky,
Aviles, Berenstein, Brown, Kahane, Schreiber, Taylor,
Garofalo, Segàla, T Kobayashi, etc.

Recall that we, on opposite, are interested only in the behaviour of N (Ω)
close to the origin, or more precisely in κ(Ω) = dist(N (Ω), 0)
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Motivation (contd.)

Theorem (Friedlander 1991)

For any Ω ⊂ Rd with smooth boundary, any k ≥ 1,

µk+1(Ω) < λk(Ω) .

Theorem (Levine-Weinberger 1985)

If, additionally, Ω is convex, then

µk+d(Ω) < λk(Ω) .
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Filonov’s proof of Friedlander’s Theorem

Proof.

Consider L = {u1, . . . , uk , eiξ·x} , |ξ|2 = λk , ξ ∈ Rd , as a test space for
µk+1, and calculate the Rayleigh ratios explicitly. All the non-sign-definite
terms cancel out!

In order to try to extend Filonov’s proof to establish µk+d(Ω) < λk(Ω),
one may try to add extra exponentials to L. Then, one needs inner
products of exponentials to vanish - hence the need for estimates on κ(Ω).
In fact, if one knows that κ(Ω) ≤ 2

√
λn(Ω), then one knows that

µk+2(Ω) ≤ λk(Ω) holds for k ≥ n.
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First result

Lemma

For any Ω ⊂ Rd ,
κ(Ω) ≥ κC(Ω) ≥

√
µ2(Ω) .

Proof.

ξ ∈ NC(Ω), v := eiξ·x =⇒ 〈v , 1〉L2(Ω) = 0 and ‖grad v‖2/‖v‖2 = |ξ|2.

In fact, courtesy of Filonov, we have

Lemma

For any Ω ⊂ Rd ,
κ(Ω) ≥ 2

√
µ2(Ω) .
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Conjectures

From now on, we deal mostly with convex and balanced (e.g. centrally
symmetric) domains.

Notation: Ω∗ is a ball of the same volume as Ω.

Conjecture 1

If Ω ⊂ Rd is convex and balanced, then

κ(Ω) ≤ κ(Ω∗) , (1)

with the equality iff Ω is a ball.

Conjecture 2

If Ω ⊂ Rd is convex and balanced, then

κ(Ω) ≤
√
λ2(Ω) , (2)

with the equality iff Ω is a ball.
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Why are the Conjectures plausible?

Balls

For a unit ball Bd , χ̂Bd
(ξ) = (2π)d/2Jd/2(|ξ|)/|ξ|d/2 ,

and so

κ(Bd)2 = j2
d/2,1 = λ2(Bd) = λ3(Bd) = · · · = λ1+d(Bd) .

Boxes

For a parallelepiped P with sides a1 ≥ a2 ≥ · · · ≥ ad > 0,

λ2(P) = π2
(
4a−2

1 + (a2)−2 + · · ·+ (ad)−2
)
> 2π/a2

1 = κ(P)2 .

Proving κ(P) < κ(P∗) is already non-trivial.

Numerics

Extensive numerical experiments. . .
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Results

We cannot prove Conjectures as stated, and our results are only in R2.

Theorem

For any convex balanced Ω ⊂ R2,

κ(Ω) ≤ Cκ(Ω∗) , C = 2j0,1/j1,1 ≈ 1.2552 . (3)

Theorem

For any convex balanced Ω ⊂ R2,

κ(Ω) ≤ 2
√
λ1(Ω) . (4)

(4) follows from (3) and Faber-Krahn’s λ1(Ω) ≤ λ1(Ω∗).
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Results (contd.)

Also, “near” the disk we can prove our original Conjectures for balanced
star-shaped domains.

Let F : S1 → R be a C 2 function on the unit circle;
F (θ + π) = F (θ);

∫ 2π
0 F (θ) dθ = 0.

Define for ε ≥ 0, a domain in polar coordinates (r , θ) as

ΩεF := {(r , θ) : 0 ≤ r ≤ 1 + εF (θ)} .

By periodicity of F , ΩεF is balanced, and also vol2(ΩεF ) = π + O(ε2) .
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Results (contd.)

Theorem

Let us fix a non-zero function F as above. Then

dκ(ΩεF )

dε

∣∣∣∣
ε=+0

< 0 ,

and
dκ(ΩεF )

dε

∣∣∣∣
ε=+0

<
d
√
λ2(ΩεF )

dε

∣∣∣∣∣
ε=+0

.

Consequently, for sufficiently small ε > 0 (depending on F ), Conjectures 1
and 2 with Ω = ΩεF hold.

The same is true for ε < 0.
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Results (contd.)

On the other hand, fixing ε and varying F produces a non-convex
counter-example:

Theorem

For each positive δ̃ there exists a
star-shaped balanced domain Ω
with vol2(Ω) = π and such that
B(0, 1− δ̃) ⊂ Ω ⊂ B(0, 1 + δ̃), for
which κ(Ω) > j1,1 .
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Results (contd.)

We can also prove the original Conjectures for sufficiently elongated
convex balanced planar domains.

Theorem (also by Zastavnyi, 1984)

Suppose that d = 2 and D(Ω) is the diameter of Ω. Then

κ(Ω) ≤ 4π

D(Ω)
.

Corollary

Conjecture 1 holds for convex, balanced domains Ω ⊂ R2 such that

√
πD(Ω)

2
√

vol2(Ω)
≥ 2π

j1,1
≈ 1.6398 .
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Ideas of the proofs I

Fix the direction e ∈ Sd−1 of the Fourier variable ξ = ρe, and look at the
ρ-roots of

χ̂e(ρ) := χ̂(ρe) =

∫
Ω

cos(ρe · x) dx .

Let κj(e) be the j-th ρ-root of χ̂e(ρ). Then κ(Ω) = min
e∈Sd−1

κ1(e).

Lemma

Let d = 2, then

κj(e) ≤ π(j + 1)

w(e)
.

where w(e) is a half-breadth of Ω in direction e.

Not optimal! Not true if d ≥ 3! Still, gives the above Theorems for planar
“cigars”.
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Ideas of the proofs II

We want to find e ∈ S1 and τ > 0 such that χ̂e(τ) < 0; then we know
τ > κ(Ω).

Let us instead seek τ such that

0 >

∫
S1

∫
Ω

cos(τe · x) dx de =

∫
Ω

J0(τ |x|) dx .

We characterize convex balanced Ω by either

η(r ; Ω) := vol1(Ω ∩ {|x| = r})

or

α(r ; Ω) :=
1

π

∫ r

0
η(ρ; Ω) dρ =

1

π
vol2(Ω ∩ B2(r))

and numbers

r− = r−(Ω) = min
e∈S1

w(e) , r+ := max
e∈S1

w(e) .

Obviously, r− is the inradius of Ω and 2r+ is its diameter.
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Ideas of the proofs II (contd.)

Some properties of the functions η and α and the numbers r± are obvious:

η(r) and α(r) are non-negative; also α(r) is non-decreasing;

η(r) ≡ 2πr and α(r) ≡ r 2 for r ≤ r−;

η(r) ≡ 0 and α(r) ≡ const = vol2(Ω)/π for r ≥ r+

An additional important property is valid for planar convex domains.

Lemma

Let Ω ⊂ R2 be a balanced convex domain. Then for r ∈ [r−(Ω), r+(Ω)],
the function η(r) is decreasing and the function α(r) is concave.

Question

Is it true for d ≥ 3? No! Extensive study of η(r) and generalizations in a
recent paper by Campi, Gardenr, Gronchi
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Some properties of the functions η and α and the numbers r± are obvious:

η(r) and α(r) are non-negative; also α(r) is non-decreasing;

η(r) ≡ 2πr and α(r) ≡ r 2 for r ≤ r−;

η(r) ≡ 0 and α(r) ≡ const = vol2(Ω)/π for r ≥ r+

An additional important property is valid for planar convex domains.
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Ideas of the proofs II (contd.)

After some change of variables and integration by parts, our Theorem 1
reduces to

Problem

For I [α] :=
∫ j0,3

0 α(r)J1(r)dr , show that

sup
α∈A

I [α] < 0 ,

where the class A consists of continuous functions α : [0, j0,3]→ R
satisfying

(a) α(r) is non-negative and non-decreasing;

(b) α(r) = r 2/(4j2
0,1) for 0 ≤ r ≤ r−;

(c) α(r) = 1 for r ≥ r+;

(d) α(r) is concave for r− ≤ r ≤ r+;

(e) j2
0,1/2 < r− ≤ 2j0,1 ≤ r+ < 2π.
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Ideas of the proofs II (contd.)

Proof is technical, difficult, does not extend to dimensions higher than
two, and eventually reduces to showing that

Ly− + M is negative, where

L := J0

(
τ2

8

)
− 1

2π − j1,1

(
π2J1(2π)H0(2π)− π2J0(2π)H1(2π)

+
πj1,1

2
J0(j1,1)H1(j1,1) + j1,1J0(j1,1) + 2πJ0(2π)

)

M :=
1

8
J2

(
τ2

8

)
+

1

2π − j1,1

(
π2J1(2π)H0(2π)− π2J0(2π)H1(2π)

+
πj1,1

2
J0(j1,1)H1(j1,1)− j1,1J0(j1,1) + 2πJ0(2π)

)
;

τ := 2j0,1; y− := 1− (2π − j1,1)(64− τ2)

8(16π − τ2)
.
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Dropping restrictions

Dropping central symmetry

Let T = T1,a be a right-angled triangle with sides 1, a > 1, and
√

1 + a2.
Then κ(T1,a) = 2π

√
1 + a−2. Both Conjectures with Ω = T hold for

values of a sufficiently close to one, but fail for large a or small a. May still
hold for κC(T )!

Dropping convexity

There is no C such that κ(Ω) ≤ Cκ(Ω∗) holds uniformly for all balanced
connected two-dimensional domains Ω.
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Conclusions

New object: κ(Ω);

any dimension d and any Ω, 2
√
µ2(Ω) ≤ κ(Ω);

d = 2 and convex, balanced Ω, κ(Ω) < 2
√
λ1(Ω);

conjecture that for any d , and convex, balanced Ω, κ(Ω) <
√
λ2(Ω);

Many open problems!
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