Index Theorems for Quantum Graphs J. Phys. A **40** (2007) 14165–14180

S A. FULLING, P. KUCHMENT, & J. H. WILSON* Departments of Mathematics and Physics, Texas A&M University

^{*} Undergraduate Research Fellow; now at University of Maryland

CREDITS

- National Science Foundation
- Isaac Newton Institute for Mathematical Sciences, University of Cambridge, Program on Analysis on Graphs and Its Applications, 2007
- Participants there: Jens Bolte, Vadim Kostrykin, Audrey Terras, ...
- Other members of the quantum graph group at TAMU: Gregory Berkolaiko, Jonathan Harrison, Brian Winn

What is a quantum graph?

A quantum graph combines the features of one-dimensional and multidimensional systems.

A quantum graph is a Riemannian 1-complex equipped with a self-adjoint second-order Laplacian operator: On each edge: $-\frac{d^2}{dx_e^2}u = k^2u \equiv \lambda u.$

At each vertex: Boundary conditions that make it selfadjoint. Example: u is continuous and

$$\sum_{\mathbf{e}} \frac{du}{dx_e} = \alpha_v u(v).$$

Note: This is a *metric graph*, not a *combinatorial* graph where the edges are inert and

$$\Delta u(v) \equiv (\text{const}) u(v) - \sum_{\text{neighbors}} u(v_e).$$

For today: *compact* graphs (finitely many edges, each of finite length). No isolated vertices. Multiple links are allowed, as are loops (tadpoles).

APPLICATIONS OF QUANTUM GRAPHS

- Modeling thin structures in 3 dimensions (quantum wires)
 e.g., Kuchment, Waves Random Media 12 (2002) R1
- Abstract model of quantum chaos e.g., Kottos & Smilansky, Phys. Rev. Lett. 24 (1997) 4794
- Symbolic dynamics for wave propagation in piecewise homogeneous media e.g., Dabaghian et al., Phys. Rev. E 63 (2001) 066201

- 4. Lungs, veins, ...
 e.g., Carlson, 2005 Snowbird conference (Contemp. Math. 415 (2006) 65)
- 5. Modeling of multidimensional (continuum) quantum-mechanical systems
 - Melnikov & Pavlov, J. Math. Phys. 42 (2001) 1202
 - Exner, Hejčík, & Šeba, Rep. Math. Phys. 57 (2006) 445

More about boundary conditions

Kostrykin & Schrader (1999): $A\mathbf{u}(v) + B\mathbf{u}'(v) = 0$ with some technical conditions on matrices A and B.

Kuchment (2004): At each vertex v, of degree d_v , there are orthogonal projectors P_v and Q_v operating in \mathbf{C}^{d_v} and a self-adjoint matrix Λ_v operating in the complementary subspace, $(1 - P_v - Q_v)\mathbf{C}^{d_v}$. (Any of the three subspaces might be zero.) The functions u in the operator domain are those members of the Sobolev space $\bigoplus_e H^2(e)$ that satisfy, at each vertex, boundary conditions consisting of the "Dirichlet part"

 $P_v \mathbf{u}(v) = 0,$

the "Neumann part"

$$Q_v \mathbf{u}'(v) = 0,$$

and the "Robin part"

$$(1 - P_v - Q_v)\mathbf{u}'(v) = \Lambda_v(1 - P_v - Q_v)\mathbf{u}(v),$$

$$u'_e \equiv \frac{du}{dx_e}$$
 being the derivative along edge e in the

outgoing direction. The domain of $H = -\frac{d^2}{dx_e^2}$ as a quadratic form consists of the functions $u(x_e)$ that belong to the Sobolev space $H^1(e)$ on each edge and satisfy $P_v \mathbf{u}(v) = 0$ (the Dirichlet part of the BC) at each vertex. The Robin matrices Λ_v arise from boundary terms in the quadratic form defining the operator.

Nongeometer's point of view

Each edge has an initial point $(x_e = 0)$ and a terminal point $(x_e = L_e)$.

$$u'_e(v) = \begin{cases} u'_e(0), \text{ or} \\ -u'_e(L_e), \end{cases}$$
 depending.

Geometer's point of view

 u'_e is a one-form (or a vector field). $du_e = \frac{du}{dx_e} dx_e$ is unambiguous. At each vertex we understand $u'_e(v)$ to be the outgoing (from the vertex) derivative.

KIRCHHOFF BOUNDARY CONDITIONS

Dir.:
$$u_e(v) = \text{same for all } e \quad (\text{continuity});$$

Neu.:
$$\sum_{e=1}^{d_v} u'_e(v) = 0 \quad \text{(no net flux)};$$

no Robin part.

Dual (anti-Kirchhoff) boundary conditions

Dir.:
$$\sum_{e=1}^{d_v} w_e(v) = 0$$
 (average value at vertex = 0);

Neu.:

 $w'_e(v) = \text{same for all } e$ (continuity of divergence).

These conditions are natural for $w \in \Lambda^1(\Gamma), w' = *d*w \in \Lambda^0(\Gamma).$

The heat kernel of a quantum graph J.-P. Roth (1983): For Kirchhoff BC,

$$\sum_{n=0}^{\infty} e^{-\lambda_n t} = \operatorname{Tr} K \equiv \int_{\Gamma} K(t, x, x) \, dx$$
$$= \text{sum over closed paths} = K_1 + K_2 + K_3 \, .$$

1. Zero length:
$$K_1 = \frac{L}{\sqrt{4\pi t}}$$
 (Weyl's law).
 $L \equiv \text{total length of } \Gamma.$

2. Periodic: $K_2 = \frac{1}{\sqrt{4\pi t}} \sum_C \mathcal{A}(C) L(C_p) e^{-L(C)^2/4t}$. $L(C), L(C_p) \equiv \text{path lengths.}$ $\mathcal{A}(C) \equiv \text{an amplitude you don't want to know.}$

3. Closed, nonperiodic:"Ce calcul est un peu plus délicat."

$$K_3 = \frac{1}{2}(V - E)$$

(rest of the Weyl series; the **only** constant term). $V \equiv$ number of vertices, $E \equiv$ number of edges. V-E is

- an integer;
- "topological" (Euler characteristic of a 1-complex).

So what? ...

Let's generalize Gilkey, Asymptotic Formulae in Spectral Geometry, which treats this graph: $0 \bullet - \bullet \pi$

Let $d \equiv \frac{d}{dx} \colon \Lambda^0(\Gamma) \to \Lambda^1(\Gamma)$ with Kirchhoff conditions

- Dirichlet part: $u_e(v)$ independent of e;
- Neumann part: $\sum_{e} u'_{e}(v) = 0.$

Then $d^{\dagger} = -\frac{d}{dx} : \Lambda^1(\Gamma) \to \Lambda^0(\Gamma)$ with dual conditions

• Dirichlet part:
$$\sum_{e} w_e(v) = 0;$$

• Neumann part: $w'_e(v)$ independent of e.

$$d^{\dagger}d \equiv H_K = \text{Kirchhoff Laplacian};$$

 $dd^{\dagger} \equiv H_A = \text{dual Laplacian}.$

$$d^{\dagger}d \equiv H_K; \quad dd^{\dagger} \equiv H_A.$$

(Outer operator on form domain $\bigoplus_e H^1(e)_{\text{Dir}}$; inner operator on operator domain $\bigoplus_e H^2(e)_{\text{Dir,Neu}}$.) Let K_K and K_A be the respective heat kernels.

$$\operatorname{Tr} K_K = \frac{L}{\sqrt{4\pi t}} + \frac{1}{2}(V - E) + \cdots$$
$$\operatorname{Tr} K_A = \frac{L}{\sqrt{4\pi t}} + \frac{1}{2}(E - V) + \cdots$$

There follows:

Index theorem (simplest case)

index
$$d = \operatorname{Tr} K_K - \operatorname{Tr} K_A = V - E = \chi(\Gamma).$$

COROLLARY

Let C be the number of connected components of $\Gamma.$ Then

$$\dim \ker d = \dim \ker H_K = C,$$
$$\dim \ker d^{\dagger} = \dim \ker H_A = E - V + C.$$

In particular, in the connected case

$$\dim \ker d^{\dagger} = E - V + 1 = r,$$

the rank of the fundamental group. (Number of locally constant anti-Kirchhoff vector fields = number of independent cycles in graph.)

More general boundary conditions

A choice of self-adjoint extension dictates an internal scattering matrix $\sigma(k)$ for the graph (unitary; number of indices = 2E; $k = \sqrt{\lambda}$).

Theorem (Kostrykin & Schrader; Kuchment): These are equivalent:

- There is no "Robin part" in the boundary conditions: $1 - P_v - Q_v = 0$.
- σ is independent of k (scale invariance).
- $\sigma^2 = I$, so $\sigma = I 2P$ ($P = \sum P_v$ = orthogonal projection).
- The Laplacian can be factored: $H = A^{\dagger}A$ where $A = \frac{d}{dx}$ with some vertex conditions.

Theorem (Kostrykin, Putthoff & Schrader; Wilson): For any scale-invariant graph Laplacian H,

$$\operatorname{Tr} K_H = \frac{L}{\sqrt{4\pi t}} + \frac{1}{4} \operatorname{tr} \sigma + \operatorname{exponential terms.}$$

As before, there is a dual Laplacian (interchanging Dirichlet and Neumann conditions), and its scattering matrix is $-\sigma$. There follows:

INDEX THEOREM (GENERAL CASE)

Define A with the BC defining H and hence A^{\dagger} with the dual BC. Then $H = A^{\dagger}A$ and

index $A = 2 \operatorname{Tr} K_H$.

But also ...

Index theorem (rendered trivial by Kuchment) For any scale-invariant graph Laplacian H,

$$\operatorname{index} A = E - p,$$

where $p \equiv \dim \operatorname{ran} P$, the number of Dirichlet conditions in the definition of H.

The proof is an elementary exercise in changing the codimension of the domain of a Fredholm operator by a finite amount.

Example:

$$p = \begin{cases} 2E - V & \text{for Kirchhoff,} \\ V & \text{for anti-Kirchhoff.} \end{cases}$$

So

index
$$d = E - p = V - E$$
,
index $d^{\dagger} = E - V$.

The secular determinant

Kottos & Smilansky (1999): The nonzero eigenvalues satisfy a secular equation det[U(k) - I] = 0. But the algebraic multiplicity of k = 0 may be greater than its true spectral multiplicity.

Previous methods of determining these multiplicities have proved difficult and error-prone.

COROLLARY OF INDEX THEOREM

Let N_0 and \tilde{N} be the spectral and algebraic multiplicities of k = 0 for a scale-invariant graph Laplacian, $A^{\dagger}A$, and let N_0^* be the spectral multiplicity for the dual Laplacian, AA^{\dagger} . Then

$$N = 2N_0 - \text{index} A = 2N_0 - E + p,$$

and $\tilde{N} = N_0 + N_0^*$.

Example 1: For H_K , the Laplacian of a connected Kirchhoff graph, $N_0 = 1$ and index d = V - E. Therefore, N = 2 - V + E, as proved earlier by Kurasov. Example 2: For a graph consisting of disconnected Neumann edges, one has $N_0 = E$ and p = 0, so N = E. This is correct, because k = 0 appears as a root once for each edge. The dual has disconnected Dirichlet edges and has $N_0^* = 0$ and p = 2E. (This pair is the starting point of the elementary) Fredholm exercise.)

Conclusions

- 1. The "topological" term in the heat kernel does have an index interpretation, for scale-invariant boundary conditions.
- 2. Namely, H has the form $A^{\dagger}A$, and the index of A can be calculated in three ways:
 - (a) as usual, from $\operatorname{Tr} K_{A^{\dagger}A} \operatorname{Tr} K_{AA^{\dagger}}$.
 - (b) by inspection of $K_{A^{\dagger}A}$ by itself;
 - (c) just by counting the number of Dirichlet-type boundary conditions.

- 3. The geometer's viewpoint (one-forms versus functions) is helpful.
- 4. The algebraic multiplicity of 0 as a root of the secular equation is related to the spectral multiplicities for the Laplacian $(A^{\dagger}A)$ and its dual (AA^{\dagger}) .

A SIMULTANEOUS RELATED PAPER

Olaf Post, First order approach and index theorems for discrete and metric graphs, Ann. H. Poincaré **10** (2009) 823–866. At the Dartmouth conference I learned from Ralf Rueckriemen about an earlier paper:

B. Gaveau and M. Okada, Differential forms and heat diffusion on one-dimensional singular varieties, *Bull. Sci. Math.* **115** (1991) 61–79.

They introduce the first-order formalism and state the simplest index theorem under the name of "Gauss–Bonnet theorem".