Index Theorems for Quantum Graphs J. Phys. A 40 (2007) 14165-14180

S A. Fulling, P. Kuchment, \& J. H. Wilson*
Departments of Mathematics and Physics, Texas A\&M University

[^0]
Credits

- National Science Foundation
- Isaac Newton Institute for Mathematical Sciences, University of Cambridge, Program on Analysis on Graphs and Its Applications, 2007
- Participants there: Jens Bolte, Vadim Kostrykin, Audrey Terras, ...
- Other members of the quantum graph group at TAMU: Gregory Berkolaiko, Jonathan Harrison, Brian Winn

What is a quantum graph?

A quantum graph combines the features of one-dimensional and multidimensional systems.

A quantum graph is a Riemannian 1-complex equipped with a self-adjoint second-order Laplacian operator:

On each edge: $\quad-\frac{d^{2}}{d x_{\mathrm{e}}^{2}} u=k^{2} u \equiv \lambda u$.
At each vertex: Boundary conditions that make it selfadjoint. Example: u is continuous and

$$
\sum_{\mathrm{e}} \frac{d u}{d x_{e}}=\alpha_{v} u(v)
$$

Note: This is a metric graph, not a combinatorial graph where the edges are inert and

$$
\Delta u(v) \equiv(\text { const }) u(v)-\sum_{\text {neighbors }} u\left(v_{e}\right)
$$

For today: compact graphs (finitely many edges, each of finite length). No isolated vertices. Multiple links are allowed, as are loops (tadpoles).

Applications of quantum graphs

1. Modeling thin structures in 3 dimensions (quantum wires)
e.g., Kuchment, Waves Random Media 12 (2002) R1
2. Abstract model of quantum chaos e.g., Kottos \& Smilansky, Phys. Rev. Lett. 24 (1997) 4794
3. Symbolic dynamics for wave propagation in piecewise homogeneous media
e.g., Dabaghian et al., Phys. Rev. E 63 (2001) 066201
4. Lungs, veins, ... e.g., Carlson, 2005 Snowbird conference (Contemp. Math. 415 (2006) 65)
5. Modeling of multidimensional (continuum) quantum-mechanical systems

- Melnikov \& Pavlov, J. Math. Phys. 42 (2001) 1202
- Exner, Hejčík, \& Šeba, Rep. Math. Phys. 57 (2006) 445

More about boundary conditions

Kostrykin \& Schrader (1999): $\quad A \mathbf{u}(v)+B \mathbf{u}^{\prime}(v)=0$ with some technical conditions on matrices A and B.

Kuchment (2004): At each vertex v, of degree d_{v}, there are orthogonal projectors P_{v} and Q_{v} operating in $\mathbf{C}^{d_{v}}$ and a self-adjoint matrix Λ_{v} operating in the complementary subspace, $\left(1-P_{v}-Q_{v}\right) \mathbf{C}^{d_{v}}$. (Any of the three subspaces might be zero.) The functions u in the operator domain are those members of the Sobolev
space $\bigoplus_{e} H^{2}(e)$ that satisfy, at each vertex, boundary conditions consisting of the "Dirichlet part"

$$
P_{v} \mathbf{u}(v)=0,
$$

the "Neumann part"

$$
Q_{v} \mathbf{u}^{\prime}(v)=0
$$

and the "Robin part"

$$
\left(1-P_{v}-Q_{v}\right) \mathbf{u}^{\prime}(v)=\Lambda_{v}\left(1-P_{v}-Q_{v}\right) \mathbf{u}(v),
$$

$u_{e}^{\prime} \equiv \frac{d u}{d x_{e}}$ being the derivative along edge e in the outgoing direction. The domain of $H=-\frac{d^{2}}{d x_{e}{ }^{2}}$ as a quadratic form consists of the functions $u\left(x_{e}\right)$ that belong to the Sobolev space $H^{1}(e)$ on each edge and satisfy $P_{v} \mathbf{u}(v)=0$ (the Dirichlet part of the BC) at each vertex. The Robin matrices Λ_{v} arise from boundary terms in the quadratic form defining the operator.

Nongeometer's point of view

Each edge has an initial point $\left(x_{e}=0\right)$ and a terminal point $\left(x_{e}=L_{e}\right)$.

$$
u_{e}^{\prime}(v)=\left\{\begin{array}{l}
u_{e}^{\prime}(0), \text { or } \\
-u_{e}^{\prime}\left(L_{e}\right),
\end{array} \quad\right. \text { depending. }
$$

Geometer's point of view
u_{e}^{\prime} is a one-form (or a vector field). $d u_{e}=\frac{d u}{d x_{e}} d x_{e}$ is unambiguous. At each vertex we understand $u_{e}^{\prime}(v)$ to be the outgoing (from the vertex) derivative.

Kirchhoff Boundary conditions

Dir.: $\quad u_{e}(v)=$ same for all $e \quad$ (continuity);

Neu.: $\quad \sum_{e=1}^{d_{v}} u_{e}^{\prime}(v)=0 \quad$ (no net flux);
no Robin part.

Dual (anti-Kirchhoff) boundary conditions

Dir.: $\quad \sum_{e=1}^{d_{v}} w_{e}(v)=0 \quad$ (average value at vertex $=0$);
Neu.:

$$
w_{e}^{\prime}(v)=\text { same for all } e \quad \text { (continuity of divergence). }
$$

These conditions are natural for $w \in \Lambda^{1}(\Gamma), w^{\prime}=$ $* d * w \in \Lambda^{0}(\Gamma)$.

The heat kernel of a quantum graph

J.-P. Roth (1983): For Kirchhoff BC,

$$
\begin{aligned}
\sum_{n=0}^{\infty} e^{-\lambda_{n} t} & =\operatorname{Tr} K \equiv \int_{\Gamma} K(t, x, x) d x \\
& =\text { sum over closed paths }=K_{1}+K_{2}+K_{3}
\end{aligned}
$$

1. Zero length: $K_{1}=\frac{L}{\sqrt{4 \pi t}} \quad$ (Weyl's law). $L \equiv$ total length of Γ.
2. Periodic: $\quad K_{2}=\frac{1}{\sqrt{4 \pi t}} \sum_{C} \mathcal{A}(C) L\left(C_{p}\right) e^{-L(C)^{2} / 4 t}$. $L(C), L\left(C_{p}\right) \equiv$ path lengths. $\mathcal{A}(C) \equiv$ an amplitude you don't want to know.
3. Closed, nonperiodic:
"Ce calcul est un peu plus délicat."

$$
K_{3}=\frac{1}{2}(V-E)
$$

(rest of the Weyl series; the only constant term). $V \equiv$ number of vertices, $\quad E \equiv$ number of edges.

$V-E$ is

- an integer;
- "topological" (Euler characteristic of a 1-complex).

So what? ...
Let's generalize Gilkey, Asymptotic Formulae in Spectral Geometry, which treats this graph: $0 \bullet \bullet \pi$

Let $d \equiv \frac{d}{d x}: \Lambda^{0}(\Gamma) \rightarrow \Lambda^{1}(\Gamma)$ with Kirchhoff conditions

- Dirichlet part: $u_{e}(v)$ independent of e;
- Neumann part: $\sum_{e} u_{e}^{\prime}(v)=0$.

Then $d^{\dagger}=-\frac{d}{d x}: \Lambda^{1}(\Gamma) \rightarrow \Lambda^{0}(\Gamma)$ with dual conditions

- Dirichlet part: $\sum_{e} w_{e}(v)=0$;
- Neumann part: $w_{e}^{\prime}(v)$ independent of e.

$$
\begin{gathered}
d^{\dagger} d \equiv H_{K}=\text { Kirchhoff Laplacian; } \\
d d^{\dagger} \equiv H_{A}=\text { dual Laplacian }
\end{gathered}
$$

$$
d^{\dagger} d \equiv H_{K} ; \quad d d^{\dagger} \equiv H_{A}
$$

(Outer operator on form domain $\oplus_{e} H^{1}(e)_{\text {Dir }}$; inner operator on operator domain $\left.\oplus_{e} H^{2}(e)_{\text {Dir,Neu }}.\right)$

Let K_{K} and K_{A} be the respective heat kernels.

$$
\begin{aligned}
\operatorname{Tr} K_{K} & =\frac{L}{\sqrt{4 \pi t}}+\frac{1}{2}(V-E)+\cdots \\
\operatorname{Tr} K_{A} & =\frac{L}{\sqrt{4 \pi t}}+\frac{1}{2}(E-V)+\cdots
\end{aligned}
$$

There follows:

Index theorem (simplest case)

$$
\text { index } d=\operatorname{Tr} K_{K}-\operatorname{Tr} K_{A}=V-E=\chi(\Gamma) .
$$

Corollary

Let C be the number of connected components of Γ. Then

$$
\begin{gathered}
\operatorname{dim} \operatorname{ker} d=\operatorname{dim} \operatorname{ker} H_{K}=C, \\
\operatorname{dim} \operatorname{ker} d^{\dagger}=\operatorname{dim} \operatorname{ker} H_{A}=E-V+C .
\end{gathered}
$$

In particular, in the connected case

$$
\operatorname{dim} \operatorname{ker} d^{\dagger}=E-V+1=r
$$

the rank of the fundamental group. (Number of locally constant anti-Kirchhoff vector fields $=$ number of independent cycles in graph.)

More general boundary conditions

A choice of self-adjoint extension dictates an internal scattering matrix $\sigma(k)$ for the graph (unitary; number of indices $=2 E ; k=\sqrt{\lambda}$).

Theorem (Kostrykin \& Schrader; Kuchment): These are equivalent:

- There is no "Robin part" in the boundary conditions: $1-P_{v}-Q_{v}=0$.
- σ is independent of k (scale invariance).
- $\sigma^{2}=I$, so $\sigma=I-2 P\left(P=\sum P_{v}=\right.$ orthogonal projection).
- The Laplacian can be factored: $H=A^{\dagger} A$ where $A=\frac{d}{d x}$ with some vertex conditions.

Theorem (Kostrykin, Putthoff \& Schrader; Wilson): For any scale-invariant graph Laplacian H,

$$
\operatorname{Tr} K_{H}=\frac{L}{\sqrt{4 \pi t}}+\frac{1}{4} \operatorname{tr} \sigma+\text { exponential terms. }
$$

As before, there is a dual Laplacian (interchanging Dirichlet and Neumann conditions), and its scattering matrix is $-\sigma$. There follows:

Index Theorem (GENERAL CASE)

Define A with the BC defining H and hence A^{\dagger} with the dual BC. Then $H=A^{\dagger} A$ and

$$
\text { index } A=2 \operatorname{Tr} K_{H} .
$$

But also ...

Index theorem (rendered trivial by Kuchment)

For any scale-invariant graph Laplacian H,

$$
\text { index } A=E-p,
$$

where $p \equiv \operatorname{dim} \operatorname{ran} P$, the number of Dirichlet conditions in the definition of H.
The proof is an elementary exercise in changing the codimension of the domain of a Fredholm operator by a finite amount.

Example:

$$
p= \begin{cases}2 E-V & \text { for Kirchhoff } \\ V & \text { for anti-Kirchhoff }\end{cases}
$$

So

$$
\begin{gathered}
\text { index } d=E-p=V-E \\
\text { index } d^{\dagger}=E-V
\end{gathered}
$$

The secular determinant

Kottos \& Smilansky (1999): The nonzero eigenvalues satisfy a secular equation $\operatorname{det}[U(k)-I]=0$. But the algebraic multiplicity of $k=0$ may be greater than its true spectral multiplicity.
Previous methods of determining these multiplicities have proved difficult and error-prone.

Corollary of index theorem

Let N_{0} and \tilde{N} be the spectral and algebraic multiplicities of $k=0$ for a scale-invariant graph Laplacian, $A^{\dagger} A$, and let N_{0}^{*} be the spectral multiplicity for the dual Laplacian, $A A^{\dagger}$. Then

$$
\tilde{N}=2 N_{0}-\operatorname{index} A=2 N_{0}-E+p,
$$

and $\tilde{N}=N_{0}+N_{0}^{*}$.

Example 1: For H_{K}, the Laplacian of a connected Kirchhoff graph, $N_{0}=1$ and index $d=V-E$. Therefore, $\tilde{N}=2-V+E$, as proved earlier by Kurasov.
Example 2: For a graph consisting of disconnected Neumann edges, one has $N_{0}=E$ and $p=0$, so $\tilde{N}=E$. This is correct, because $k=0$ appears as a root once for each edge. The dual has disconnected Dirichlet edges and has $N_{0}^{*}=0$ and $p=2 E$. (This pair is the starting point of the elementary Fredholm exercise.)

Conclusions

1. The "topological" term in the heat kernel does have an index interpretation, for scale-invariant boundary conditions.
2. Namely, H has the form $A^{\dagger} A$, and the index of A can be calculated in three ways:
(a) as usual, from $\operatorname{Tr} K_{A^{\dagger} A}-\operatorname{Tr} K_{A A^{\dagger}}$.
(b) by inspection of $K_{A^{\dagger} A}$ by itself;
(c) just by counting the number of Dirichlet-type boundary conditions.
3. The geometer's viewpoint (one-forms versus functions) is helpful.
4. The algebraic multiplicity of 0 as a root of the secular equation is related to the spectral multiplicities for the Laplacian $\left(A^{\dagger} A\right)$ and its dual $\left(A A^{\dagger}\right)$.

A simultaneous related paper
Olaf Post, First order approach and index theorems for discrete and metric graphs, Ann. H. Poincaré 10 (2009) 823-866.

At the Dartmouth conference I learned from Ralf Rueckriemen about an earlier paper:
B. Gaveau and M. Okada, Differential forms and heat diffusion on one-dimensional singular varieties, Bull. Sci. Math. 115 (1991) 61-79.

They introduce the first-order formalism and state the simplest index theorem under the name of "GaussBonnet theorem".

[^0]: * Undergraduate Research Fellow; now at University of Maryland

