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What is a quantum graph?

A quantum graph combines the features of one-dimen-
sional and multidimensional systems.
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A quantum graph is a Riemannian 1-complex equipped
with a self-adjoint second-order Laplacian operator:
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On each edge: − d2

dx2
e

u = k2u ≡ λu.

At each vertex: Boundary conditions that make it self-
adjoint. Example: u is continuous and

∑

e

du

dxe
= αvu(v).

Note: This is a metric graph, not a combinatorial
graph where the edges are inert and

∆u(v) ≡ (const)u(v) −
∑

neighbors

u(ve) .
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For today: compact graphs (finitely many edges, each
of finite length). No isolated vertices. Multiple links
are allowed, as are loops (tadpoles).
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Applications of quantum graphs

1. Modeling thin structures in 3 dimensions (quantum
wires)
e.g., Kuchment, Waves Random Media 12 (2002) R1

2. Abstract model of quantum chaos
e.g., Kottos & Smilansky, Phys. Rev. Lett. 24

(1997) 4794

3. Symbolic dynamics for wave propagation in piece-
wise homogeneous media
e.g., Dabaghian et al., Phys. Rev. E 63 (2001)
066201
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4. Lungs, veins, . . .
e.g., Carlson, 2005 Snowbird conference (Contemp.
Math. 415 (2006) 65)

5. Modeling of multidimensional (continuum)
quantum-mechanical systems
• Melnikov & Pavlov, J. Math. Phys. 42 (2001) 1202
• Exner, Hejč́ık, & Šeba, Rep. Math. Phys. 57

(2006) 445
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More about boundary conditions

Kostrykin & Schrader (1999): Au(v) + Bu′(v) = 0
with some technical conditions on matrices A and B.

Kuchment (2004): At each vertex v, of degree dv ,
there are orthogonal projectors Pv and Qv operating
in Cdv and a self-adjoint matrix Λv operating in the
complementary subspace, (1 − Pv − Qv)Cdv . (Any of
the three subspaces might be zero.) The functions u in
the operator domain are those members of the Sobolev
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space
⊕

e H2(e) that satisfy, at each vertex, boundary
conditions consisting of the “Dirichlet part”

Pvu(v) = 0,

the “Neumann part”

Qvu
′(v) = 0,

and the “Robin part”

(1 − Pv − Qv)u′(v) = Λv(1 − Pv − Qv)u(v),
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u′
e ≡ du

dxe
being the derivative along edge e in the

outgoing direction. The domain of H = − d2

dxe
2

as a

quadratic form consists of the functions u(xe) that be-
long to the Sobolev space H1(e) on each edge and sat-
isfy Pvu(v) = 0 (the Dirichlet part of the BC) at each
vertex. The Robin matrices Λv arise from boundary
terms in the quadratic form defining the operator.
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Nongeometer’s point of view

Each edge has an initial point (xe = 0) and a terminal
point (xe = Le).

u′
e(v) =

{

u′
e(0), or

−u′
e(Le),

depending.

Geometer’s point of view

u′
e is a one-form (or a vector field). due = du

dxe

dxe is
unambiguous. At each vertex we understand u′

e(v) to
be the outgoing (from the vertex) derivative.
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Kirchhoff boundary conditions

Dir.: ue(v) = same for all e (continuity);

Neu.:

dv
∑

e=1

u′
e(v) = 0 (no net flux);

no Robin part.
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Dual (anti-Kirchhoff) boundary conditions

Dir.:

dv
∑

e=1

we(v) = 0 (average value at vertex = 0);

Neu.:
w′

e(v) = same for all e (continuity of divergence).

These conditions are natural for w ∈ Λ1(Γ), w′ =
∗d∗w ∈ Λ0(Γ).
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The heat kernel of a quantum graph

J.-P. Roth (1983): For Kirchhoff BC,

∞
∑

n=0

e−λnt = TrK ≡
∫

Γ

K(t, x, x) dx

= sum over closed paths = K1 + K2 + K3 .

1. Zero length: K1 =
L√
4πt

(Weyl’s law).

L ≡ total length of Γ.
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2. Periodic: K2 =
1√
4πt

∑

C

A(C)L(Cp)e
−L(C)2/4t.

L(C), L(Cp) ≡ path lengths.
A(C) ≡ an amplitude you don’t want to know.

3. Closed, nonperiodic:
“Ce calcul est un peu plus délicat.”

K3 =
1

2
(V − E)

(rest of the Weyl series; the only constant term).
V ≡ number of vertices, E ≡ number of edges.
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V − E is
• an integer;
• “topological” (Euler characteristic of a 1-complex).

So what? . . .

Let’s generalize Gilkey, Asymptotic Formulae in Spec-
tral Geometry, which treats this graph: • •.....................................0 π

16



Let d ≡ d
dx : Λ0(Γ) → Λ1(Γ) with Kirchhoff conditions

• Dirichlet part: ue(v) independent of e;

• Neumann part:
∑

e u′
e(v) = 0.

Then d† = − d
dx : Λ1(Γ) → Λ0(Γ) with dual conditions

• Dirichlet part:
∑

e we(v) = 0;

• Neumann part: w′
e(v) independent of e.

d†d ≡ HK = Kirchhoff Laplacian;

dd† ≡ HA = dual Laplacian.
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d†d ≡ HK ; dd† ≡ HA .

(Outer operator on form domain ⊕eH
1(e)Dir ;

inner operator on operator domain ⊕eH
2(e)Dir,Neu .)

Let KK and KA be the respective heat kernels.

TrKK =
L√
4πt

+
1

2
(V − E) + · · · .

TrKA =
L√
4πt

+
1

2
(E − V ) + · · · .

There follows:
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Index theorem (simplest case)

index d = TrKK − TrKA = V − E = χ(Γ).

Corollary

Let C be the number of connected components of Γ.
Then

dimker d = dimkerHK = C,

dimker d† = dimkerHA = E − V + C.
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In particular, in the connected case

dimker d† = E − V + 1 = r,

the rank of the fundamental group. (Number of locally
constant anti-Kirchhoff vector fields = number of inde-
pendent cycles in graph.)
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More general boundary conditions

A choice of self-adjoint extension dictates an internal
scattering matrix σ(k) for the graph
(unitary; number of indices = 2E; k =

√
λ).
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Theorem (Kostrykin & Schrader; Kuchment): These
are equivalent:
• There is no “Robin part” in the boundary condi-

tions: 1 − Pv − Qv = 0.
• σ is independent of k (scale invariance).
• σ2 = I, so σ = I − 2P (P =

∑

Pv = orthogonal
projection).

• The Laplacian can be factored: H = A†A where
A = d

dx with some vertex conditions.
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Theorem (Kostrykin, Putthoff & Schrader; Wilson):
For any scale-invariant graph Laplacian H,

TrKH =
L√
4πt

+
1

4
trσ + exponential terms.

As before, there is a dual Laplacian (interchanging
Dirichlet and Neumann conditions), and its scattering
matrix is −σ. There follows:
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Index theorem (general case)

Define A with the BC defining H and hence A† with
the dual BC. Then H = A†A and

indexA = 2 TrKH .

But also . . .
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Index theorem (rendered trivial by Kuchment)

For any scale-invariant graph Laplacian H,

indexA = E − p,

where p ≡ dim ran P , the number of Dirichlet condi-
tions in the definition of H.

The proof is an elementary exercise in changing the
codimension of the domain of a Fredholm operator by
a finite amount.
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Example:

p =

{

2E − V for Kirchhoff,

V for anti-Kirchhoff.

So
index d = E − p = V − E,

index d† = E − V.
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The secular determinant

Kottos & Smilansky (1999): The nonzero eigenvalues
satisfy a secular equation det[U(k) − I] = 0. But the
algebraic multiplicity of k = 0 may be greater than its
true spectral multiplicity.

Previous methods of determining these multiplicities
have proved difficult and error-prone.
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Corollary of index theorem

Let N0 and Ñ be the spectral and algebraic multiplic-
ities of k = 0 for a scale-invariant graph Laplacian,
A†A, and let N∗

0 be the spectral multiplicity for the
dual Laplacian, AA†. Then

Ñ = 2N0 − indexA = 2N0 − E + p,

and Ñ = N0 + N∗
0 .
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Example 1: For HK , the Laplacian of a connected
Kirchhoff graph, N0 = 1 and indexd = V − E.
Therefore, Ñ = 2−V +E, as proved earlier by Kurasov.

Example 2: For a graph consisting of disconnected
Neumann edges, one has N0 = E and p = 0, so
Ñ = E. This is correct, because k = 0 appears as
a root once for each edge. The dual has disconnected
Dirichlet edges and has N∗

0 = 0 and p = 2E.
(This pair is the starting point of the elementary
Fredholm exercise.)
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Conclusions

1. The “topological” term in the heat kernel does
have an index interpretation, for scale-invariant
boundary conditions.

2. Namely, H has the form A†A, and the index of A

can be calculated in three ways:
(a) as usual, from TrKA†A − TrKAA† .
(b) by inspection of KA†A by itself;
(c) just by counting the number of Dirichlet-type

boundary conditions.
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3. The geometer’s viewpoint (one-forms versus func-
tions) is helpful.

4. The algebraic multiplicity of 0 as a root of the sec-
ular equation is related to the spectral multiplici-
ties for the Laplacian (A†A) and its dual (AA†).

A simultaneous related paper

Olaf Post, First order approach and index theorems
for discrete and metric graphs, Ann. H. Poincaré 10
(2009) 823–866.
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At the Dartmouth conference I learned from Ralf Rueck-
riemen about an earlier paper:

B. Gaveau and M. Okada, Differential forms and heat
diffusion on one-dimensional singular varieties, Bull.
Sci. Math. 115 (1991) 61–79.

They introduce the first-order formalism and state the
simplest index theorem under the name of “Gauss–
Bonnet theorem”.
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