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What is a quantum graph?

A quantum graph combines the features of one-dimen-
sional and multidimensional systems.
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A quantum graph is a Riemannian 1-complex equipped
with a self-adjoint second-order Laplacian operator:



d2
On each edge: — —u = k’u = \u.
dx?
At each vertex: Boundary conditions that make it self-

adjoint. Example: u is continuous and

d
Z dai = Q,u(V).

(&

Note: This is a metric graph, not a combinatorial
graph where the edges are inert and

Au(v) = (const) u(v) — Z u(ve)

neighbors



For today: compact graphs (finitely many edges, each
of finite length). No isolated vertices. Multiple links
are allowed, as are loops (tadpoles).



APPLICATIONS OF QUANTUM GRAPHS

1. Modeling thin structures in 3 dimensions (quantum

wires)
e.g., Kuchment, Waves Random Media 12 (2002) R1

2. Abstract model of quantum chaos
e.g., Kottos & Smilansky, Phys. Rev. Lett. 24
(1997) 4794

3. Symbolic dynamics for wave propagation in piece-
wise homogeneous media
e.g., Dabaghian et al., Phys. Rev. E 63 (2001)
066201



4. Lungs, veins, ...

e.g., Carlson, 2005 Snowbird conference (Contemp.
Math. 415 (2006) 65)

5. Modeling of multidimensional (continuum)
quantum-mechanical systems
e Melnikov & Pavlov, J. Math. Phys. 42 (2001) 1202
e Exner, Hejéik, & Seba, Rep. Math. Phys. 57
(2006) 445



MORE ABOUT BOUNDARY CONDITIONS

Kostrykin & Schrader (1999):  Au(v) + Bu'(v) = 0
with some technical conditions on matrices A and B.

Kuchment (2004): At each vertex v, of degree d,, ,
there are orthogonal projectors P, and (), operating
in C% and a self-adjoint matrix A, operating in the
complementary subspace, (1 — P, — Q,)C%. (Any of
the three subspaces might be zero.) The functions u in
the operator domain are those members of the Sobolev



space €@, H?(e) that satisfy, at each vertex, boundary
conditions consisting of the “Dirichlet part”

P,u(v) =0,
the “Neumann part”
Qvll/(’U) — 07

and the “Robin part”

(1—-P,—Q,)u'(v) =A,(1-P, —Q,)u(v),



, du

U, =

being the derivative along edge e in the

d2
dx 2
quadratic form consists of the functions u(x.) that be-
long to the Sobolev space H'(e) on each edge and sat-
isfy P,u(v) = 0 (the Dirichlet part of the BC) at each

vertex. The Robin matrices A, arise from boundary
terms in the quadratic form defining the operator.

dx,

outgoing direction. The domain of H = — as a
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Nongeometer’s point of view

Each edge has an initial point (. = 0) and a terminal
point (z, = L.).

depending.

Geometer’s point of view

u! is a one-form (or a vector field). du, = L& dx, is
e dx

unambiguous. At each vertex we understand u’,(v) to
be the outgoing (from the vertex) derivative.
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KIRCHHOFF BOUNDARY CONDITIONS

Dir.: ue(v) = same for all e (continuity);
dy

Neu.: Z u,(v) =0 (no net flux);
e=1

no Robin part.
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Dual (anti-Kirchhoff) boundary conditions

dy
Dir.: Z we(v) =0 (average value at vertex = 0);
e=1

Neu.:
w’ (v) = same for all e (continuity of divergence).

These conditions are natural for w € A (T), w’ =

wdxw € AO(T).
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The heat kernel of a quantum graph
J.-P. Roth (1983): For Kirchhoff BC,

oo

Ze_k’”t =TrK = / K(t,z,x)dx
r

n=0

= sum over closed paths = K7 + K5 + K3.

L

v

1. Zero length: K; =
L = total length of T.

(Weyl’s law).

5
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1 2
A(C)L(C,))e ELC)" /4t

L(C), L(C),) = path lengths.
A(C) = an amplitude you don’t want to know.

3. Closed, nonperiodic:
“Ce calcul est un peu plus délicat.”

2. Periodic: Ko =

1

(rest of the Weyl series; the only constant term).
V' = number of vertices, FE = number of edges.

15



V —FEis
e an integer;
e “topological” (Euler characteristic of a 1-complex).

So what? ...

Let’s generalize Gilkey, Asymptotic Formulae in Spec-
tral Geometry, which treats this graph: (Qe—em
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Let d = %: A (I") — AY(T) with Kirchhoff conditions
e Dirichlet part: u.(v) independent of e;

e Neumann part: ) u.(v)=0.

Then df = —-2. AN (T) — A°(T) with dual conditions
e Dirichlet part: ) w.(v) = 0;

e Neumann part: w,(v) independent of e.

d'd = Hy = Kirchhoff Laplacian;
dd" = H 4 = dual Laplacian.
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deEHK; dd' = H, .

(Outer operator on form domain ®.H!(e)pi ;
inner operator on operator domain @®.H?(€)pir Neu -)

Let Kx and K4 be the respective heat kernels.

L 1
Tr Kg = +-(V-FE)4---.
K VAt 2( )
TrKp= —=— + 2(E-V)+
I‘ p— — J— < ..,
4 VAart 2

There follows:
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Index theorem (simplest case)

indexd=TrKg —Tr K4 =V — E = x(I).

COROLLARY

Let C be the number of connected components of I'.
Then
dimkerd = dimker Hxg = C,

dimkerd' = dimkerHy = E —V + C.
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In particular, in the connected case
dimkerd' = F -V 4+1=r,
the rank of the fundamental group. (Number of locally

constant anti-Kirchhoff vector fields = number of inde-
pendent cycles in graph.)
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More general boundary conditions

A choice of self-adjoint extension dictates an internal

scattering matrix o(k) for the graph
(unitary; number of indices = 2E; k = V).
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Theorem (Kostrykin & Schrader; Kuchment): These

are equivalent:

e There is no “Robin part” in the boundary condi-
tions: 1 — P, — @, = 0.

e o is independent of k£ (scale invariance).

e 02 =1,s00 =1-2P (P =) P, = orthogonal
projection).

e The Laplacian can be factored: H = A" A where

A= % with some vertex conditions.
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Theorem (Kostrykin, Putthoff & Schrader; Wilson):
For any scale-invariant graph Laplacian H,

+ — tr o + exponential terms.

L
Varnt 4

As before, there is a dual Laplacian (interchanging
Dirichlet and Neumann conditions), and its scattering
matrix is —o. There follows:

TI‘KH =
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INDEX THEOREM (GENERAL CASE)

Define A with the BC defining H and hence AT with
the dual BC. Then H = ATA and

index A =2Tr Ky .

But also ...
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Index theorem (rendered trivial by Kuchment)

For any scale-invariant graph Laplacian H,
index A = F — p,

where p = dimran P, the number of Dirichlet condi-
tions in the definition of H.

The proof is an elementary exercise in changing the
codimension of the domain of a Fredholm operator by
a finite amount.
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Example:

_[22-V for Kirchhoff,
b= Vv for anti-Kirchhoft.

S0
indexd=F—p=V — E,

indexd' = E — V.
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The secular determinant

Kottos & Smilansky (1999): The nonzero eigenvalues

satisfy a secular equation det|U(k) — I| = 0. But the
algebraic multiplicity of & = 0 may be greater than its
true spectral multiplicity.

Previous methods of determining these multiplicities
have proved difficult and error-prone.
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COROLLARY OF INDEX THEOREM

Let Ny and N be the spectral and algebraic multiplic-
ities of k = 0 for a scale-invariant graph Laplacian,
ATA, and let Nj be the spectral multiplicity for the
dual Laplacian, AAT. Then

N = 2Ny —index A = 2Ny — E + p,

and N = Ny + NZ .
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Example 1: For Hy , the Laplacian of a connected
Kirchhoff graph, No =1 and indexd =V — F.
Therefore, N = 2—V + E, as proved earlier by Kurasov.

Example 2: For a graph consisting of disconnected
Neumann edges, one has Ngy = E andp = 0, so

N = E. This is correct, because k = 0 appears as
a root once for each edge. The dual has disconnected
Dirichlet edges and has Ny =0 and p = 2F.

(This pair is the starting point of the elementary
Fredholm exercise.)
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Conclusions

1. The “topological” term in the heat kernel does
have an index interpretation, for scale-invariant
boundary conditions.

2. Namely, H has the form ATA, and the index of 4
can be calculated in three ways:
(a) as usual, from Tr K 41 4 — Tr K 44+ -
(b) by inspection of K 4+ 4 by itself;
(c¢) just by counting the number of Dirichlet-type
boundary conditions.
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3. The geometer’s viewpoint (one-forms versus func-
tions) is helpful.

4. The algebraic multiplicity of 0 as a root of the sec-

ular equation is related to the spectral multiplici-
ties for the Laplacian (ATA) and its dual (AAT).

A SIMULTANEOUS RELATED PAPER

Olaf Post, First order approach and index theorems
for discrete and metric graphs, Ann. H. Poincaré 10
(2009) 823-866.
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At the Dartmouth conference I learned from Ralf Rueck-
riemen about an earlier paper:

B. Gaveau and M. Okada, Differential forms and heat
diffusion on one-dimensional singular varieties, Bull.
Sci. Math. 115 (1991) 61-79.

They introduce the first-order formalism and state the
simplest index theorem under the name of “Gauss—
Bonnet theorem”.
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