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Setting & notation

The n-dimensional torus Tn is defined to be: Tn = Rn/Zn.
Eigenfunctions of Laplacian on Tn with eigenvalue λ ≥ 0
satisfy:

∆f + λf = 0,
f (x1, . . . , xn) = f (x1 ± 2π, . . . , xn ± 2π).

We will work with the complex Fourier expansion,

f (x) ∼
∑
|ξ|=
√
λ

cξei(ξ,x).

We will use the following standard notation:

f ∈ Lp if
∫
|f |pdµ <∞.

f ∈ `p if
∞∑

k=0

|ck |p <∞.
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Motivating results

Given an eigenfunction ϕ(x) of the Laplacian on the flat
2-torus, A. Zygmund showed that,

||ϕ||L4

||ϕ||L2
≤ 51/4.

The bound above is independent of the eigenvalue λ.
For n ≥ 4, J. Bourgain showed that on Tn,

sup
(∆+λ)ϕ=0

||ϕ||Lp

||ϕ||L2
� λ(n−2)/4−n/2+ε

for p ≥ 2(n+1)
(n−3) .

? In fact as λ→∞,

sup
(∆+λ)ϕ=0

||ϕ||Lp

||ϕ||L2
=∞.
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Lower dimensional case

In [Jak97], D. Jakobson studied several aspects of quantum
limits on flat tori. He was interested in the limit as λj →∞ of the
measure,

dµj = |ϕj |2d vol,

where ϕj were eigenfunctions of the Laplacian on Tn with
eigenvalue λj and (d vol) is the Riemannian volume form.

Theorem (D. Jakobson, N. Nadirashvili, J. Toth)

Let ϕj be an eigenfunction of the Laplacian on Tn. Then, for
2 ≤ n ≤ 4, the Fourier series of |g| := |ϕj |2 has a uniform
`n norm, where the bound is independent of the eigenvalue λj .

The theorem stated above implies a statement about limits of
eigenfunctions on Tn+2. That is, quantum limits have a uniform
`n norm on Tn+2.
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Higher dimensional case

It was conjectured in [Jak97] that the previous result holds on
Tn for all n ≥ 4.

Theorem (T. Aı̈ssiou)

For any n ≥ 5 there exists a constant C(n) <∞, independant
of the eigenvalue λj , such that for every L2-normalized
eigenfunction of the Laplacian on Tn, the Fourier series of
|g| := |ϕj |2 has a uniform `n norm. That is,∥∥ĝ

∥∥
`n
≤ C(n)||ϕj ||2L2 .

The proof of the 3 dimensional case is given in [Jak97], the
4 dimensional case in [JNT01] and the general n dimensional
case in [Ais09].
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Remarks

The bound C(n) depends on the dimension n only. As
n→∞, C(n)→ 2. In fact,

C(n) =

(
22−n +

(
5n
4
− 4
)

2n + 5
)1/n

.

Combining the last two theorems and the result about
quantum limits proved in [Jak97], we can show that
quantum limits on Tn+2 have a uniform `n norm for any
n ≥ 3.
The proof is done by induction on the dimension and uses
a geometric lemma that bounds the number of
codimension-one simplices on the n dimensional sphere
S(λj) of radius λj .
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Geometric lemma and key remarks.

Lemma (Geometric Lemma)

Given n points {ξi}ni=1 on Sn−1(λj) ∩ Zn, no two of which are
diametrically opposite, that form codimension-one simplex,
assume that there exists τ ∈ Zn and another n points {ηi}ni=1 on
Sn−1(λj) ∩ Zn such that,

ξi − ηi = τ, ∀1 ≤ i ≤ n. (1)

Then, there can be at most 2n−1 such different vectors τ
satisfying (1).

Given m > n points on Sn−1(λj) ∩ Zn, we will still have the
same bound, 2n−1 on the number of possible τ ’s.
The bound we obtained in the lemma is independent of the
eigenvalue λj . This fact is crucial in the proof of the main
Theorem.
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