Separable permutations, Robinson-Schensted and shortest containing supersequence

Greta Panova (Harvard) joint with Andrew Crites (U. Washington) and Greg Warrington (U. Vermont)

Permuation Patterns 2010

- 4 同 🕨 🖌 4 目 🖌 4 目

Robinson-Schensted algorithm (RSK) and the Shape of the resulting SYT (Greene's theorem)

- Separable permutations and their shape under RSK
- Supersequences of separable permutations and shapes containment
- Origins: Shortest containing supersequence

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Robinson-Schensted algorithm (RSK) and the Shape of the resulting SYT (Greene's theorem)

- Separable permutations and their shape under RSK
- Supersequences of separable permutations and shapes containment
- Origins: Shortest containing supersequence

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Robinson-Schensted algorithm (RSK) and the Shape of the resulting SYT (Greene's theorem)

- Separable permutations and their shape under RSK
- Supersequences of separable permutations and shapes containment
- Origins: Shortest containing supersequence

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Robinson-Schensted algorithm (RSK) and the Shape of the resulting SYT (Greene's theorem)

- Separable permutations and their shape under RSK
- Supersequences of separable permutations and shapes containment
- Origins: Shortest containing supersequence

Basics

Partition of *n*: $\lambda \vdash n$, $\lambda = (\lambda_1 \ge \lambda_2 \ge \cdots)$, $\sum \lambda_i = n$ **Young diagram** of shape λ :

Young Tableau of shape λ :

$$\land \frac{ \begin{array}{c} < \\ 1 & 3 & 4 & 8 \\ \hline 2 & 6 \\ \hline 5 & 7 \end{array} }$$

Longest Increasing Subsequence of a permutation w: increasing subsequence of W of maximal possible length.

Basics

Partition of *n*: $\lambda \vdash n$, $\lambda = (\lambda_1 \ge \lambda_2 \ge \cdots)$, $\sum \lambda_i = n$ **Young diagram** of shape λ :

Young Tableau of shape λ :

$$\land \frac{ \begin{array}{c} < \\ 1 & 3 & 4 & 8 \\ \hline 2 & 6 \\ \hline 5 & 7 \end{array} }$$

Longest Increasing Subsequence of a permutation w: increasing subsequence of W of maximal possible length. w = 782935416

Basics

Partition of *n*: $\lambda \vdash n$, $\lambda = (\lambda_1 \ge \lambda_2 \ge \cdots)$, $\sum \lambda_i = n$ **Young diagram** of shape λ :

Young Tableau of shape λ :

$$\land \frac{ \begin{array}{c} < \\ 1 & 3 & 4 & 8 \\ \hline 2 & 6 \\ \hline 5 & 7 \end{array} }$$

Longest Increasing Subsequence of a permutation w: increasing subsequence of W of maximal possible length. w = 782935416, 2356

Bijection: $w \rightarrow ($ _P_ , _Q). Insertion Tableau Recording Tableau $w_1 \ldots w_i \rightarrow (P_i, Q_i)$ $P_{i+1} = w_{i+1} \rightarrow P_i$: $Q_{i+1} = Q_i + |i+1|$ @new box of P_{i+1}

Greta Panova (Harvard)

Seprable permutations and RSK

э

Bijection: $w \rightarrow ($ _P_ , _Q). Insertion Tableau Recording Tableau $w_1 \ldots w_i \rightarrow (P_i, Q_i)$ $P_{i+1} = w_{i+1} \rightarrow P_i$: $Q_{i+1} = Q_i + |i+1|$ @new box of P_{i+1}

<ロ> (日) (日) (日) (日) (日)

Bijection: $w \rightarrow ($ _P_ , _Q). Insertion Tableau Recording Tableau $w_1 \ldots w_i \rightarrow (P_i, Q_i)$ $P_{i+1} = w_{i+1} \rightarrow P_i$: $Q_{i+1} = Q_i + |i+1|$ @new box of P_{i+1} 1

 $\begin{array}{c}
561423, \\
(123, 126) \\
46, 34 \\
5 \\
5
\end{array}$

э

Bijection: $w \rightarrow ($ _P_ , _Q). Insertion Tableau Recording Tableau $w_1 \ldots w_i \rightarrow (P_i, Q_i)$ $P_{i+1} = w_{i+1} \rightarrow P_i$: $Q_{i+1} = Q_i + |i+1|$ @new box of P_{i+1} $\begin{array}{c|c}
\hline 1 & 3 & \underline{7} \\
\hline 2 \\
\hline \end{array} = \underline{7} \rightarrow \begin{array}{c}
\hline 2 \\
\hline 4 \\
\hline \end{array}$ 3 5 7 =2

э

Bijection:
$$w \to (\underbrace{P}_{\text{Insertion Tableau}}, \underbrace{Q}_{\text{Insertion Tableau}})$$
.
Insertion Tableau Recording Tableau
 $w_1 \dots w_i \to (P_i, Q_i)$
 $P_{i+1} = w_{i+1} \to P_i$: $Q_{i+1} = Q_i + \underbrace{i+1}$ @new box of P_{i+1}
 $\underbrace{5}_{2} \to \underbrace{137}_{2} = \underbrace{7}_{4} \to \underbrace{135}_{2}_{4} = \underbrace{135}_{27}_{4}$
 $w_1 = 5, 56 561, \underbrace{16}_{5}, 12 (\underbrace{16}_{5}, \underbrace{1}_{3})$
 $w = 561423 56142, 561423$

Seprable p

Seprable permutations and RSK

< ≣

< Ξ

Greta Panova (Harvard)

Bijection: $w \to (P , Q)$). Insertion Tableau Recording Tableau $w_1 \ldots w_i \rightarrow (P_i, Q_i)$ $P_{i+1} = w_{i+1} \rightarrow P_i$: $Q_{i+1} = Q_i + \overline{i+1}$ @new box of P_{i+1} 5 7 2 $w_1 = 5$, 5**6** 56**1**, (5 6, 1 2)(|5|, |1|)w = 561423561**4**. 5614**2**. 56142**3**. 1 2 1 2 4 6, 3 4 3 <u>1 2</u> , <u>3 4</u> 1 2 4 6 3 $\frac{-\overline{2}}{34}$ 1 5

Theorem (Greene)

Let $w \in S_n$, $(P, Q) = \mathsf{RSK}(w)$ and $\lambda = \mathsf{sh}(P) = \mathsf{sh}(Q)$. We have that for every i

$$\lambda_1 + \cdots + \lambda_i = |\mathbf{v}^{i1}| + \cdots + |\mathbf{v}^{ii}|,$$

where v^{i1}, \ldots, v^{ii} are *i* disjoint increasing subsequences of *w* of maximal total length.

Example

w = 236145 $i = 1: v^{11} = 2345 \rightarrow \lambda_1 = 4$ $i = 2: v^{12} = 236, v^{22} = 145 \rightarrow \lambda_1 + \lambda_2 = 3 + 3 \rightarrow \lambda_2 = 2$ $\lambda = (4, 2) \text{ Indeed, RSK}(236145) = \begin{pmatrix} 1 & 3 & 4 & 5 \\ 2 & 6 & , 4 & 5 \end{pmatrix}$

Not always possible $v^{i*} = v^{j*}$ for $i \neq j!!$ But if w were separable...

ヘロト ヘヨト ヘヨト ヘヨト

Theorem (Greene)

Let $w \in S_n$, $(P, Q) = \mathsf{RSK}(w)$ and $\lambda = \mathsf{sh}(P) = \mathsf{sh}(Q)$. We have that for every i

$$\lambda_1 + \cdots + \lambda_i = |\mathbf{v}^{i1}| + \cdots + |\mathbf{v}^{ii}|,$$

where v^{i1}, \ldots, v^{ii} are *i* disjoint increasing subsequences of *w* of maximal total length.

Example

w = 236145 $i = 1: v^{11} = 2345 \rightarrow \lambda_1 = 4$ $i = 2: v^{12} = 236, v^{22} = 145 \rightarrow \lambda_1 + \lambda_2 = 3 + 3 \rightarrow \lambda_2 = 2$ $\lambda = (4, 2) \text{ Indeed, RSK}(236145) = \begin{pmatrix} 1 & 3 & 4 & 5 \\ 2 & 6 & 4 & 5 \end{pmatrix}$

Not always possible $v^{i*} = v^{j*}$ for $i \neq j!!$ But if w were separable...

・ロト ・四ト ・ヨト ・ヨト

Theorem (Greene)

Let $w \in S_n$, $(P, Q) = \mathsf{RSK}(w)$ and $\lambda = \mathsf{sh}(P) = \mathsf{sh}(Q)$. We have that for every i

$$\lambda_1 + \cdots + \lambda_i = |\mathbf{v}^{i1}| + \cdots + |\mathbf{v}^{ii}|,$$

where v^{i1}, \ldots, v^{ii} are *i* disjoint increasing subsequences of *w* of maximal total length.

Example

w = 236145 $i = 1: v^{11} = 2345 \rightarrow \lambda_1 = 4$ $i = 2: v^{12} = 236, v^{22} = 145 \rightarrow \lambda_1 + \lambda_2 = 3 + 3 \rightarrow \lambda_2 = 2$ $\lambda = (4, 2) \text{ Indeed, RSK}(236145) = \begin{pmatrix} 1 & 3 & 4 & 5 \\ 2 & 6 & 4 & 5 \end{pmatrix}$

Not always possible $v^{i*} = v^{j*}$ for $i \neq j!!$ But if w were separable...

・ロト ・四ト ・ヨト ・ヨト

Theorem (Greene)

Let $w \in S_n$, $(P, Q) = \mathsf{RSK}(w)$ and $\lambda = \mathsf{sh}(P) = \mathsf{sh}(Q)$. We have that for every i

$$\lambda_1 + \cdots + \lambda_i = |\mathbf{v}^{i1}| + \cdots + |\mathbf{v}^{ii}|,$$

where v^{i1}, \ldots, v^{ii} are *i* disjoint increasing subsequences of *w* of maximal total length.

Example

w = 236145 $i = 1: v^{11} = 2345 \rightarrow \lambda_1 = 4$ $i = 2: v^{12} = 236, v^{22} = 145 \rightarrow \lambda_1 + \lambda_2 = 3 + 3 \rightarrow \lambda_2 = 2$ $\lambda = (4, 2) \text{ Indeed, RSK}(236145) = \begin{pmatrix} 1 & 3 & 4 & 5 \\ 2 & 6 & 4 & 5 \end{pmatrix}$

Not always possible $v^{i*} = v^{j*}$ for $i \neq j!!$ But if w were separable...

・ロト ・四ト ・ヨト ・ヨト

Theorem (Greene)

Let $w \in S_n$, $(P, Q) = \mathsf{RSK}(w)$ and $\lambda = \mathsf{sh}(P) = \mathsf{sh}(Q)$. We have that for every i

$$\lambda_1 + \cdots + \lambda_i = |\mathbf{v}^{i1}| + \cdots + |\mathbf{v}^{ii}|,$$

where v^{i1}, \ldots, v^{ii} are *i* disjoint increasing subsequences of *w* of maximal total length.

Example

w = 236145 $i = 1: v^{11} = 2345 \rightarrow \lambda_1 = 4$ $i = 2: v^{12} = 236, v^{22} = 145 \rightarrow \lambda_1 + \lambda_2 = 3 + 3 \rightarrow \lambda_2 = 2$ $\lambda = (4, 2) \text{ Indeed, RSK}(236145) = \left(\begin{array}{c|c} 1 & 3 & 4 & 5 \\ \hline 2 & 6 & \end{array}, \begin{array}{c} 1 & 2 & 3 & 6 \\ \hline 4 & 5 & \end{array} \right)$

Not always possible $v^{i*} = v^{j*}$ for $i \neq j!!$ But if w were separable...

<ロ> <問> <問> < 回> < 回>

Theorem (Greene)

Let $w \in S_n$, $(P, Q) = \mathsf{RSK}(w)$ and $\lambda = \mathsf{sh}(P) = \mathsf{sh}(Q)$. We have that for every i

$$\lambda_1 + \cdots + \lambda_i = |\mathbf{v}^{i1}| + \cdots + |\mathbf{v}^{ii}|,$$

where v^{i1}, \ldots, v^{ii} are *i* disjoint increasing subsequences of *w* of maximal total length.

Example

w = 236145 $i = 1: v^{11} = 2345 \rightarrow \lambda_1 = 4$ $i = 2: v^{12} = 236, v^{22} = 145 \rightarrow \lambda_1 + \lambda_2 = 3 + 3 \rightarrow \lambda_2 = 2$ $\lambda = (4, 2) \text{ Indeed, RSK}(236145) = \left(\begin{array}{c|c} 1 & 3 & 4 & 5 \\ \hline 2 & 6 & \end{array}, \begin{array}{c} 1 & 2 & 3 & 6 \\ \hline 4 & 5 & \end{array} \right)$

Not always possible $v^{i*} = v^{j*}$ for $i \neq j!!$ But if w were separable...

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Greene)

Let $w \in S_n$, $(P, Q) = \mathsf{RSK}(w)$ and $\lambda = \mathsf{sh}(P) = \mathsf{sh}(Q)$. We have that for every i

$$\lambda_1 + \cdots + \lambda_i = |\mathbf{v}^{i1}| + \cdots + |\mathbf{v}^{ii}|,$$

where v^{i1}, \ldots, v^{ii} are *i* disjoint increasing subsequences of *w* of maximal total length.

Example

w = 236145 $i = 1: v^{11} = 2345 \rightarrow \lambda_1 = 4$ $i = 2: v^{12} = 236, v^{22} = 145 \rightarrow \lambda_1 + \lambda_2 = 3 + 3 \rightarrow \lambda_2 = 2$ $\lambda = (4, 2) \text{ Indeed, RSK}(236145) = \left(\begin{array}{c|c} 1 & 3 & 4 & 5 \\ \hline 2 & 6 & \end{array}, \begin{array}{c} 1 & 2 & 3 & 6 \\ \hline 4 & 5 & \end{array} \right)$

Not always possible $v^{i*} = v^{j*}$ for $i \neq j!!$ But if w were separable...

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition

A permutation σ is **separable** if it avoids 3142 and 2413.

(日) (四) (三) (三)

Separable permutations

Definition

A permutation σ is **separable** if it avoids 3142 and 2413.

Inductively a separable permutation is uv, where

Definition

A permutation σ is **separable** if it avoids 3142 and 2413.

Inductively a separable permutation is uv, where

Example

Separable: 65478213, Not separable $\underline{23614}$ 5 : 2614 \sim 2413

(日)

Main Result

Theorem

If σ is a separable permutation and $\lambda = \operatorname{sh}(\sigma)$, there are disjoint increasing subsequences $v^1, v^2, \ldots, s.t. \bigcup v^i = \sigma$ and $\lambda_i = |v^i|$ for all *i*.

In view of Greene's theorem where

$$\lambda_1 + \dots + \lambda_i = |\mathbf{v}^{i1}| + \dots + |\mathbf{v}^{ii}|,$$

we can take $v^{ij} = v^j$ for every *i*.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Main Result

Theorem

If σ is a separable permutation and $\lambda = \operatorname{sh}(\sigma)$, there are disjoint increasing subsequences $v^1, v^2, \ldots, s.t. \bigcup v^i = \sigma$ and $\lambda_i = |v^i|$ for all *i*.

In view of Greene's theorem where

$$\lambda_1 + \dots + \lambda_i = |\mathbf{v}^{i1}| + \dots + |\mathbf{v}^{ii}|,$$

we can take $v^{ij} = v^j$ for every *i*.

Example

$$\begin{split} &\sigma = 541237698 \\ &v^{11} = 12378: 54 \underline{1237} 69 \underline{8} \to \lambda_1 = 5 \\ &v^{21} = 12378, v^{22} = 469: \to \lambda_2 = 3 \\ &v^{31} = 12378, v^{32} = 469, v^{33} = 5: \to \lambda_3 = 1 \end{split}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Proof setup: the Inversion Poset

Definition

The **inversion poset** of a permutation w is the poset on elements (i, w_i) under the partial order:

$$(a,b) \preceq (c,d) \Leftrightarrow (a \leq c) \land (b \leq d).$$

・ロト ・四ト ・ヨト ・ヨ

Proof setup: the Inversion Poset

Definition

The **inversion poset** of a permutation w is the poset on elements (i, w_i) under the partial order:

$$(a,b) \preceq (c,d) \Leftrightarrow (a \leq c) \land (b \leq d).$$

Example

w = 923578614

Proof setup: the Inversion Poset

Definition

The **inversion poset** of a permutation w is the poset on elements (i, w_i) under the partial order:

$$(a,b) \preceq (c,d) \Leftrightarrow (a \leq c) \land (b \leq d).$$

Example

w = 923578614

Pairs:

(1,9)(2,2)(3,3)(4,5)(5,7)(6,8)(7,6)(8,1)(9,4)

Proof setup: the Inversion Poset

Definition

The **inversion poset** of a permutation w is the poset on elements (i, w_i) under the partial order:

$$(a,b) \preceq (c,d) \Leftrightarrow (a \leq c) \land (b \leq d).$$

Example

The Inversion Poset of a separable permutation

(日)

The Inversion Poset of a separable permutation

Lemma

The inversion poset of a separable permutation is N-free, i.e. it does not contain a subposet isomorphic to N.

The Inversion Poset of a separable permutation

Lemma

The inversion poset of a separable permutation is N-free, i.e. it does not contain a subposet isomorphic to N.

The Inversion Poset of a separable permutation

Lemma

The inversion poset of a separable permutation is N-free, i.e. it does not contain a subposet isomorphic to N.

The Inversion Poset of a separable permutation

Lemma

The inversion poset of a separable permutation is N-free, i.e. it does not contain a subposet isomorphic to N.

PP 2010 9 / 19

Proving the Main Theorem

Lemma

Let u, v, and w be increasing subsequences of a separable permutation. If $w \bigcap v = \emptyset$ and both intersect u, there exist two disjoint subsequences α and β , such that

•
$$\alpha \bigcup \beta = w \bigcup v$$
,

•
$$\alpha \bigcap u = \emptyset.$$

< □ > < 同 > < 回 >

Proving the Main Theorem

Lemma

Let u, v, and w be increasing subsequences of a separable permutation. If $w \bigcap v = \emptyset$ and both intersect u, there exist two disjoint subsequences α and β , such that

•
$$\alpha \bigcup \beta = w \bigcup v$$
,

•
$$\alpha \bigcap u = \emptyset.$$

< □ > < 同 > < 回 >

Proving the Main Theorem

Lemma

Let u, v, and w be increasing subsequences of a separable permutation. If $w \bigcap v = \emptyset$ and both intersect u, there exist two disjoint subsequences α and β , such that

•
$$\alpha \bigcup \beta = w \bigcup v$$
,

•
$$\alpha \bigcap u = \emptyset.$$

Proving the Main Theorem

Lemma

Let u, v, and w be increasing subsequences of a separable permutation. If $w \bigcap v = \emptyset$ and both intersect u, there exist two disjoint subsequences α and β , such that

•
$$\alpha \bigcup \beta = w \bigcup v$$
,

•
$$\alpha \bigcap u = \emptyset.$$

Argue by contradiction.

Let $C_1 = u \cap (v \cup w)$ and assume there is no chain $\beta \subset (v \cup w)$, s.t. $C_1 \subset \beta$ and $(v \cup w) \setminus \beta$ is also a chain.

Let $C \subset (v \cup w)$ be some maximal chain, s.t. $C_1 \subset C$. Then there exist $x, y \in (v \cup w) \setminus C$, s.t. $x \not\geq y$. Then $x \in v$, $y \in w$.

By maximality, $x \cup C$, $y \cup C$ are not chains, so there are $a, b \in C$, s.t. $x \not\geq a$, $y \not\geq b$, so $a \in w$ and $b \in v$. Assume $a \succ b$, then we must have $x \succ b$ and $y \prec a$.

We have

with $x \not\geq a, x \not\geq y, y \not\geq b$ Contradiction!

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Formal Proof.

Argue by contradiction.

Let $C_1 = u \cap (v \cup w)$ and assume there is no chain $\beta \subset (v \cup w)$, s.t. $C_1 \subset \beta$ and $(v \cup w) \setminus \beta$ is also a chain.

Let $C \subset (v \cup w)$ be some maximal chain, s.t. $C_1 \subset C$. Then there exist $x, y \in (v \cup w) \setminus C$, s.t. $x \not\geq y$. Then $x \in v$, $y \in w$.

By maximality, $x \cup C$, $y \cup C$ are not chains, so there are $a, b \in C$, s.t. $x \not\geq a$, $y \not\geq b$, so $a \in w$ and $b \in v$. Assume $a \succ b$, then we must have $x \succ b$ and $y \prec a$.

We have

with $x \not\geq a, x \not\geq y, y \not\geq b$ Contradiction!

<ロ> (四) (四) (三) (三) (三) (三)

Argue by contradiction.

Let $C_1 = u \cap (v \cup w)$ and assume there is no chain $\beta \subset (v \cup w)$, s.t. $C_1 \subset \beta$ and $(v \cup w) \setminus \beta$ is also a chain.

Let $C \subset (v \cup w)$ be some maximal chain, s.t. $C_1 \subset C$. Then there exist $x, y \in (v \cup w) \setminus C$, s.t. $x \not\geq y$. Then $x \in v$, $y \in w$.

By maximality, $x \cup C$, $y \cup C$ are not chains, so there are $a, b \in C$, s.t. $x \gtrless a$, $y \gtrless b$, so $a \in w$ and $b \in v$. Assume $a \succ b$, then we must have $x \succ b$ and $y \prec a$.

We have

with $x \not\geq a, x \not\geq y, y \not\geq b$ Contradiction!

◆□> <圖> <필> < => < => < =</p>

Argue by contradiction.

Let $C_1 = u \cap (v \cup w)$ and assume there is no chain $\beta \subset (v \cup w)$, s.t. $C_1 \subset \beta$ and $(v \cup w) \setminus \beta$ is also a chain.

Let $C \subset (v \cup w)$ be some maximal chain, s.t. $C_1 \subset C$. Then there exist $x, y \in (v \cup w) \setminus C$, s.t. $x \not\geq y$. Then $x \in v, y \in w$.

By maximality, $x \cup C$, $y \cup C$ are not chains, so there are $a, b \in C$, s.t. $x \not\geq a$, $y \not\geq b$, so $a \in w$ and $b \in v$. Assume $a \succ b$, then we must have $x \succ b$ and $y \prec a$.

We have

with $x \not\geq a, x \not\geq y, y \not\geq b$ Contradiction!

Argue by contradiction.

Let $C_1 = u \cap (v \cup w)$ and assume there is no chain $\beta \subset (v \cup w)$, s.t. $C_1 \subset \beta$ and $(v \cup w) \setminus \beta$ is also a chain.

Let $C \subset (v \cup w)$ be some maximal chain, s.t. $C_1 \subset C$. Then there exist $x, y \in (v \cup w) \setminus C$, s.t. $x \not\geq y$. Then $x \in v, y \in w$.

By maximality, $x \cup C$, $y \cup C$ are not chains, so there are $a, b \in C$, s.t. $x \not\geq a$, $y \not\geq b$, so $a \in w$ and $b \in v$. Assume $a \succ b$, then we must have $x \succ b$ and $y \prec a$.

We have

(日) (四) (日) (日) (日) (日)

Argue by contradiction.

Let $C_1 = u \cap (v \cup w)$ and assume there is no chain $\beta \subset (v \cup w)$, s.t. $C_1 \subset \beta$ and $(v \cup w) \setminus \beta$ is also a chain.

Let $C \subset (v \cup w)$ be some maximal chain, s.t. $C_1 \subset C$. Then there exist $x, y \in (v \cup w) \setminus C$, s.t. $x \not\geq y$. Then $x \in v, y \in w$.

By maximality, $x \cup C$, $y \cup C$ are not chains, so there are $a, b \in C$, s.t. $x \not\geq a$, $y \not\geq b$, so $a \in w$ and $b \in v$. Assume $a \succ b$, then we must have $x \succ b$ and $y \prec a$.

We have

with $x \not\geq a, x \not\geq y, y \not\geq b$ Contradiction!

(日) (四) (日) (日) (日) (日)

Proposition

Let $u = \{u^1, \ldots, u^k\}$ be k disjoint increasing subsequences (d.i.s.) of a separable permutation σ with $sh(\sigma) = \lambda$. Then there is an increasing subsequence w^{k+1} , disjoint from $u^i s$, s.t. $|w^{k+1}| \ge \lambda_{k+1}$.

Proof.

Let V - k + 1 d.i.s., $\sum_{v \in V} |v| = \sum_{i=1}^{k+1} \lambda_i$ by Greene's thm.

Proposition

Let $u = \{u^1, \ldots, u^k\}$ be k disjoint increasing subsequences (d.i.s.) of a separable permutation σ with $sh(\sigma) = \lambda$. Then there is an increasing subsequence w^{k+1} , disjoint from $u^i s$, s.t. $|w^{k+1}| \ge \lambda_{k+1}$.

Proof.

Let
$$V - k + 1$$
 d.i.s., $\sum_{v \in V} |v| = \sum_{i=1}^{k+1} \lambda_i$ by Greene's thm.

Proposition

Let $u = \{u^1, \ldots, u^k\}$ be k disjoint increasing subsequences (d.i.s.) of a separable permutation σ with $sh(\sigma) = \lambda$. Then there is an increasing subsequence w^{k+1} , disjoint from $u^i s$, s.t. $|w^{k+1}| \ge \lambda_{k+1}$.

Proof.

Let V - k + 1 d.i.s., $\sum_{v \in V} |v| = \sum_{i=1}^{k+1} \lambda_i$ by Greene's thm. Let $V_1 = \{v \in V | v \bigcap u^1 \neq \emptyset\}$. Repeatedly apply **Lemma** to V_1 to get same number of d.i.s., same total length, all but at most one disjoint from u^1 :

$$\tilde{V}_1 = \{ \tilde{v}^i : \tilde{v}^i \bigcap u^1 = \emptyset, i > 1; \bigcup \tilde{v}^i = \bigcup_{v \in V_1} v \}.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Proposition

Let $u = \{u^1, \ldots, u^k\}$ be k disjoint increasing subsequences (d.i.s.) of a separable permutation σ with $sh(\sigma) = \lambda$. Then there is an increasing subsequence w^{k+1} , disjoint from $u^i s$, s.t. $|w^{k+1}| \ge \lambda_{k+1}$.

Proof.

Let V - k + 1 d.i.s., $\sum_{v \in V} |v| = \sum_{i=1}^{k+1} \lambda_i$ by Greene's thm. Let $V_1 = \{v \in V | v \bigcap u^1 \neq \emptyset\}$. Repeatedly apply **Lemma** to V_1 to get same number of d.i.s., same total length, all but at most one disjoint from u^1 :

$$\tilde{V}_1 = \{ \tilde{v}^i : \tilde{v}^i \bigcap u^1 = \emptyset, i > 1; \bigcup \tilde{v}^i = \bigcup_{v \in V_1} v \}.$$

Repeat with $U \setminus \{u^1\}$ and $(V \setminus V_1) \bigcup \tilde{V}_1 \setminus \{\tilde{v}^1 | v^1 \bigcap u^1 \neq \emptyset\}$.

Proposition

Let $u = \{u^1, \ldots, u^k\}$ be k disjoint increasing subsequences (d.i.s.) of a separable permutation σ with $sh(\sigma) = \lambda$. Then there is an increasing subsequence w^{k+1} , disjoint from $u^i s$, s.t. $|w^{k+1}| \ge \lambda_{k+1}$.

Proof.

Let V - k + 1 d.i.s., $\sum_{v \in V} |v| = \sum_{i=1}^{k+1} \lambda_i$ by Greene's thm. End up with

$$\tilde{V} = \{w^i | w^{k+1} \bigcap u^j = \emptyset, 1 \le j \le k\}$$

and

$$\bigcup_{i} w' = \bigcup_{v \in V} v.$$
$$|w^{k+1}| = \lambda_1 + \dots + \lambda_{k+1} - \underbrace{|w^1| - \dots - |w^k|}_{\leq \lambda_1 + \dots + \lambda_k, \text{ Greene's thm}} \ge \lambda_{k+1}$$

Proof of the Main Theorem

In Proposition, let $|u^1| + \cdots + |u^k| = \lambda_1 + \cdots + \lambda_k$ by Greene's thm. Then $u^1, \ldots, u^k, w^{k+1} - k + 1$ d.i.s., total length $\geq \lambda_1 + \ldots + \lambda_{k+1}$, so $|w^{k+1}| = \lambda_{k+1}$. By induction on k we get

Theorem

Let σ be a separable permutation. Then $\sigma = \bigcup u^i$, where u^i are increasing disjoint subsequences, s.t. $|u^i| = \lambda_i$.

Proof of the Main Theorem

In Proposition, let $|u^1| + \cdots + |u^k| = \lambda_1 + \cdots + \lambda_k$ by Greene's thm. Then $u^1, \ldots, u^k, w^{k+1} - k + 1$ d.i.s., total length $\geq \lambda_1 + \ldots + \lambda_{k+1}$, so $|w^{k+1}| = \lambda_{k+1}$. By induction on k we get

Theorem

Let σ be a separable permutation. Then $\sigma = \bigcup u^i$, where u^i are increasing disjoint subsequences, s.t. $|u^i| = \lambda_i$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Proof of the Main Theorem

In Proposition, let $|u^1| + \cdots + |u^k| = \lambda_1 + \cdots + \lambda_k$ by Greene's thm. Then $u^1, \ldots, u^k, w^{k+1} - k + 1$ d.i.s., total length $\geq \lambda_1 + \ldots + \lambda_{k+1}$, so $|w^{k+1}| = \lambda_{k+1}$. By induction on k we get

Theorem

Let σ be a separable permutation. Then $\sigma = \bigcup u^i$, where u^i are increasing disjoint subsequences, s.t. $|u^i| = \lambda_i$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Super- and subsequences and shapes containment

Question

If σ is a subsequence of w, when is $sh(\sigma) \subset sh(w)$?

Example

- 4 同 🕨 - 4 🖻

Separable subsequence

Corollary (to Main Theorem)

If a word w contains a separable permutation σ as a pattern, then $sh(\sigma) = \lambda \subset sh(w) = \mu$.

Proof.

Greene's theorem: $|w^1| + \cdots + |w^k| = \mu_1 + \cdots + \mu_k$. Set $u^i = w^i \bigcap \sigma$. By proposition there exists u^{k+1} i.s. in σ , $|u^{k+1}| \ge \lambda_{k+1}$. In w: $w^1, \ldots, w^k, u^{k+1}$ — d.i.s, so

$$\underbrace{|\underline{w^1}| + \dots + |w^k|}_{\mu_1 + \dots + \mu_k} + \underbrace{|u^{k+1}}_{\lambda_{k+1}}| \le \mu_1 + \dots + \mu_{k+1}$$

$$\Longrightarrow \lambda_{k+1} \le \mu_{k+1}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Separable subsequence

Corollary (to Main Theorem)

If a word w contains a separable permutation σ as a pattern, then $sh(\sigma) = \lambda \subset sh(w) = \mu$.

Proof.

Greene's theorem: $|w^1| + \cdots + |w^k| = \mu_1 + \cdots + \mu_k$. Set $u^i = w^i \bigcap \sigma$. By proposition there exists u^{k+1} i.s. in σ , $|u^{k+1}| \ge \lambda_{k+1}$. In w: $w^1, \ldots, w^k, u^{k+1}$ — d.i.s, so

$$\underbrace{|\underline{w}^1| + \dots + |\underline{w}^k|}_{\mu_1 + \dots + \mu_k} + \underbrace{|\underline{u}^{k+1}}_{\lambda_{k+1}}| \le \mu_1 + \dots + \mu_{k+1}$$

$$\Longrightarrow \lambda_{k+1} \le \mu_{k+1}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A word w is a **supersequence** of σ if it contains σ as a subsequence.

Definition

Let $B \subset S_n$, w is a supersequence of B if w is a supersequence of each element of B. Let $SCS_n(B)$ be the minimal length of a supersequence of B.

Question

Bounds for $SCS_n(S_n)$? Bounds for $SCS_n(B)$ for certain sets B?

Koutas, Hu, 1975: $SCS_n(S_n) \le n^2 - 2n + 4$, Kleitman, Kwiatkowski, 1976: $SCS_n(S_n) \ge n^2 - Cn^{7/4+\epsilon}$

A word w is a **supersequence** of σ if it contains σ as a subsequence.

Definition

Let $B \subset S_n$, w is a supersequence of B if w is a supersequence of each element of B. Let $SCS_n(B)$ be the minimal length of a supersequence of B.

Question

Bounds for $SCS_n(S_n)$? Bounds for $SCS_n(B)$ for certain sets B?

Koutas, Hu, 1975: $SCS_n(S_n) \le n^2 - 2n + 4$, Kleitman, Kwiatkowski, 1976: $SCS_n(S_n) \ge n^2 - Cn^{7/4+\epsilon}$

A word w is a **supersequence** of σ if it contains σ as a subsequence.

Definition

Let $B \subset S_n$, w is a supersequence of B if w is a supersequence of each element of B. Let $SCS_n(B)$ be the minimal length of a supersequence of B.

Question

Bounds for $SCS_n(S_n)$? Bounds for $SCS_n(B)$ for certain sets B?

Koutas, Hu, 1975: $SCS_n(S_n) \le n^2 - 2n + 4$, Kleitman, Kwiatkowski, 1976: $SCS_n(S_n) \ge n^2 - Cn^{7/4+\epsilon}$

$$B = \{\sigma_1, \ldots, \sigma_k\}, \ \sigma_i - \text{separable}; \ w - \text{supersqn}(B).$$

$$\bigcup_{i} \operatorname{sh}(\sigma_{i}) \subset \operatorname{sh}(w) \Longrightarrow \operatorname{SCS}_{n}(B) \geq |\bigcup_{i} \operatorname{sh}(\sigma_{i})|$$

(日) (四) (三) (三)

$$B = \{\sigma_1, \dots, \sigma_k\}, \ \sigma_i - \text{separable}; \ w - \text{supersqn}(B).$$
$$\bigcup_i \text{sh}(\sigma_i) \subset \text{sh}(w) \Longrightarrow \text{SCS}_n(B) \ge |\bigcup_i \text{sh}(\sigma_i)|$$

Lemma

For any shape λ there is a separable permutation σ , s.t. $sh(\sigma) = \lambda$.

・ロッ ・ 一 ・ ・ ・ ・

$$B = \{\sigma_1, \dots, \sigma_k\}, \ \sigma_i - \text{separable}; \ w - \text{supersqn}(B).$$
$$\bigcup_i \text{sh}(\sigma_i) \subset \text{sh}(w) \Longrightarrow \text{SCS}_n(B) \ge |\bigcup_i \text{sh}(\sigma_i)|$$

Lemma

For any shape λ there is a separable permutation σ , s.t. $sh(\sigma) = \lambda$.

Take rw(T), T - superstandard, $sh(T) = \lambda$ Example: $\lambda =$

$$T = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 \\ 8 & 9 \end{bmatrix}, \operatorname{rw}(T) = 895671234$$

Note: rw(T)- separable (in fact 213-avoiding), sh(rw(T)) = sh(T).

$$B = \{\sigma_1, \dots, \sigma_k\}, \ \sigma_i - \text{separable}; \ w - \text{supersqn}(B).$$

$$\bigcup_i \text{sh}(\sigma_i) \subset \text{sh}(w) \Longrightarrow \text{SCS}_n(B) \ge |\bigcup_i \text{sh}(\sigma_i)|$$
Take $B = \{\text{rw}(T)| \text{sh}(T) = \lambda, \lambda \vdash n\} \ \mu(n) = \bigcup_{\lambda \vdash n} \lambda$
Example
$$n = 9, \ k = 5. \ B = \{\sigma_1, \dots, \sigma_5\}:$$

$$\text{sh}(\sigma_1 = 123456789) = (9),$$

$$\text{sh}(\sigma_2 = 678912345) = (5, 4),$$

$$\text{sh}(\sigma_3 = 789456123) = (3, 3, 3),$$

$$\text{sh}(\sigma_4 = 978563412) = (2, 2, 2, 2, 1),$$

$$\text{sh}(\sigma_5 = 987654321) = (1, 1, 1, 1, 1, 1, 1, 1, 1).$$

$$w = 69787596543123456789123,$$

э

・ロト ・日子・ ・ 田子・ ・

$$B = \{\sigma_1, \dots, \sigma_k\}, \ \sigma_i - \text{separable}; \ w - \text{supersqn}(B).$$
$$\bigcup_i \operatorname{sh}(\sigma_i) \subset \operatorname{sh}(w) \Longrightarrow \operatorname{SCS}_n(B) \ge |\bigcup_i \operatorname{sh}(\sigma_i)|$$

Take $B = \{ \mathsf{rw}(T) | \mathsf{sh}(T) = \lambda, \lambda \vdash n \} \mu(n) = \bigcup_{\lambda \vdash n} \lambda$

Proposition

 $|\mu(n)| \sim n(\ln n + \cdots)$ and number of corners is $\tilde{2}\sqrt{n}$, so B has $\tilde{2}\sqrt{n}$ permutations and $SCS_n(B) \ge n(\ln n + \cdots)$

Related Questions, work in progress

Question

If σ is a subword of w, characterize when $sh(\sigma) \subset sh(w)$.

Conjecture

If
$$\sigma = uv$$
, where $u = (w_i | i < k, w_i < k)$, $v = (w_i | i \ge k, w_i \ge k)$, then
 $sh(\sigma) \underbrace{=}_{obvious} sh(u) + sh(v) \underbrace{\subset}_? sh(w)$.

Question

For what shapes λ is Greene's theorem "satisfied" in the sense of: For every permutation w, $sh(w) = \lambda$, there exist d.i.s. v^i , s.t. $|v^i| = \lambda_i$.

<ロ> (日) (日) (日) (日) (日)

Τ	h	а	n	k
y	0	и		
!				