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Preliminaries Tableaux and RSK

Basics

Partition of n: λ ` n, λ = (λ1 ≥ λ2 ≥ · · · ),
∑
λi = n

Young diagram of shape λ:

λ = (4, 2, 2)→

Young Tableau of shape λ:

∧

<

1 3 4 8
2 6
5 7

Longest Increasing Subsequence of a permutation w : increasing subsequence
of W of maximal possible length.
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Preliminaries Tableaux and RSK

RSK definition

Bijection: w → ( P︸︷︷︸
Insertion Tableau

, Q︸︷︷︸
Recording Tableau

).

w1 . . .wi → (Pi ,Qi )

Pi+1 = wi+1 → Pi : Qi+1 = Qi + i+1 @new box of Pi+1

5→ 1 3 7
2
4

= 7→
1 3 5
2
4

=
1 3 5
2 7
4

w = 561423

w1 = 5, 56 561,(
5 , 1

) (
5 6 , 1 2

) (
1 6
5

, 1 2
3

)
5614, 56142, 561423,(

1 4
5 6

, 1 2
3 4

)  1 2
4 6
5

,
1 2
3 4
5

  1 2 3
4 6
5

,
1 2 6
3 4
5


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Preliminaries Tableaux and RSK

Shape of the Tableaux under RSK

Theorem (Greene)

Let w ∈ Sn, (P,Q) = RSK(w) and λ = sh(P) = sh(Q). We have that for every i

λ1 + · · ·+ λi = |v i1|+ · · ·+ |v ii |,

where v i1, . . . , v ii are i disjoint increasing subsequences of w of maximal total
length.

Example

w = 236145
i = 1: v11 = 2345→ λ1 = 4
i = 2: v12 = 236, v22 = 145→ λ1 + λ2 = 3 + 3→ λ2 = 2

λ = (4, 2) Indeed, RSK(236145) =

(
1 3 4 5
2 6

, 1 2 3 6
4 5

)
Not always possible v i∗ = v j∗ for i 6= j!! But if w were separable...
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Preliminaries Separable permutations

Definition

A permutation σ is separable if it avoids 3142 and 2413.

Inductively a separable permutation is uv , where

u

v

u

v

Example

Separable: 65478213,
Not separable
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Preliminaries Separable permutations

Definition

A permutation σ is separable if it avoids 3142 and 2413.

Inductively a separable permutation is uv , where

u

v

u

v

Example

Separable: 65478213,
Not separable 236145 : 2614 ∼ 2413
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Main theorem

Main Result

Theorem

If σ is a separable permutation and λ = sh(σ), there are disjoint increasing
subsequences v1, v2, . . ., s.t.

⋃
v i = σ and λi = |v i | for all i .

In view of Greene’s theorem where

λ1 + · · ·+ λi = |v i1|+ · · ·+ |v ii |,

we can take v ij = v j for every i .

Example

σ = 541237698
v11 = 12378 : 541237698→ λ1 = 5
v21 = 12378, v22 = 469 :→ λ2 = 3
v31 = 12378, v32 = 469, v33 = 5 :→ λ3 = 1
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Main theorem Setup

Proof setup: the Inversion Poset

Definition

The inversion poset of a permutation w is the poset on elements (i ,wi ) under
the partial order:

(a, b) � (c , d)⇔ (a ≤ c) ∧ (b ≤ d).

Example

w = 923578614

Poset:

Pairs:

(1, 9)(2, 2)(3, 3)(4, 5)(5, 7)(6, 8)(7, 6)(8, 1)(9, 4)
(1,9)

(2,2)

(3,3)

(4,5)

(5,7)

(6,8)

(7,6)

(8,1)

(9,4)
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Main theorem Setup

The Inversion Poset of a separable permutation

3142→ (1,3) (2,1)

(3,4) (4,2)

2413→ (1,2) (3,1)

(2,4) (4,3)

Lemma

The inversion poset of a separable permutation is N−free, i.e. it does not contain

a subposet isomorphic to .
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Main theorem Setup

The Inversion Poset of a separable permutation

3142→ (1,3) (2,1)

(3,4) (4,2)

2413→ (1,2) (3,1)

(2,4) (4,3)

Lemma

The inversion poset of a separable permutation is N−free, i.e. it does not contain

a subposet isomorphic to .

w = 783491625 σ = 541237698

(1,7)

(2,8)

(3,3)

(4,4)

(5,9)

(6,1)

(7,6) (8,2)

(9,5)

(1,5) (2,4)

(3,2)(4,1)

(5,3)

(6,7) (7,6)

(8,9) (9,8)
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Main theorem Proof.

Proving the Main Theorem

Lemma

Let u, v , and w be increasing subsequences of a separable permutation. If
w
⋂

v = ∅ and both intersect u, there exist two disjoint subsequences α and β,
such that

α
⋃
β = w

⋃
v,

α
⋂

u = ∅.

Idea of Proof. General picture.

b

a

x

v

w

u
w

u

Needs formalization.
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Main theorem Proof.

Formal Proof.

Argue by contradiction.

Let C1 = u ∩ (v ∪ w) and assume there is no chain β ⊂ (v ∪ w), s.t. C1 ⊂ β and
(v ∪ w) \ β is also a chain.

Let C ⊂ (v ∪ w) be some maximal chain, s.t. C1 ⊂ C . Then there exist
x , y ∈ (v ∪ w) \ C , s.t. x 6≷ y . Then x ∈ v , y ∈ w .

By maximality, x ∪ C , y ∪ C are not chains, so there are a, b ∈ C , s.t. x 6≷ a,
y 6≷ b, so a ∈ w and b ∈ v . Assume a � b, then we must have x � b and y ≺ a.

We have
x a

b

����
y

with x 6≷ a, x 6≷ y , y 6≷ b
Contradiction!
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x , y ∈ (v ∪ w) \ C , s.t. x 6≷ y . Then x ∈ v , y ∈ w .

By maximality, x ∪ C , y ∪ C are not chains, so there are a, b ∈ C , s.t. x 6≷ a,
y 6≷ b, so a ∈ w and b ∈ v . Assume a � b, then we must have x � b and y ≺ a.

We have
x a

b

����
y

with x 6≷ a, x 6≷ y , y 6≷ b
Contradiction!
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Main theorem Proof.

Towards the Main Theorem

Proposition

Let u = {u1, . . . , uk} be k disjoint increasing subsequences (d.i.s.) of a separable
permutation σ with sh(σ) = λ. Then there is an increasing subsequence wk+1,
disjoint from ui s, s.t. |wk+1| ≥ λk+1.

Proof.

Let V — k + 1 d.i.s.,
∑

v∈V |v | =
∑k+1

i=1 λi by Greene’s thm.
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Proof.

Let V — k + 1 d.i.s.,
∑

v∈V |v | =
∑k+1

i=1 λi by Greene’s thm.
Let V1 = {v ∈ V |v

⋂
u1 6= ∅}. Repeatedly apply Lemma to V1 to get same

number of d.i.s., same total length, all but at most one disjoint from u1:

Ṽ1 = {ṽ i : ṽ i
⋂

u1 = ∅, i > 1;
⋃

ṽ i =
⋃

v∈V1

v}.

Greta Panova (Harvard) Seprable permutations and RSK PP 2010 12 / 19



Main theorem Proof.

Towards the Main Theorem

Proposition

Let u = {u1, . . . , uk} be k disjoint increasing subsequences (d.i.s.) of a separable
permutation σ with sh(σ) = λ. Then there is an increasing subsequence wk+1,
disjoint from ui s, s.t. |wk+1| ≥ λk+1.

Proof.

Let V — k + 1 d.i.s.,
∑

v∈V |v | =
∑k+1

i=1 λi by Greene’s thm.
Let V1 = {v ∈ V |v

⋂
u1 6= ∅}. Repeatedly apply Lemma to V1 to get same

number of d.i.s., same total length, all but at most one disjoint from u1:

Ṽ1 = {ṽ i : ṽ i
⋂

u1 = ∅, i > 1;
⋃

ṽ i =
⋃

v∈V1

v}.

Repeat with U \ {u1} and (V \ V1)
⋃

Ṽ1 \ {ṽ1|v1
⋂

u1 6= ∅}.
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Main theorem Proof.

Towards the Main Theorem

Proposition

Let u = {u1, . . . , uk} be k disjoint increasing subsequences (d.i.s.) of a separable
permutation σ with sh(σ) = λ. Then there is an increasing subsequence wk+1,
disjoint from ui s, s.t. |wk+1| ≥ λk+1.

Proof.

Let V — k + 1 d.i.s.,
∑

v∈V |v | =
∑k+1

i=1 λi by Greene’s thm.
End up with

Ṽ = {w i |wk+1
⋂

uj = ∅, 1 ≤ j ≤ k}

and ⋃
i

w i =
⋃
v∈V

v .

|wk+1| = λ1 + · · ·+ λk+1 − |w1| − · · · − |wk |︸ ︷︷ ︸
≤λ1+···+λk , Greene’s thm

≥ λk+1
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Main theorem Proof.

Proof of the Main Theorem

In Proposition, let |u1|+ · · ·+ |uk | = λ1 + · · ·+ λk by Greene’s thm.
Then u1, . . . , uk ,wk+1 — k + 1 d.i.s., total length ≥ λ1 + . . .+ λk+1, so
|wk+1| = λk+1.
By induction on k we get

Theorem

Let σ be a separable permutation. Then σ =
⋃

ui , where ui are increasing disjoint
subsequences, s.t. |ui | = λi .
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Origins Subsequence’s shape

Super- and subsequences and shapes containment

Question

If σ is a subsequence of w, when is sh(σ) ⊂ sh(w)?

Example

w = 24213 σ = 2413 1 2 3
2
4

,
1 2 5
3
4

 (
1 3
2 4

, 1 2
3 4

)
sh(σ) = (2, 2) 6⊂ sh(w) = (3, 1, 1)
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Origins Subsequence’s shape

Separable subsequence

Corollary (to Main Theorem)

If a word w contains a separable permutation σ as a pattern, then
sh(σ) = λ ⊂ sh(w) = µ.

Proof.

Greene’s theorem: |w1|+ · · ·+ |wk | = µ1 + · · ·+ µk . Set ui = w i
⋂
σ.

By proposition there exists uk+1 i.s. in σ, |uk+1| ≥ λk+1.
In w : w1, . . . ,wk , uk+1 — d.i.s, so

|w1|+ · · ·+ |wk |︸ ︷︷ ︸
µ1+···+µk

+ |uk+1︸ ︷︷ ︸
λk+1

| ≤ µ1 + · · ·+ µk+1

=⇒ λk+1 ≤ µk+1
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Origins Shortest Supersequence

Supersequences

A word w is a supersequence of σ if it contains σ as a subsequence.

Definition

Let B ⊂ Sn, w is a supersequence of B if w is a supersequence of each element of
B. Let SCSn(B) be the minimal length of a supersequence of B.

Question

Bounds for SCSn(Sn)? Bounds for SCSn(B) for certain sets B?

Koutas, Hu, 1975: SCSn(Sn) ≤ n2 − 2n + 4,
Kleitman, Kwiatkowski, 1976: SCSn(Sn) ≥ n2 − Cn7/4+ε

Greta Panova (Harvard) Seprable permutations and RSK PP 2010 16 / 19



Origins Shortest Supersequence

Supersequences

A word w is a supersequence of σ if it contains σ as a subsequence.

Definition

Let B ⊂ Sn, w is a supersequence of B if w is a supersequence of each element of
B. Let SCSn(B) be the minimal length of a supersequence of B.

Question

Bounds for SCSn(Sn)? Bounds for SCSn(B) for certain sets B?

Koutas, Hu, 1975: SCSn(Sn) ≤ n2 − 2n + 4,
Kleitman, Kwiatkowski, 1976: SCSn(Sn) ≥ n2 − Cn7/4+ε

Greta Panova (Harvard) Seprable permutations and RSK PP 2010 16 / 19



Origins Shortest Supersequence

Supersequences

A word w is a supersequence of σ if it contains σ as a subsequence.

Definition

Let B ⊂ Sn, w is a supersequence of B if w is a supersequence of each element of
B. Let SCSn(B) be the minimal length of a supersequence of B.

Question

Bounds for SCSn(Sn)? Bounds for SCSn(B) for certain sets B?

Koutas, Hu, 1975: SCSn(Sn) ≤ n2 − 2n + 4,
Kleitman, Kwiatkowski, 1976: SCSn(Sn) ≥ n2 − Cn7/4+ε

Greta Panova (Harvard) Seprable permutations and RSK PP 2010 16 / 19



Origins Shortest Supersequence

Supersequences of Separable Permutations

B = {σ1, . . . , σk}, σi — separable; w — supersqn(B).⋃
i

sh(σi ) ⊂ sh(w) =⇒ SCSn(B) ≥ |
⋃
i

sh(σi )|
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B = {σ1, . . . , σk}, σi — separable; w — supersqn(B).⋃
i

sh(σi ) ⊂ sh(w) =⇒ SCSn(B) ≥ |
⋃
i

sh(σi )|

Lemma

For any shape λ there is a separable permutation σ, s.t. sh(σ) = λ.
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Origins Shortest Supersequence

Supersequences of Separable Permutations

B = {σ1, . . . , σk}, σi — separable; w — supersqn(B).⋃
i

sh(σi ) ⊂ sh(w) =⇒ SCSn(B) ≥ |
⋃
i

sh(σi )|

Lemma

For any shape λ there is a separable permutation σ, s.t. sh(σ) = λ.

Take rw(T ), T - superstandard, sh(T ) = λ Example: λ = ,

T =
1 2 3 4
5 6 7
8 9

, rw(T ) = 895671234

Note: rw(T )- separable (in fact 213-avoiding), sh(rw(T )) = sh(T ).
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Origins Shortest Supersequence

Supersequences of Separable Permutations

B = {σ1, . . . , σk}, σi — separable; w — supersqn(B).⋃
i

sh(σi ) ⊂ sh(w) =⇒ SCSn(B) ≥ |
⋃
i

sh(σi )|

Take B = {rw(T )| sh(T ) = λ, λ ` n} µ(n) =
⋃
λ`n λ

Example

n = 9, k = 5. B = {σ1, . . . , σ5}:

sh(σ1 = 123456789) = (9),

sh(σ2 = 678912345) = (5, 4),

sh(σ3 = 789456123) = (3, 3, 3),

sh(σ4 = 978563412) = (2, 2, 2, 2, 1),

sh(σ5 = 987654321) = (1, 1, 1, 1, 1, 1, 1, 1, 1).

; |
⋃5

i=1 sh(σi )| = 23.

w=6 9 7 8 7 5 9 6 5 4 3 1 2 3 4 5 6 7 8 9 1 2 3,
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Origins Shortest Supersequence

Supersequences of Separable Permutations

B = {σ1, . . . , σk}, σi — separable; w — supersqn(B).⋃
i

sh(σi ) ⊂ sh(w) =⇒ SCSn(B) ≥ |
⋃
i

sh(σi )|

Take B = {rw(T )| sh(T ) = λ, λ ` n} µ(n) =
⋃
λ`n λ

Proposition

|µ(n)| ∼ n(ln n + · · · ) and number of corners is 2̃
√

n, so B has 2̃
√

n permutations
and SCSn(B) ≥ n(ln n + · · · )
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Origins Shortest Supersequence

Related Questions, work in progress

Question

If σ is a subword of w, characterize when sh(σ) ⊂ sh(w).

Conjecture

If σ = uv, where u = (wi |i < k ,wi < k), v = (wi |i ≥ k ,wi ≥ k), then
sh(σ) =︸︷︷︸

obvious

sh(u) + sh(v) ⊂︸︷︷︸
?

sh(w).

Question

For what shapes λ is Greene’s theorem ”satisfied” in the sense of: For every
permutation w, sh(w) = λ, there exist d.i.s. v i , s.t. |v i | = λi .
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Origins Shortest Supersequence

T h a n k
y o u
!
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