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A family P of n-permutations has VC-dimension k if k is the largest number such that
the elements of P induce all k! permutations on some k-tuple of indices. An example of a
family with VC-dimension k are permutations avoiding some fixed (k + 1)-permutation.
Marcus and Tardos proved the Stanley-Wilf conjecture, which says that the number of
n-permutations avoiding an arbitrary given permutation grows only exponentially in n.
Raz showed that if a family of n-permutations has VC-dimension 2, then its size is at most
exponential in n.

We show that every set of permutations with VC-dimension k has size at most 2O(n log!(n)),
where the constant in the O-notation depends only on k. On the other hand, we find a
family of 2Ω(n log(α(n))) permutations with VC-dimension 3, which gives a negative answer
to a question of Raz. (The function log!(n) is the inverse of the tower function and α(n)
is the inverse of the Ackermann function.)

We also study a related extremal problem of determining the maximum number of
1-entries in an n × n (0, 1)-matrix with no k-tuple of columns containing all k-permutation
matrices. From a result of Raz, it is known that this number grows linearly in n if k ≤ 3.

For any fixed k ≥ 4, we show bounds Ω(nα(n)) and O(n2αO(1)(n)). The upper bound is an
easy corollary of Klazar’s result on generalized Davenport-Schinzel sequences. The lower
bound follows from the result of Füredi and Hajnal on forbidden (0, 1)-matrices, which is
based on a construction of Davenport-Schinzel sequences by Hart and Sharir.
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