Math 8, Winter 2005

Scott Pauls
 Dartmouth College, Department of Mathematics 1/19/05

Numerical methods

We've seen many different intrgration technieques and can integrate many things. But, the sad truth is....

Numerical methods

We've seen many different intrgration technieques and can integrate many things. But, the sad truth is....
We can't really integrate much of anything!

Numerical methods

We've seen many different intrgration technieques and can integrate many things. But, the sad truth is....
We can't really integrate much of anything! Examples:

$$
\begin{gathered}
\int e^{-x^{2}} d x \\
\int \sqrt{1+x^{3}} d x
\end{gathered}
$$

Numerical methods

In practice, we use numerical approcimations to determine the (approximate) values of integrals. We already know one technique: Riemann sums.
Let $\left\{a=x_{0}, x_{1}, x_{2}, \ldots, x_{n}=b\right\}$ be a partition of $[a, b]$ of equal spacing and $\Delta x=\frac{b-a}{n}$.

Numerical methods

In practice, we use numerical approcimations to determine the (approximate) values of integrals. We already know one technique: Riemann sums.
Let $\left\{a=x_{0}, x_{1}, x_{2}, \ldots, x_{n}=b\right\}$ be a partition of $[a, b]$ of equal spacing and $\Delta x=\frac{b-a}{n}$.

- Left endpoints:

$$
\int_{a}^{b} f(x) d x \sim L_{n}=\sum_{i=1}^{n} f\left(x_{i-1}\right) \Delta x
$$

Numerical methods

In practice, we use numerical approcimations to determine the (approximate) values of integrals. We already know one technique: Riemann sums.
Let $\left\{a=x_{0}, x_{1}, x_{2}, \ldots, x_{n}=b\right\}$ be a partition of $[a, b]$ of equal spacing and $\Delta x=\frac{b-a}{n}$.

- Left endpoints:

$$
\int_{a}^{b} f(x) d x \sim L_{n}=\sum_{i=1}^{n} f\left(x_{i-1}\right) \Delta x
$$

- Right endpoints:

$$
\int_{a}^{b} f(x) d x \sim R_{n}=\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
$$

- Midpoints:

$$
\int_{a}^{b} f(x) d x \sim M_{n}=\sum_{i=1}^{n} f\left(\frac{x_{i-1}+x_{i}}{2}\right) \Delta x
$$

- Midpoints:

$$
\int_{a}^{b} f(x) d x \sim M_{n}=\sum_{i=1}^{n} f\left(\frac{x_{i-1}+x_{i}}{2}\right) \Delta x
$$

We have a further refinements. First, the trapezoidal rule where we average the left and right endpoint approximations:

$$
\int_{a}^{b} f(x) d x \sim T_{n}=\frac{\Delta x}{2}\left(f\left(x_{0}\right)+2 f\left(x_{1}\right)+2 f\left(x_{2}\right)+\cdots+2 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right)
$$

Examples

Examples: Use the various methods to estimate the following integrals.

$$
\begin{aligned}
& \int_{0}^{1} x^{3} d x \\
& \int_{0}^{1} e^{x} d x
\end{aligned}
$$

Error Estimates

We know that eventually, as $n \rightarrow \infty$, these approximations $L_{n}, R_{n}, M_{n}, T_{n}$ all converge to the value of the integral. But, how close are individual approximations to the correct answer?

Error Estimates

We know that eventually, as $n \rightarrow \infty$, these approximations $L_{n}, R_{n}, M_{n}, T_{n}$ all converge to the value of the integral. But, how close are individual approximations to the correct answer?

- In other words, how large is

$$
E_{M}(n)=\left|\int_{a}^{b} f(x) d x-M_{n}\right|
$$

Error Estimates

We know that eventually, as $n \rightarrow \infty$, these approximations $L_{n}, R_{n}, M_{n}, T_{n}$ all converge to the value of the integral. But, how close are individual approximations to the correct answer?

- In other words, how large is

$$
E_{M}(n)=\left|\int_{a}^{b} f(x) d x-M_{n}\right|
$$

- An upper bound on this quantity is called an error estimate.
- for the midpoint rule, the following estimate is known:

$$
E_{M}(n) \leq \frac{K(b-a)^{3}}{12 n^{2}}
$$

