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Elliptical Integrals 2

Another type of common integral that comes up in applications are the

elliptical integrals. These types of integrals include, for example, the

integral arising when trying to compute the area of a circle of radiusr:
∫

√

r2 − x2 dx

1/12/05
Version 1.0
Scott Pauls



Elliptical Integrals 2
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∫

√

r2 − x2 dx

• How do we compute these types of integrals? Substitution, integra-
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Elliptical Integrals 2

Another type of common integral that comes up in applications are the

elliptical integrals. These types of integrals include, for example, the

integral arising when trying to compute the area of a circle of radiusr:
∫

√

r2 − x2 dx

• How do we compute these types of integrals? Substitution, integra-

tion by parts, etc. do not work...

• As before, use trigonometric identities, e.g.

sin2(x) + cos2(x) = 1
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Area of a circle 3

• Area of the top half of a circle of radiusr is
∫

r

−r

√

r2 − x2 dx
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• Area of the top half of a circle of radiusr is
∫

r

−r

√

r2 − x2 dx

• Problem: the square root makes finding an anti-derivative difficult.
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Area of a circle 3

• Area of the top half of a circle of radiusr is
∫

r

−r

√

r2 − x2 dx

• Problem: the square root makes finding an anti-derivative difficult.

• Trick: convert the term inside the square root into a square.Let

x = r cos(θ)

Then,

r2 − x2 = r2 − r2 cos2(θ) = r2 sin2(θ)
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Area of a circle 3

• Area of the top half of a circle of radiusr is
∫

r

−r

√

r2 − x2 dx

• Problem: the square root makes finding an anti-derivative difficult.

• Trick: convert the term inside the square root into a square.Let

x = r cos(θ)

Then,

r2 − x2 = r2 − r2 cos2(θ) = r2 sin2(θ)

• That implifies the integrand, but we need to rewritedx in terms ofθ:

dx = d(r cos(θ)) = −r sin(θ)dθ
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Area of a circle 4

• Via this trigonometric substitution, we have that
∫

√

r2 − x2 dx = −
∫
√

r2 sin2(θ)r sin(θ)dθ

Note: r2 sin2(x) ≥ 0.
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Area of a circle 4

• Via this trigonometric substitution, we have that
∫

√

r2 − x2 dx = −
∫
√

r2 sin2(θ)r sin(θ)dθ

Note: r2 sin2(x) ≥ 0.

• Evaluate this integral:
∫

−
√

r2 sin2(θ)r sin(θ) dθ = −r2

∫

sin2(θ) dθ

= −r2

(

θ

2
−

sin(2θ)

4

)

+ C
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Area of a circle 4

• Via this trigonometric substitution, we have that
∫

√

r2 − x2 dx = −
∫
√

r2 sin2(θ)r sin(θ)dθ

Note: r2 sin2(x) ≥ 0.

• Evaluate this integral:
∫

−
√

r2 sin2(θ)r sin(θ) dθ = −r2

∫

sin2(θ) dθ

= −r2

(

θ

2
−

sin(2θ)

4

)

+ C

• Rewrite answer in terms ofx:

x = r cos(θ) =⇒ θ = arccos
(x

r

)
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Area of a circle 5

• So, back-substituting and evaluating betweenx = −r andx = r,

we have

−r2

(

θ

2
−

sin(2θ)

4

)

∣

∣

∣

∣

∣

r

−r

= −r2
arccos

(

x

r

)

2
− r2 sin

(

2 arccos
(x

r

))

∣

∣

∣

∣

∣

r

−r

= −

(

r2
arccos

(

r

r

)

2
− r2

arccos
(

−r

r

)

2

)

−
(

r2 sin
(

2 arccos
(r

r

))

− r2 sin

(

2 arccos

(

−r

r

))

= −r2(arccos(1) − arccos(−1)

− (sin(2 arccos(1))) − sin(2 arccos(−1)))

= r2
π

2
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Examples 6

•
∫

x3
√

9 − x2 dx

• Substitute:x = 3 sec(x),
∫

1

x2
√

x2 − 9
dx

• Substitute:x = 2 tan(x),
∫

x3

√
x2 + 4
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Rational functions 7

If p(x) andq(x) are polynomials, how do we integrate
∫

p(x)

q(x)
dx

Cases we know:
∫

1

ax + b
dx

∫

x

ax2 + b
dx

We’ll try to rewrite the integral in terms of these types of easier integrals.
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Rational functions 7

If p(x) andq(x) are polynomials, how do we integrate
∫

p(x)

q(x)
dx

Cases we know:
∫

1

ax + b
dx

∫

x

ax2 + b
dx

We’ll try to rewrite the integral in terms of these types of easier integrals.

How? If we have two fractions, e.g.

1

x + 1
+

1

x − 1

we often simplify to get a common denomenator:

(x − 1) + (x + 1)

(x + 1)(x − 1)
=

1

x2 − 1
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Partial Fractions 8

Partial Fractions is a technique where we undo the process of finding

common denomenators.

•
∫

1
√

1 − x2
dx

•
∫

x − 9

x2 + 3x − 10
dx

•
∫

x2 + 2x − 1

x3 − x
dx
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