Math 8, Winter 2005

Math 8, Winter 2005

Scott Pauls

Dartmouth College, Department of Mathematics

3/7/05

With Acroread, CTRL-L switch between full screen and window mode

Math 8, Winter 2005

Version 1.0 – 3/7/05 Scott Pauls In our analysis of the gradient, we deduced that local maxima and minima appear as critical points:

The $\mathit{local extrema}$ of a function f(x,y) are characterized by the equation

 $\nabla f = 0$

At these points, the tangent plane to the surface x = f(x, y) is horizontal.

Classifying extrema

Examples:

- Local minimum: $f(x, y) = x^2 + y^2$, $f_{xx} = 2$, $f_{yy} = 2$, $f_{xy} = 0$
- Local maximum: $f(x, y) = -x^2 y^2$, $f_{xx} = -2$, $f_{yy} = -2$, $f_{xy} = 0$
- Saddle point: $f(x, y) = x^2 y^2$, $f_{xx} = 2$, $f_{yy} = -2$, $f_{xy} = 0$
- Saddle point: f(x, y) = xy, $f_{xx} = 0$, $f_{yy} = 0$, $f_{xy} = 1$

4

As in one variable calculus, we have a second derivative test that tells us the nature of the critical points:

Second Derivative Test: Let

$$D = f_{xx}f_{yy} - f_{xy}^2$$

and (x_0, y_0) a critical point of f. Then,

- 1. If $D(x_0, y_0) > 0$ and $f_{xx} > 0$ then the (x_0, y_0) is a *local* minimum
- 2. If $D(x_0, y_0) > 0$ and $f_{xx} < 0$ then the (x_0, y_0) is a *local* maximum
- 3. If $D(x_0, y_0) < 0$ then the critical point is a *saddle point*
- 4. If $D(x_0, y_0) = 0$ then the test is *inconclusive*

•
$$f(x,y) = x^2 - 2xy + y^4$$

•
$$f(x,y) = exp(-x^2 - y^2)$$

If D is a closed and bounded region in \mathbb{R}^2 we can find the absolute maximum and minimum of a function f(x, y) on that set using the following procedure:

- 1. First find all critical points of f inside the set D and plug them into f.
- 2. Parameterize the boundary of D and
 - (a) Restrict the function f to the boundary using this parameterization
 - (b) Find the abosulute maximum and minimum of f along the boundary
- 3. Pick the largest and smallest values from the list

Example: $f(x, y) = x^2 - 2xy + y^4$ with D the square of side length one with one corner at (0, 0) and the opposite corner at (1, 1).

Version 1.0 Scott Pauls