Math 8, Winter 2005

Scott Pauls

Dartmouth College, Department of Mathematics 3/7/05

Local extrema

In our analysis of the gradient, we deduced that local maxima and minima appear as critical points:

The local extrema of a function $f(x, y)$ are characterized by the equation

$$
\nabla f=0
$$

At these points, the tangent plane to the surface $x=f(x, y)$ is horizontal.

Classifying extrema

Examples:

- Local minimum: $f(x, y)=x^{2}+y^{2}, f_{x x}=2, f_{y y}=2, f_{x y}=0$
- Local maximum: $f(x, y)=-x^{2}-y^{2}, f_{x x}=-2, f_{y y}=$ $-2, f_{x y}=0$
- Saddle point: $f(x, y)=x^{2}-y^{2}, f_{x x}=2, f_{y y}=-2, f_{x y}=0$
- Saddle point: $f(x, y)=x y, f_{x x}=0, f_{y y}=0, f_{x y}=1$

Classifying extrema

As in one variable calculus, we have a second derivative test that tells us the nature of the critical points:

Second Derivative Test: Let

$$
D=f_{x x} f_{y y}-f_{x y}^{2}
$$

and $\left(x_{0}, y_{0}\right)$ a critical point of f. Then,

1. If $D\left(x_{0}, y_{0}\right)>0$ and $f_{x x}>0$ then the $\left(x_{0}, y_{0}\right)$ is a local minimum
2. If $D\left(x_{0}, y_{0}\right)>0$ and $f_{x x}<0$ then the $\left(x_{0}, y_{0}\right)$ is a local maximum
3. If $D\left(x_{0}, y_{0}\right)<0$ then the critical point is a saddle point
4. If $D\left(x_{0}, y_{0}\right)=0$ then the test is inconclusive

Examples

- $f(x, y)=x^{2}-2 x y+y^{4}$
- $f(x, y)=\exp \left(-x^{2}-y^{2}\right)$

Absolute extrema

If D is a closed and bounded region in \mathbb{R}^{2} we can find the absolute maximum and minimum of a function $f(x, y)$ on that set using the folowing procedure:

1. First find all critical points of f inside the set D and plug them into f.
2. Parameterize the boundary of D and
(a) Restrict the function f to the boundary using this parameterization
(b) Find the abosulute maximum and minimum of f along the boundary
3. Pick the largest and smallest values from the list

Example: $f(x, y)=x^{2}-2 x y+y^{4}$ with D the square of side length one with one corner at $(0,0)$ and the opposite corner at $(1,1)$.

