Math 8, Winter 2005

Scott Pauls

Dartmouth College, Department of Mathematics 3/4/05

The gradient

The gradient vector contains all of the directional derivative information:

$$
\begin{aligned}
& \text { is } \\
& \qquad D_{\vec{v}} f\left(x_{0}, y_{0}\right)=\nabla f\left(x_{0}, y_{0}\right) \cdot \vec{v}
\end{aligned}
$$

Given a point $\left(x_{0}, y_{0}\right)$ and a direction vector $\vec{v}=<a, b>$, the directional derivative of $f(x, y)$ in the direction of \vec{v} at $\left(x_{0}, y_{0}\right)$

Maximum ascent

In what direction does a function increase the fastest?

$$
\begin{aligned}
D_{\vec{v}} f & =\nabla f \cdot \vec{v} \\
& =|\nabla f||\vec{v}| \cos (\theta) \\
& =|\nabla f| \cos (\theta)
\end{aligned}
$$

The right hand side is largest when $\cos (\theta)=1$, i.e. when $\theta=0$.

- A function f increases most quickly in the direction of the gradient vector, $\frac{\nabla f}{|\nabla f|}$.
- The function decreases most quickly in the direction of $-\frac{\nabla f}{|\nabla f|}$
- The function has directional derivative zero in the directions perpendicular to the gradient.

Contour plots and the gradient

First, we draw a contour plot of a funciton $f(x, y)$.

Contour plots and the gradient

First, we draw a contour plot of a funciton $f(x, y)$.

- The contours represent the curves along which f is constant. So the directional derivative in those directions is zero!

Contour plots and the gradient

First, we draw a contour plot of a funciton $f(x, y)$.

- The contours represent the curves along which f is constant. So the directional derivative in those directions is zero!

- Draw vectors representing the gradient vector at each point.

Contour plots and the gradient

First, we draw a contour plot of a funciton $f(x, y)$.

- The contours represent the curves along which f is constant. So the directional derivative in those directions is zero!

- Draw vectors representing the gradient vector at each point.
- Note the the vectors are perpendicular to the curves

Big picture

Version 1.0 A closer look...

Conclusions

- We can reach a (local) maximum of f by following curves that are tangent to the gradient.
- We can reach a (local) minimum of f by following the curves that are tangent to the negative of the gradient.
- Where is a max or min? At a place where the gradient vanishes!

Local extrema

The critical points of a function $f(x, y)$ are the points $\left(x_{0}, y_{0}\right)$ where

$$
\nabla f\left(x_{0}, y_{0}\right)=0
$$

All local maxima and minima occur at critical points.

Examples:

- $f(x, y)=x^{2}+y^{2}$
- $f(x, y)=x^{2}-2 x y+y^{4}$

