Math 8, Winter 2005

Math 8, Winter 2005

Scott Pauls

Dartmouth College, Department of Mathematics

3/2/05

With Acroread, CTRL-L switch between full screen and window mode

Math 8, Winter 2005

Version 1.0 – 3/2/05 Scott Pauls Just like we used the tangent line to approximate a function of one variable, we can use the tangent plane to approximate a function of two variables: Given a function f(x, y) and its tangent plane at

 $(x_0, y_0, f(x_0, y_0)), z = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0) + f(x_0, y_0),$ the tangent plane is a good approximation of the function near (x_0, y_0) . i.e.

 $f(x,y) \approx L(x,y)$

where

$$L(x,y) = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0) + f(x_0, y_0)$$

- Find the tangent plane to $f(x, y) = 2x^2 + 3xy$ at (1, 1)
- Approximate f(1.1, 0.9) where $f(x, y) = 2x^2 + 3xy$ near (1, 1)

When thinking about differentiability, we would like that a function f be well approximated by its tangent planes.

Differentiability

If z = f(x, y), then f is *differentiable* at (a, b) if $\Delta z = z - f(a, b)$ can be expressed in the form $\Delta z = f_x(a, b)\Delta x + f_y(a, b)\Delta y + \varepsilon_1\Delta x + \varepsilon_2\Delta y$ where $\varepsilon_1, \varepsilon_2 \to 0$ as $(x, y) \to (a, b)$

If f_x and f_y exist near (a, b) and are continuous then f is differentiable at (a, b)

Chain rule

• If
$$x = g(t), y = h(t)$$
, then

$$\frac{d}{dt}f(g(t), h(t)) = f_x(g(t), h(t))g'(t) + f_y(g(t), h(t))h'(t)$$
• If $x = g(x, t), y = h(x, t)$ then

• If
$$x = g(s, t), y = h(s, t)$$
 then

$$\frac{\partial z}{\partial s} = z_x x_s + z_y y_s$$

and

Ι

$$\frac{\partial z}{\partial t} = z_x x_t + z_y y_t$$

Version 1.0 Scott Pauls • General case: follow the tree diagram to get the correct derivative

•
$$f(x,y) = x^2y + xy^2, x = 2 + t, y = t^3$$

• Same
$$f, x = st, y = s^2 + t^3$$

•
$$f(x, y, z) = x^2 + y^3 + z^4$$
, $x = \ln(s)$, $y = st^2$, $z = t^3 + st$

