## Math 8, Winter 2005

## Scott Pauls

Dartmouth College, Department of Mathematics 3/2/05

## Linear Approximations

Just like we used the tangent line to approximate a function of one variable, we can use the tangent plane to approximate a function of two variables: Given a function $f(x, y)$ and its tangent plane at $\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right), z=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)+$ $f\left(x_{0}, y_{0}\right)$, the tangent plane is a good approximation of the function near $\left(x_{0}, y_{0}\right)$. i.e.

$$
f(x, y) \approx L(x, y)
$$

where

$$
L(x, y)=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)+f\left(x_{0}, y_{0}\right)
$$

## Examples

- Find the tangent plane to $f(x, y)=2 x^{2}+3 x y$ at $(1,1)$
- Approximate $f(1.1,0.9)$ where $f(x, y)=2 x^{2}+3 x y$ near $(1,1)$

When thinking about differentiability, we would like that a function $f$ be well approximated by its tangent planes.

## Differentiability

If $z=f(x, y)$, then f is differentiable at $(a, b)$ if $\Delta z=z-$ $f(a, b)$ can be expressed in the form

$$
\Delta z=f_{x}(a, b) \Delta x+f_{y}(a, b) \Delta y+\varepsilon_{1} \Delta x+\varepsilon_{2} \Delta y
$$

where $\varepsilon_{1}, \varepsilon_{2} \rightarrow 0$ as $(x, y) \rightarrow(a, b)$

If $f_{x}$ and $f_{y}$ exist near $(a, b)$ and are continuous then $f$ is differentiable at $(a, b)$

## Chain rule

Let $z=f(x, y)$

- If $x=g(t), y=h(t)$, then

$$
\frac{d}{d t} f(g(t), h(t))=f_{x}(g(t), h(t)) g^{\prime}(t)+f_{y}(g(t), h(t)) h^{\prime}(t)
$$

- If $x=g(s, t), y=h(s, t)$ then

$$
\frac{\partial z}{\partial s}=z_{x} x_{s}+z_{y} y_{s}
$$

and

$$
\frac{\partial z}{\partial t}=z_{x} x_{t}+z_{y} y_{t}
$$

- General case: follow the tree diagram to get the correct derivative


## Examples

- $f(x, y)=x^{2} y+x y^{2}, x=2+t, y=t^{3}$
- Same $f, x=s t, y=s^{2}+t^{3}$
- $f(x, y, z)=x^{2}+y^{3}+z^{4}, x=\ln (s), y=s t^{2}, z=t^{3}+s t$

