Math 8, Winter 2005

Scott Pauls

Dartmouth College, Department of Mathematics
2/16/05

One more limit example

Does the limit of

$$
f(x, y)=\frac{x^{4} y}{x^{6}+y^{4}}
$$

exist as $(x, y) \rightarrow(0,0)$?

One more limit example

Does the limit of

$$
f(x, y)=\frac{x^{4} y}{x^{6}+y^{4}}
$$

exist as $(x, y) \rightarrow(0,0)$?

Derivatives

How can we differentiate a function of two variables, $f(x, y)$? We can start our investigation by educing the problem to one variable. Choose a point $\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$ where we want to understand the derivative and a direction $\vec{v}=<a, b>\in \mathbb{R}^{2}$.

Derivatives

How can we differentiate a function of two variables, $f(x, y)$? We can start our investigation by educing the problem to one variable. Choose a point $\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$ where we want to understand the derivative and a direction $\vec{v}=<a, b>\in \mathbb{R}^{2}$.

- Let $\vec{r}(t)=<x_{0}+t a, y_{0}+t b>$

Derivatives

How can we differentiate a function of two variables, $f(x, y)$? We can start our investigation by reducing the problem to one variable. Choose a point $\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$ where we want to understand the derivative and a direction $\vec{v}=<a, b>\in \mathbb{R}^{2}$.

- Let $\vec{r}(t)=<x_{0}+t a, y_{0}+t b>$
- Lift this line to the surface

$$
\vec{c}_{\vec{v}}(t)=<x_{0}+t a, y_{0}+t b, f\left(x_{0}+t a, y_{0}+t b\right)>
$$

Derivatives

How can we differentiate a function of two variables, $f(x, y)$? We can start our investigation by reducing the problem to one variable. Choose a point $\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$ where we want to understand the derivative and a direction $\vec{v}=<a, b>\in \mathbb{R}^{2}$.

- Let $\vec{r}(t)=<x_{0}+t a, y_{0}+t b>$
- Lift this line to the surface

$$
\vec{c}_{\vec{v}}(t)=<x_{0}+t a, y_{0}+t b, f\left(x_{0}+t a, y_{0}+t b\right)>
$$

Take the derivative of the space curve:

$$
\vec{c}_{\vec{v}}^{\prime}(0)=\left\langle a, b,\left(\frac{d}{d t} f\left(x_{0}+t a, y_{0}+t b\right)\right)_{t=0}\right\rangle
$$

The last coordinate is called the directional derivative

$$
\left.\frac{d}{d t}\right|_{t=0} f\left(x_{0}+t a, y_{0}+t b\right)
$$

Directional Derivatives

Notice: we have one derivative for each direction vector \vec{v}. The directional derivative is a measure of the rate of change of the function in that direction. If we let \vec{v} be one of $\{\vec{i}, \vec{j}\}$ we get special directional derivatives:

$$
\begin{aligned}
& D_{\vec{i}} f=\frac{\partial}{\partial x} f=f_{x} \\
& D_{\vec{j}} f=\frac{\partial}{\partial y} f=f_{y}
\end{aligned}
$$

The are called the partial derivatives of f with respect to x and y. Equivalent definition:

$$
\begin{aligned}
& f_{x}\left(x_{0}, y_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h, y_{0}\right)-f\left(x_{0}, y_{0}\right)}{h} \\
& f_{y}\left(x_{0}, y_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}, y_{0}+h\right)-f\left(x_{0}, y_{0}\right)}{h}
\end{aligned}
$$

Higher order derivatives

Compute higher order derivatives by iterating the derivative process. Examples:

- $f(x, y)=x^{2}+\sin (x y)$
- $f(x, y)=\frac{x y}{x^{2}+y^{2}}$

Functions of several variables

Given $f(x, y, z, w)$, compute partial derivatives in exactly the same way: hold all variables but one constant and differentiate in the remaining variable.
Examples:

- $x^{2}+y^{3}+x y z$
- $\tan (x+2 y+3 z+4 w)$

The gradient

We collect all partial derivatives into a derivative vector:

$$
\nabla f=<f_{x}, f_{y}, f_{z}>
$$

∇f is called the gradient of the function f.
Application: tangent plane to $z-f(x, y)=0$.

- f_{x} and f_{y} give two tangent directions on the surface

$$
\begin{gathered}
\vec{v}=<1,0, f_{x}> \\
\vec{w}=<0,1, f_{y}> \\
\vec{n}=\vec{v} \times \vec{w}=<-f_{x},-f_{y}, 1>
\end{gathered}
$$

Tangent planes

The tangent plane to $F(x, y, z)=z-f(x, y)=0$ is given by:

$$
\vec{n} \cdot<x, y, z>-<x_{0}, y_{0}, z_{0}>=0
$$

or

$$
\nabla F \cdot<x-x_{0}, y-y_{0}, z-z_{0}>=0
$$

