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Volume
D

We found the area under a curve (or between curves)
by slicing the region into rectangles and summing the
areas of the rectangles. Can we do the same to find the
volumes of solids?
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Volume
D

We found the area under a curve (or between curves)
by slicing the region into rectangles and summing the
areas of the rectangles. Can we do the same to find the
volumes of solids?

e Firstidea: break up into small cubes.
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Volume
D

We found the area under a curve (or between curves)
by slicing the region into rectangles and summing the
areas of the rectangles. Can we do the same to find the
volumes of solids?

e Firstidea: break up into small cubes.

e Too much book-keeping - return to this in math
13.
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Volume 0
D

We found the area under a curve (or between curves)
by slicing the region into rectangles and summing the
areas of the rectangles. Can we do the same to fin
volumes of solids?

e Firstidea: break up into small cubes.

e Too much book-keeping - return to this in m:
13. :

e We understand how to compute area, so let’s slice
the solid into 2-dimensional sheets. Calculate the
area for that sliced(z).
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Volume 0
D

We found the area under a curve (or between curves)
by slicing the region into rectangles and summing the
areas of the rectangles. Can we do the same to fin
volumes of solids?

e Firstidea: break up into small cubes.

e Too much book-keeping - return to this in m:
13. :

e We understand how to compute area, so let’s slice
the solid into 2-dimensional sheets. Calculate the
area for that sliced(z).

e Thicken the slice to a slab of widthz, then the
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Volume
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Volume ©
D

e Sampling many different points ija, b|, we gen-
erate an approximation of the volume of the sa |

V ~ i A(x)Ax
i=1

0 a=x, X) Xy
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Volume ©
D

e Sampling many different points ija, b|, we gen-
erate an approximation of the volume of the sg |

Vo~ i A(x)Ax
i=1

0 a=x, X) Xy

e To refine the estimate, we let— oo yielding:
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Volume 3
D

e Sampling many different points ija, b|, we gen-

erate an approximation of the volume of the sg |

Vo~ i A(x)Ax
i=1

0 u= X X Xy

e To refine the estimate, we let— oo yielding:

e Difficulty: ComputeA(x).
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Examples

’ Sphere-x2 + 92 122 =1
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Examples

e Spherez? +¢y* + 22 =1

e Sphere as a solid of rotatiop.= /(1 — 22), x € [-1,1].
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Examples

e Spherez? +¢y* + 22 =1
e Sphere as a solid of rotatiop.= /(1 — 22), z € [-1,1].

e Find the volume of the surface of revolution obtained bytrotathe
region given byy = 22, y = 0, z = 1 about the x-axis.
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Examples

Spherex? +y? + 22 =1
Sphere as a solid of rotatiop.= /(1 — #2), z € [-1,1].

Find the volume of the surface of revolution obtained bytrotathe
region given byy = 22, y = 0, z = 1 about the x-axis.

Find the volume of the surface of revolution obtained bytrotathe
region given byy = 22, y = 2 about the x-axis.
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Examples

Spherex? +y? + 22 =1
Sphere as a solid of rotatiop.= /(1 — #2), z € [-1,1].

Find the volume of the surface of revolution obtained bytrotathe
region given byy = 22, y = 0, z = 1 about the x-axis.

Find the volume of the surface of revolution obtained bytrotathe
region given byy = 22, y = 2 about the x-axis.

Same problem but rotate about the y-axis.



M or e examples

% D ol
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M ore examples

e Find the volume of a right circular cone with heightand radius-.
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M ore examples

e Find the volume of a right circular cone with heightand radius-.

e Find the volume of a solid whose baseis the parabolic region
{(z,y)]z* < y < 1} and whose cross-sections perpendicular to the
y-axis are equilateral triangles.
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| ntegration techniques
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| ntegration techniques

e All of integration comes down to one thingnd an anti-derivative.

1/7/05
Version 1.0
Scott Pauls




| ntegration techniques

e All of integration comes down to one thingnd an anti-derivative.

e Substitution provides a way to simplify integrands so agtmgnize
anti-derivatives.
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| ntegration techniques

e All of integration comes down to one thingnd an anti-derivative.

e Substitution provides a way to simplify integrands so agtmgnize
anti-derivatives.

e Where does substitution come from: the chain rule!

2 flo()) = I'(g(@)g' (@
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| ntegration techniques

e All of integration comes down to one thingnd an anti-derivative.

e Substitution provides a way to simplify integrands so agtmgnize
anti-derivatives.

e Where does substitution come from: the chain rule!

2 flo()) = I'(g(@)g' (@

e Integrate both sides to get:

b b
Hola) = [ flgt@)) do = [ f/(g(a))g'(a) da
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| ntegration techniques
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| ntegration techniques

e Every differentiation rule gives an integration rule.
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| ntegration techniques

e Every differentiation rule gives an integration rule.

e Product rule:

%f (2)g(x) = f(x)g(x) + f(x)g (x)
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| ntegration techniques

e Every differentiation rule gives an integration rule.

e Product rule:

L f(@)g(a) = £ ()g(a) + F()g @
¢ Integrate both sides:
b
F@g)l = [ L f@g(e) do

2/; f'(z)g(x) dw+/abf(év)g’($) dx
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| ntegration by parts
D

e Rearrange terms to get th@egration by partdormula:

b b
/ F(@)g (x) de = f(@)g(@)l’ - / F(@)g(x) da

or, lettingu = f(x), v = g(x),

/udvzuv—/vdu
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| ntegration by parts
D

e Rearrange terms to get th@egration by partdormula:

b b
/ F(@)g (x) de = f(@)g(@)l’ - / F(@)g(x) da

or, lettingu = f(x), v = g(x),

/udv:uv—/vdu

e Key: pick correctu anddv
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| ntegration by parts
D

e Rearrange terms to get th@egration by partformula:

b b
/ F(@)g (x) de = f(@)g(@)l’ - / F(@)g(x) da

or, lettingu = f(x), v = g(x),
/udv:uv—/vdu
e Key: pick correctu anddv

e Generalization: Differentiation makes things simplertegration
makes things more complicated.
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| ntegration by parts
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Rearrange terms to get the@egration by partformula:

b b
/ F(@)g (x) de = f(@)g(@)l’ - / F(@)g(x) da

or, lettingu = f(x), v = g(x),
/udv:uv—/vdu
Key: pick correctu anddv

Generalization: Differentiation makes things simplertegration
makes things more complicated.

Key is simplicity of resulting integral: pick so thatdu is simpler,
pick dv so thatv is at leastnot much worse thadv.



|ntegration by parts

/ re’ dx

z° sin(z) dz

arctan(z) dx

)
/ In(x) dx
)
T .
C AN / € Sln(x) dx
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Rules of thumb
D

e Choices for:: polynomimals, arc-trig functions, logarithmsn (),

cos(x)

e Choices fordv: e*, sin(x), cos(x), polynommials
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