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Volume 2

We found the area under a curve (or between curves)

by slicing the region into rectangles and summing the

areas of the rectangles. Can we do the same to find the

volumes of solids?
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We found the area under a curve (or between curves)

by slicing the region into rectangles and summing the

areas of the rectangles. Can we do the same to find the

volumes of solids?

• First idea: break up into small cubes.

• Too much book-keeping - return to this in math

13.
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Volume 2

We found the area under a curve (or between curves)

by slicing the region into rectangles and summing the

areas of the rectangles. Can we do the same to find the

volumes of solids?

• First idea: break up into small cubes.

• Too much book-keeping - return to this in math

13.

• We understand how to compute area, so let’s slice

the solid into 2-dimensional sheets. Calculate the

area for that slice,A(x).
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Volume 2

We found the area under a curve (or between curves)

by slicing the region into rectangles and summing the

areas of the rectangles. Can we do the same to find the

volumes of solids?

• First idea: break up into small cubes.

• Too much book-keeping - return to this in math

13.

• We understand how to compute area, so let’s slice

the solid into 2-dimensional sheets. Calculate the

area for that slice,A(x).

• Thicken the slice to a slab of width∆x, then the

volume of the slab isapproximatelyA(x)∆x.1/7/05
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Volume 3
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Volume 3

• Sampling many different points in[a, b], we gen-

erate an approximation of the volume of the solid:

V ∼
n

∑

i=1

A(x)∆x
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Volume 3

• Sampling many different points in[a, b], we gen-

erate an approximation of the volume of the solid:

V ∼
n

∑

i=1

A(x)∆x

• To refine the estimate, we letn → ∞ yielding:

V =

∫ b

a

A(x) dx
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Volume 3

• Sampling many different points in[a, b], we gen-

erate an approximation of the volume of the solid:

V ∼
n

∑

i=1

A(x)∆x

• To refine the estimate, we letn → ∞ yielding:

V =

∫ b

a

A(x) dx

• Difficulty: ComputeA(x).
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Examples 4
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Examples 4

• Sphere:x2 + y2 + z2 = 1
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Examples 4

• Sphere:x2 + y2 + z2 = 1

• Sphere as a solid of rotation.y =
√

(1 − x2), x ∈ [−1, 1].
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• Sphere as a solid of rotation.y =
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• Find the volume of the surface of revolution obtained by rotating the

region given byy = x2, y = 0, x = 1 about the x-axis.
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Examples 4

• Sphere:x2 + y2 + z2 = 1

• Sphere as a solid of rotation.y =
√

(1 − x2), x ∈ [−1, 1].

• Find the volume of the surface of revolution obtained by rotating the

region given byy = x2, y = 0, x = 1 about the x-axis.

• Find the volume of the surface of revolution obtained by rotating the

region given byy = x2, y = x about the x-axis.

• Same problem but rotate about the y-axis.
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More examples 5
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More examples 5

• Find the volume of a right circular cone with heighth and radiusr.
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More examples 5

• Find the volume of a right circular cone with heighth and radiusr.

• Find the volume of a solid whose baseS is the parabolic region

{(x, y)|x2 ≤ y ≤ 1} and whose cross-sections perpendicular to the

y-axis are equilateral triangles.
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Integration techniques 6

1/7/05
Version 1.0
Scott Pauls



Integration techniques 6

• All of integration comes down to one thing:find an anti-derivative.
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• All of integration comes down to one thing:find an anti-derivative.

• Substitution provides a way to simplify integrands so as to recognize

anti-derivatives.

• Where does substitution come from: the chain rule!

d

dx
f(g(x)) = f ′(g(x))g′(x)
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Integration techniques 6

• All of integration comes down to one thing:find an anti-derivative.

• Substitution provides a way to simplify integrands so as to recognize

anti-derivatives.

• Where does substitution come from: the chain rule!

d

dx
f(g(x)) = f ′(g(x))g′(x)

• Integrate both sides to get:

f(g(x)) =

∫

b

a

d

dx
f(g(x)) dx =

∫

b

a

f ′(g(x))g′(x) dx
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Integration techniques 7
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Integration techniques 7

• Every differentiation rule gives an integration rule.
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Integration techniques 7

• Every differentiation rule gives an integration rule.

• Product rule:

d

dx
f(x)g(x) = f ′(x)g(x) + f(x)g′(x)
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Integration techniques 7

• Every differentiation rule gives an integration rule.

• Product rule:

d

dx
f(x)g(x) = f ′(x)g(x) + f(x)g′(x)

• Integrate both sides:

f(x)g(x)|b
a

=

∫ b

a

d

dx
f(x)g(x) dx

=

∫ b

a

f ′(x)g(x) dx +

∫ b

a

f(x)g′(x) dx
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Integration by parts 8

• Rearrange terms to get theintegration by partsformula:

∫

b

a

f(x)g′(x) dx = f(x)g(x)|b
a
−

∫

b

a

f ′(x)g(x) dx

or, lettingu = f(x), v = g(x),
∫

u dv = uv −

∫

v du
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Integration by parts 8

• Rearrange terms to get theintegration by partsformula:
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∫
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Integration by parts 8

• Rearrange terms to get theintegration by partsformula:

∫

b

a

f(x)g′(x) dx = f(x)g(x)|b
a
−

∫

b

a

f ′(x)g(x) dx

or, lettingu = f(x), v = g(x),
∫

u dv = uv −

∫

v du

• Key: pick correctu anddv

• Generalization: Differentiation makes things simpler, integration

makes things more complicated.
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Integration by parts 8

• Rearrange terms to get theintegration by partsformula:

∫

b

a

f(x)g′(x) dx = f(x)g(x)|b
a
−

∫

b

a

f ′(x)g(x) dx

or, lettingu = f(x), v = g(x),
∫

u dv = uv −

∫

v du

• Key: pick correctu anddv

• Generalization: Differentiation makes things simpler, integration

makes things more complicated.

• Key is simplicity of resulting integral: picku so thatdu is simpler,

pick dv so thatv is at leastnot much worse thandv.
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Integration by parts 9

•
∫

xex dx

•
∫

x2 sin(x) dx

•
∫

arctan(x) dx

•
∫

ln(x) dx

•
∫

ex sin(x) dx
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Rules of thumb 10

• Choices foru: polynomimals, arc-trig functions, logarithms,sin(x),

cos(x)

• Choices fordv: ex, sin(x), cos(x), polynommials
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