Math 8, winter 2005

Scott Pauls
 Dartmouth College, Department of Mathematics 1/7/05

Volume

We found the area under a curve (or between curves) by slicing the region into rectangles and summing the areas of the rectangles. Can we do the same to find the volumes of solids?

Volume

We found the area under a curve (or between curves) by slicing the region into rectangles and summing the areas of the rectangles. Can we do the same to find the volumes of solids?

- First idea: break up into small cubes.

Volume

We found the area under a curve (or between curves) by slicing the region into rectangles and summing the areas of the rectangles. Can we do the same to find the volumes of solids?

- First idea: break up into small cubes.
- Too much book-keeping - return to this in math 13.

Volume

We found the area under a curve (or between curves) by slicing the region into rectangles and summing the areas of the rectangles. Can we do the same to find the volumes of solids?

- First idea: break up into small cubes.
- Too much book-keeping - return to this in math 13.

- We understand how to compute area, so let's slice the solid into 2-dimensional sheets. Calculate the area for that slice, $A(x)$.

Volume

We found the area under a curve (or between curves) by slicing the region into rectangles and summing the areas of the rectangles. Can we do the same to find the volumes of solids?

- First idea: break up into small cubes.
- Too much book-keeping - return to this in math 13.

- We understand how to compute area, so let's slice the solid into 2-dimensional sheets. Calculate the area for that slice, $A(x)$.

1/7/05

- Thicken the slice to a slab of width Δx, then the volume of the slab is approximately $A(x) \Delta x$.

Volume

Version 1.0
Scott Pauls

Volume

- Sampling many different points in $[a, b]$, we generate an approximation of the volume of the solid:

$$
V \sim \sum_{i=1}^{n} A(x) \Delta x
$$

Volume

- Sampling many different points in $[a, b]$, we generate an approximation of the volume of the solid:

$$
V \sim \sum_{i=1}^{n} A(x) \Delta x
$$

- To refine the estimate, we let $n \rightarrow \infty$ yielding:

$$
V=\int_{a}^{b} A(x) d x
$$

Volume

- Sampling many different points in $[a, b]$, we generate an approximation of the volume of the solid:

$$
V \sim \sum_{i=1}^{n} A(x) \Delta x
$$

- To refine the estimate, we let $n \rightarrow \infty$ yielding:

$$
V=\int_{a}^{b} A(x) d x
$$

- Difficulty: Compute $A(x)$.

Examples

Version 1.0
Scott Paul

Examples

- Sphere: $x^{2}+y^{2}+z^{2}=1$

Examples

- Sphere: $x^{2}+y^{2}+z^{2}=1$

Examples

- Sphere: $x^{2}+y^{2}+z^{2}=1$

- Find the volume of the surface of revolution obtained by rotating the region given by $y=x^{2}, y=0, x=1$ about the x -axis.

Examples

- Sphere: $x^{2}+y^{2}+z^{2}=1$

- Find the volume of the surface of revolution obtained by rotating the region given by $y=x^{2}, y=0, x=1$ about the x -axis.
- Find the volume of the surface of revolution obtained by rotating the region given by $y=x^{2}, y=x$ about the x -axis.

Examples

- Sphere: $x^{2}+y^{2}+z^{2}=1$

- Find the volume of the surface of revolution obtained by rotating the region given by $y=x^{2}, y=0, x=1$ about the x -axis.
- Find the volume of the surface of revolution obtained by rotating the region given by $y=x^{2}, y=x$ about the x -axis.
- Same problem but rotate about the y-axis.

More examples

- Find the volume of a right circular cone with height h and radius r.
- Find the volume of a right circular cone with height h and radius r.
- Find the volume of a solid whose base S is the parabolic region $\left\{(x, y) \mid x^{2} \leq y \leq 1\right\}$ and whose cross-sections perpendicular to the y -axis are equilateral triangles.

Integration techniques

Version 1.0 Scott Paul

Integration techniques

- All of integration comes down to one thing: find an anti-derivative.

Integration techniques

- All of integration comes down to one thing: find an anti-derivative.
- Substitution provides a way to simplify integrands so as to recognize anti-derivatives.

Integration techniques

- All of integration comes down to one thing: find an anti-derivative.
- Substitution provides a way to simplify integrands so as to recognize anti-derivatives.
- Where does substitution come from: the chain rule!

$$
\frac{d}{d x} f(g(x))=f^{\prime}(g(x)) g^{\prime}(x)
$$

Integration techniques

- All of integration comes down to one thing: find an anti-derivative.
- Substitution provides a way to simplify integrands so as to recognize anti-derivatives.
- Where does substitution come from: the chain rule!

$$
\frac{d}{d x} f(g(x))=f^{\prime}(g(x)) g^{\prime}(x)
$$

- Integrate both sides to get:

$$
f(g(x))=\int_{a}^{b} \frac{d}{d x} f(g(x)) d x=\int_{a}^{b} f^{\prime}(g(x)) g^{\prime}(x) d x
$$

Integration techniques

Version 1.0
Scott Paul

Integration techniques

- Every differentiation rule gives an integration rule.

Integration techniques

- Every differentiation rule gives an integration rule.
- Product rule:

$$
\frac{d}{d x} f(x) g(x)=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)
$$

Integration techniques

- Every differentiation rule gives an integration rule.
- Product rule:

$$
\frac{d}{d x} f(x) g(x)=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)
$$

- Integrate both sides:

$$
\begin{aligned}
\left.f(x) g(x)\right|_{a} ^{b} & =\int_{a}^{b} \frac{d}{d x} f(x) g(x) d x \\
& =\int_{a}^{b} f^{\prime}(x) g(x) d x+\int_{a}^{b} f(x) g^{\prime}(x) d x
\end{aligned}
$$

Integration by parts

- Rearrange terms to get the integration by parts formula:

$$
\int_{a}^{b} f(x) g^{\prime}(x) d x=\left.f(x) g(x)\right|_{a} ^{b}-\int_{a}^{b} f^{\prime}(x) g(x) d x
$$

or, letting $u=f(x), v=g(x)$,

$$
\int u d v=u v-\int v d u
$$

Integration by parts

- Rearrange terms to get the integration by parts formula:

$$
\int_{a}^{b} f(x) g^{\prime}(x) d x=\left.f(x) g(x)\right|_{a} ^{b}-\int_{a}^{b} f^{\prime}(x) g(x) d x
$$

or, letting $u=f(x), v=g(x)$,

$$
\int u d v=u v-\int v d u
$$

- Key: pick correct u and $d v$

Integration by parts

- Rearrange terms to get the integration by parts formula:

$$
\int_{a}^{b} f(x) g^{\prime}(x) d x=\left.f(x) g(x)\right|_{a} ^{b}-\int_{a}^{b} f^{\prime}(x) g(x) d x
$$

or, letting $u=f(x), v=g(x)$,

$$
\int u d v=u v-\int v d u
$$

- Key: pick correct u and $d v$
- Generalization: Differentiation makes things simpler, integration makes things more complicated.

Integration by parts

- Rearrange terms to get the integration by parts formula:

$$
\int_{a}^{b} f(x) g^{\prime}(x) d x=\left.f(x) g(x)\right|_{a} ^{b}-\int_{a}^{b} f^{\prime}(x) g(x) d x
$$

or, letting $u=f(x), v=g(x)$,

$$
\int u d v=u v-\int v d u
$$

- Key: pick correct u and $d v$
- Generalization: Differentiation makes things simpler, integration makes things more complicated.

- Key is simplicity of resulting integral: pick u so that $d u$ is simpler, pick $d v$ so that v is at least not much worse than $d v$.

Integration by parts

$$
\begin{gathered}
\int x e^{x} d x \\
\int x^{2} \sin (x) d x \\
\int \arctan (x) d x \\
\int \ln (x) d x \\
\int e^{x} \sin (x) d x
\end{gathered}
$$

Rules of thumb

- Choices for u : polynomimals, arc-trig functions, logarithms, $\sin (x)$, $\cos (x)$
- Choices for $d v: e^{x}, \sin (x), \cos (x)$, polynommials

