Math 8, Winter 2005

Math 8, Winter 2005

Scott Pauls

Dartmouth College, Department of Mathematics

2/21/05

With Acroread, CTRL-L switch between full screen and window mode

Math 8, Winter 2005

Version 1.0 – 2/21/05 Scott Pauls A plane is determined by a point, $\vec{r_0}$, on the plane and a vector, \vec{n} , perpendicular to the plane.

$$\vec{n} \cdot (\vec{r} - \vec{r}_0) = 0$$

If $\vec{n} = \langle a, b, c \rangle$, $\vec{r_0} = \langle x_0, y_0, z_0 \rangle$ and $\vec{r} = \langle x, y, z \rangle$ we have the scalar equation of the plane:

$$< a, b, c > \cdot (< x, y, z > - < x_0, y_0, z_0 >) = 0$$

 $< a, b, c > \cdot < x - x_0, y - y_0, z - z_0 > = 0$
 $a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$

- Find the plane passing through the point P = (1, 1, 1), Q = (-2, 3, 1), and R = (3, 0, 2).
- Find the angle between the planes x+y+z = 1 and x-2y-3z = 1.
- Find the equation of the line given as the intersection of these two planes.
- Compute the distance between the point $P = \langle x_1, y_1, z_1 \rangle$ and the plane ax + by + cz + d = 0.

Space curves

A space curve is a vector valued function given in components as

 $\vec{r}(t) = < f(t), g(t), h(t) >$

Examples:

• Helix:

 $<\cos(t),\sin(t),t>$

 $< t, t^2, t^3 >$

 $< t, t, \cos(t) >$

For a vector valued function of one variable (e.g. a space curve), we define limits and derivatives by using the usual limit and derivative operations on each coordinate. If

$$F : \mathbb{R} \to \mathbb{R}^k$$
$$t \to \langle f_1(t), \dots, f_k(t) \rangle$$

then

$$\lim_{t \to t_0} F(t) = < \lim_{t \to t_0} f_1(t), \dots, \lim_{t \to t_0} f_k(t) >$$

 $\frac{d}{dt}F(t) = <\frac{d}{dt}f_1(t), \dots, \frac{d}{dt}f_k(t) >$

and

Smoothness

6

We call a vector valued function of one variable, F, *smooth* if F' is continuous and $F'(t) \neq 0$ for any t in the domain of F.

Smoothness

6

We call a vector valued function of one variable, F, smooth if F' is continuous and $F'(t) \neq 0$ for any t in the domain of F.

Example: Where is the curve $\vec{r}(t) = \langle t, t^2, t^3 \rangle$ smooth?

Answer:

$$\vec{r}'(t) = <1, 2t, 3t^2 >$$

It is smooth for every value of t.

Smoothness

We call a vector valued function of one variable, F, *smooth* if F' is continuous and $F'(t) \neq 0$ for any t in the domain of F.

Example: Where is the curve $\vec{r}(t) = \langle t, t^2, t^3 \rangle$ smooth?

Answer:

$$\vec{r}'(t) = <1, 2t, 3t^2 >$$

It is smooth for every value of t.

Example: Where is the curve $\vec{r}(t) = \langle t^4, t^2, t^3 \rangle$ smooth?

Answer:

 $\vec{r}'(t) = <4t^3, 2t, 3t^2 >$

 $\frac{2}{21}$ Version 1.0 It is smooth everywhere except at t = 0. Scott Pauls

Arclength

To measure the length of a curve in the plane given by $\vec{r}(t) = <$ f(t), g(t) >for $a \le t \le b$, we compute the following integral:

$$L = \int_{a}^{b} \sqrt{f'(t)^{2} + g'(t)^{2}} dt$$

while for a spacecurve given by $\vec{r}(t) = \langle f(t), g(t), h(t) \rangle$ for $a \leq t \leq t$ *b*, we compute:

$$L = \int_{a}^{b} \sqrt{f'(t)^2 + g'(t)^2 + h'(t)^2} dt$$

In vector notation we summarize this as:

$$L = \int_{a}^{b} |\vec{r}'(t)| \, dt$$

Example: compute the arclength of $\vec{r}(t) = \langle \cos(t), \sin(t), t^2 \rangle$ for $\frac{2/21/05}{\text{Version 1 0}} 0 \le t \le 1$ Scott Pauls