Math 8, Winter 2005

Scott Pauls

Dartmouth College, Department of Mathematics 2/21/05

Planes

A plane is determined by a point, \vec{r}_{0}, on the plane and a vector, \vec{n}, perpendicular to the plane.

$$
\vec{n} \cdot\left(\vec{r}-\vec{r}_{0}\right)=0
$$

If $\vec{n}=<a, b, c>, \vec{r}_{0}=<x_{0}, y_{0}, z_{0}>$ and $\vec{r}=<x, y, z>$ we have the scalar equation of the plane:

$$
\begin{array}{r}
<a, b, c>\cdot\left(<x, y, z>-<x_{0}, y_{0}, z_{0}>\right)=0 \\
<a, b, c>\cdot<x-x_{0}, y-y_{0}, z-z_{0}>=0 \\
a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0
\end{array}
$$

Examples

- Find the plane passing through the point $P=(1,1,1), Q=$ $(-2,3,1)$, and $R=(3,0,2)$.
- Find the angle between the planes $x+y+z=1$ and $x-2 y-3 z=1$.
- Find the equation of the line given as the intersection of these two planes.
- Compute the distance between the point $P=<x_{1}, y_{1}, z_{1}>$ and the plane $a x+b y+c z+d=0$.

Space curves

A space curve is a vector valued function given in components as

$$
\vec{r}(t)=<f(t), g(t), h(t)>
$$

Examples:

- Helix:

$$
<\cos (t), \sin (t), t>
$$

$$
<t, t^{2}, t^{3}>
$$

$$
<t, t, \cos (t)>
$$

Limits and derivatives

For a vector valued function of one variable (e.g. a space curve), we define limits and derivatives by using the usual limit and derivative operations on each coordinate. If

$$
\begin{aligned}
F: \mathbb{R} & \rightarrow \mathbb{R}^{k} \\
t & \rightarrow<f_{1}(t), \ldots, f_{k}(t)>
\end{aligned}
$$

then

$$
\lim _{t \rightarrow t_{0}} F(t)=<\lim _{t \rightarrow t_{0}} f_{1}(t), \ldots, \lim _{t \rightarrow t_{0}} f_{k}(t)>
$$

and

$$
\frac{d}{d t} F(t)=<\frac{d}{d t} f_{1}(t), \ldots, \frac{d}{d t} f_{k}(t)>
$$

Smoothness

We call a vector valued function of one variable, F, smooth if F^{\prime} is continuous and $F^{\prime}(t) \neq 0$ for any t in the domain of F.

Smoothness

We call a vector valued function of one variable, F, smooth if F^{\prime} is continuous and $F^{\prime}(t) \neq 0$ for any t in the domain of F.

Example: Where is the curve $\vec{r}(t)=<t, t^{2}, t^{3}>$ smooth?
Answer:

It is smooth for every value of t.

Smoothness

We call a vector valued function of one variable, F, smooth if F^{\prime} is continuous and $F^{\prime}(t) \neq 0$ for any t in the domain of F.

Example: Where is the curve $\vec{r}(t)=<t, t^{2}, t^{3}>$ smooth?
Answer:

$$
\vec{r}^{\prime}(t)=<1,2 t, 3 t^{2}>
$$

It is smooth for every value of t.
Example: Where is the curve
$\vec{r}(t)=<t^{4}, t^{2}, t^{3}>$ smooth ?
Answer:

$$
\vec{r}^{\prime}(t)=<4 t^{3}, 2 t, 3 t^{2}>
$$

Version 1.0It is smooth everywhere except at $t=0$.

Arclength

To measure the length of a curve in the plane given by $\vec{r}(t)=<$ $f(t), g(t)>$ for $a \leq t \leq b$, we compute the following integral:

$$
L=\int_{a}^{b} \sqrt{f^{\prime}(t)^{2}+g^{\prime}(t)^{2}} d t
$$

while for a spacecurve given by $\vec{r}(t)=<f(t), g(t), h(t)>$ for $a \leq t \leq$ b, we compute:

$$
L=\int_{a}^{b} \sqrt{f^{\prime}(t)^{2}+g^{\prime}(t)^{2}+h^{\prime}(t)^{2}} d t
$$

In vector notation we summarize this as:

$$
L=\int_{a}^{b}\left|\vec{r}^{\prime}(t)\right| d t
$$

Example: compute the arclength of $\vec{r}(t)=<\cos (t), \sin (t), t^{2}>$ for $0 \leq t \leq 1$

