Math 8, Winter 2005

Scott Pauls

Dartmouth College, Department of Mathematics
2/18/05

Lines

Problem: Describe lines in \mathbb{R}^{2} and \mathbb{R}^{3} systematically. Lines are determined by a point and a direction.

$$
\mathbb{R}^{2}
$$

- Familiar form: $y=m x+b$
- $(0, b)$ is a point on the line.
- m, the slope, determines the direction: $\vec{v}=<1, m>$
- Rewrite:

$$
<x, m x+b>=<0, b>+x<1, m>
$$

Lines

General forms

- Vector form: Let the point be given by \vec{r}_{0} and the direction be specified by a vector \vec{v}. Then the line is described by:

$$
\vec{r}(t)=\vec{r}_{0}+t \vec{v}
$$

- Parametric form: If, in coordinates, $\vec{r}_{0}=<x_{0}, y_{0}, z_{0}>, \vec{v}=<$ $a, b, c>$ and $\vec{r}(t)=<x(t), y(t), z(t)>$ then

$$
\begin{aligned}
& x(t)=x_{0}+a t \\
& y(t)=y_{0}+b t \\
& z(t)=z_{0}+c t
\end{aligned}
$$

Symmetric form

Solving the parametric equations for t we have:

$$
\frac{x-x_{0}}{a}=\frac{y-y_{0}}{b}=\frac{z-z_{0}}{c}
$$

Examples:

- Find the equations of the line passing through the points $P=$ $(1,2,3)$ and $Q=(-1,4,2)$.
- Does this line intersect the xy-plane? If so, where?
- Consider the lines $\vec{r}_{1}(t)=<t, t, t>\vec{r}_{2}(t)=<2+t, 8+t, t>$ and $\vec{r}_{3}(t)=<1+t, 10-2 t,-1+t>$. Which pairs of lines are parallel? Which cross? Which are orthogonal? Which are skew?

