Math 8, Winter 2005

Scott Pauls

Dartmouth College, Department of Mathematics
2/17/05

$$
\begin{aligned}
& \text { If } \vec{v}=<v_{1}, v_{2}, v_{3}>\text { and } \vec{w}=<w_{1}, w_{2}, w_{3}>\text { are two vectors } \\
& \text { then the dot product of } \vec{v} \text { and } \vec{w} \text { is } \\
& \qquad \vec{v} \cdot \vec{w}=v_{1} w_{1}+v_{2} w_{2}+v_{3} w_{3}
\end{aligned}
$$

Note: The dot product is sometimes also called the scalar product or inner product.

Properties of the dot product

1. The dot product calculates lengths:

$$
\vec{v} \cdot \vec{v}=|\vec{v}|^{2}
$$

2. The dot product calculates the angle between vectors:

$$
\vec{v} \cdot \vec{w}=|\vec{v}||\vec{w}| \cos (\theta)
$$

where θ is the angle between \vec{v} and \vec{w}. We can also rewrite this formula as:

$$
\cos (\theta)=\frac{\vec{v} \cdot \vec{w}}{|\vec{v}||\vec{w}|}
$$

3. We say two vectors are orthogonal (or perpendicular) if $\theta=\frac{\pi}{2}$ and that the two vectors are parallel if $\theta=0$.
4. From this, we see that two vectors are orthogonal if

$$
\vec{v} \cdot \vec{w}=0
$$

Examples

Find the cosine of the angle between the following vectors:

- $<3,4>$ and $<5,12>$
- $<1,2,3>$ and $<4,0,-1>$
- Find a vector that is perpendicular to both $<-1,1,0>$ and $<4,0,-1>$.

Proof of the angle formula

This follows from the law of cosines: If a triangle is determined by points O, A and B and θ is the angle at the vertex O then

$$
|\overrightarrow{A B}|^{2}=|\overrightarrow{O A}|^{2}+|\overrightarrow{O B}|^{2}-2|\overrightarrow{O A}||\overrightarrow{O B}| \cos (\theta)
$$

If $\vec{v}=\overrightarrow{O A}$ and $\vec{w}=\overrightarrow{O B}$ then $\vec{v}-\vec{w}$ is a copy of $\overrightarrow{A B}$. So, the formula becomes

$$
\begin{aligned}
|\vec{v}-\vec{w}|^{2} & =|\vec{v}|^{2}+|\vec{w}|^{2}-2|\vec{v}||\vec{w}| \cos (\theta) \\
-|\vec{v}-\vec{w}|^{2}+|\vec{v}|^{2}+|\vec{w}|^{2} & =2|\vec{v}||\vec{w}| \cos (\theta) \\
|\vec{v}|^{2}+|\vec{w}|^{2}-(\vec{v}-\vec{w}) \cdot(\vec{v}-\vec{w}) & =2|\vec{v}||\vec{w}| \cos (\theta) \\
|\vec{v}|^{2}+|\vec{w}|^{2}-|\vec{v}|^{2}-|\vec{w}|^{2}+2 \vec{v} \cdot \vec{w} & =2|\vec{v}||\vec{w}| \cos (\theta) \\
\vec{v} \cdot \vec{w} & =|\vec{v}||\vec{w}| \cos (\theta)
\end{aligned}
$$

Projections

It is often useful to be able to project one vector onto another. We have two formulas that help us calculate such a projection:

$$
\operatorname{proj}_{\vec{v}} \vec{w}=\left(\frac{\vec{v} \cdot \vec{w}}{|\vec{v}|^{2}}\right) \vec{v}
$$

The scalar projection, or component, of \vec{w} onto \vec{v} is

$$
\operatorname{comp}_{\vec{v}} \vec{w}=\frac{\vec{v} \cdot \vec{w}}{|\vec{v}|}
$$

Examples

- Find the scalar and vector projections of $\vec{w}=<1,1,2>$ onto $\vec{v}=<$ $-2,3,1>$.
- Let T be a triangle with vertices at $P=(1,0,0), Q=(0,1,0)$ and $R=(0,1,1)$. What is the cosine of the angle between the side $\overrightarrow{P Q}$ and $\overrightarrow{P R}$?

Cross product

There is another way to multiply vectors: given two vectors $\vec{v}=<$ $v_{1}, v_{2}, v_{3}>$ and $\vec{w}=<w_{1}, w_{2}, w_{3}>$, their cross product is

$$
\vec{v} \times \vec{w}=<v_{2} w_{3}-v_{3} w_{2}, v_{3} w_{1}-v_{1} w_{3}, v_{1} w_{2}-v_{2} w_{1}>
$$

Note: we can also phrase this formula in terms of determinants:

$$
\vec{v} \times \vec{w}=\operatorname{det}\left(\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
v_{1} & v_{2} & v_{3} \\
w_{1} & w_{2} & w_{3}
\end{array}\right)
$$

Properties

- The vector $\vec{v} \times \vec{w}$ is orthogonal to both \vec{v} and \vec{w}.
- Which way? Use the right hand rule.

$$
|\vec{v} \times \vec{w}|=|\vec{v}||\vec{w}| \sin (\theta)
$$

- Two nonzero vectors are parallel if $|\vec{v} \times \vec{w}|=0$
- $|\vec{v} \times \vec{w}|$ is equal to the area of a the parallelogram determined by \vec{v} and \vec{w}.
- The volume of the parallelopiped determined by \vec{u}, \vec{v}, and \vec{w} is

$$
|\vec{u} \cdot(\vec{v} \times \vec{w})|
$$

